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Abstract 

In this study, we present the results of two experiments; in the first one we evaluated the 

effects of four larval dietary treatments on the survival and growth of the sea urchin 

Paracentrotus lividus, larvae and post-larvae. In the second experiment we have 

measured the effects of two different settlement substrates, combined with the presence 

of conspecifics, on metamorphosis, survival and growth of post-larvae. The microalgae 

dietary treatments consisted in: Dunaliella tertiolecta (Duna); 50% mixture of 

Isochrysis galbana and D. tertiolecta (ID); 50% mixture of Chaetoceros gracilis and D. 

tertiolecta (CD); 33% mixture of I. galbana, C. gracilis and D. tertiolecta (ICD). 

Although all dietary treatments resulted in a good survival at competence, significant 

difference in post-larval survival was observed between treatments, and indeed, only 

larvae fed Duna and CD survived to 180 days post settlement (DPS). 

In the second experiment, the settlement substrates consisted in a film of cultured 

Ulvella lens or a naturally developing biofilm of diatoms, and the employed rearing 

water was either natural seawater or seawater previously exposed to P. lividus adults. At 

10 DPS, larger (p<0.05) post-larvae were observed in the natural biofilm treatment, 

whilst the presence of conspecifics significantly increased larval settlement in both 

substrates (p<0.01). 

These results indicate that it is important to consider the survival of post-larvae and 

juveniles to establish the efficiency of the dietary treatment on the hatchery production 

of P. lividus. Furthermore, it suggests that improved settlement protocols, such as the 

use of conspecifics, could contribute to increase hatchery outputs. Finally, it confirms 

the suitability of U. lens as settlement cue but also highlights that further research is 

required to establish its effectiveness for post-larvae first feeding. 
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1 Introduction 

Paracentrotus lividus (Lamarck, 1816) is the most consumed sea urchin species in 

Europe (Carboni et al., 2012). Due to the high market demand for its gonads, natural 

populations are exposed to overfishing in many Mediterranean and non-Mediterranean 

coastal areas (Pais et al., 2007), causing a sharp decline of the stock (Boudouresque and 

Verlaque, 2007; Pais et al., 2007; Addis et al., 2009). 

This decrease is driving the development of echinoculture methods that started with 

Pseudocentrotus depressus by Yamabe (1962). These culture methodologies could 

represent a solution to limit the damages caused by wild stock overfishing and to protect 

natural populations (Mos et al., 2011; Carboni, 2013). 

In the culture of sea urchins the transition from planktonic larvae to benthic juveniles 

represents a critical phase. Indeed, laboratory experiments report variable larval 

settlement and metamorphosis rates from 0 to 90% (Buitrago et al., 2005; Gosselin and 

Jangoux, 1996; Grosjean et al., 1998; Huggett et al., 2006; Pearce and Scheibling, 1991; 

Rahim et al., 2004) with post-settlement periods characterized by mortality rates higher 

than 90% within the first weeks of P. lividus benthic life (Buitrago et al., 2005; 

Grosjean et al., 1998; Rahim et al., 2004; Shimabukuro, 1991). The echinoculture 

production could therefore be increased by improving settlement rates and post-larvae 

survival, which currently represent the main bottleneck limiting this activity (Mos et al., 

2011). 

Several studies focused on microalgae diets and feed ration (Azad et al., 2011; Carboni 

et al., 2012; Cárcamo et al., 2005; Kelly et al., 2000; Liu et al., 2007; Pedrotti and 

Fenaux, 1993) and have identified several microalgae species, such as Dunaliella 

tertiolecta, which supports the rearing cycle and improve the larval survival and 
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development of P. lividus (Carboni et al., 2012; Liu et al., 2007) and other echinoid 

species (Azad et al., 2011; George et al., 2004; Hart and Scheibling, 1988; Hinegardner, 

1969; Kelly et al., 2000; Pearce and Scheibling, 1990a, 1991, 1994; Sewell et al., 2004). 

Many authors reported that D. tertiolecta is capable of producing healthy larvae because 

it is easily ingested (i.e. it has an appropriate cell size) and it is quickly digested (Basch, 

1996; Cameron and Hinegardner, 1974; Strathmann, 1971). Moreover, it has an 

appropriate fatty acid profile for the larval growth (Carboni et al., 2012). 

Although the effects of dietary treatments on P. lividus larval survival and development 

have been investigated, and it is well known that larval diet and feed ration influence 

survival and test diameter of various species of sea urchin post-larvae (Hart and 

Strathmann, 1994; Jimmy et al., 2003; Kelly et al., 2000; Liu et al., 2007; Meidel et al., 

1999). However, their effects on determining the survival of juveniles has received little 

attention. Indeed, few studies focused on the survival and test diameter of various 

species of sea urchin post-larvae, but these investigations has been carried out just 

within 10 days post-settlement (Hart and Strathmann, 1994; Kelly et al., 2000; Liu et 

al., 2007; Meidel et al., 1999). Only Jimmy et al. (2003) evaluated the influence of three 

microalgal diets on the test diameter of Echinus esculentus at 6 months post-settlement. 

In aquaculture settings, the transition from planktonic to benthic period is typically 

promoted by plates colonized with diatoms, which are believed to provide a good 

settlement cue and represent the initial feed for the juveniles (Carcamo et al., 2005; 

Harris et al., 2003; McBride, 2005 Shimabukuro, 1991). However, laboratory 

experiments demonstrate that the settlement of sea urchin larvae is improved by a wide 

range of cues, among which the presence of conspecifics (Dworjanyn and Pirozzi, 2008; 

Mos et al., 2011). Indeed, Dworjanyn and Pirozzi (2008) reported for the first time that 
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the sea urchin Tripneustes gratilla preferentially settled in response to the presence of 

conspecifics and seawater previously exposed to conspecifics and their faeces.  

Recently, plates colonized by the green macroalgae Ulvella lens have been shown to 

improve larval settlement and represent the initial feed for juveniles sea urchin (Hannon 

et al., 2014, 2015; Takahashi et al., 2002) and sea cucumber (Matsuura et al., 2009). 

However, it has been recognized that some sea urchin species such as S. intermedius 

prefers to feed on diatoms rather than U. lens (Kawamura et al., 1983). 

In the present study, we reported results of two experiments; in the first one we 

evaluated the effects of four phytoplankton diets on survival of P. lividus larvae at 

competence and post-larvae at different days post-settlement. In the second experiment, 

we compared two different settlement substrates, U. lens or a natural biofilm, and, 

although this topic has been investigated in other sea urchin species, such as T. gratilla 

(Dworjanyn and Pirozzi, 2008; Mos et al., 2011), we evaluated for the first time the 

effects of the presence of conspecifics on larval settlement and post-larval survival and 

growth of the sea urchin P. lividus. 

 

2 Materials and methods 

For both experiments, embryos of P. lividus were produced in the International Marine 

Centre - IMC laboratory (Oristano, Sardinia, Italy) from adult sea urchins (diameter 

larger than 45 mm) following published methods (Liu et al., 2007). Broodstock was 

collected from 5 m depth at the “Penisola del Sinis-Isola di Mal di Ventre” Marine 

Protected Area (39°89’N 8°41’W). Ten specimens (5 male, 5 female) were used for the 

gametes production. 
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The presence of the fertilization membrane was used to verify the fertilization rate, 

observed by using a tubular plankton chamber and a Leica DMRB Microscope (100× 

enlargement) (Azad et al., 2011; Grosjean et al., 1998; Liu et al., 2007). Embryos were 

stocked at a density of 20/ml until they reached the echinopluteus stage, about 40 h after 

fertilization took place. Subsequently, the echinoplutei were stocked at density 1.5/ml 

into 5 L cylindrical white plastic tanks. Cultures were constantly kept in motion by 

motor-driven rotation. Both embryos and echinopluteus were reared in filtered (0.47 

µm) natural seawater (NSW), with a salinity of 36.5±1.0 ppt, without aeration, in 

continuous light at 31 μmol photons/m
2
/s and at a temperature of 19.0±2.0° C. 

 

2.1 Experiment 1: Effect of microalgae diets on larvae and juveniles, development, 

growth and survival 

Four microalgae diets were tested during larval rearing: a single species diet of D. 

tertiolecta (Duna), a two species mixed diet (50% number of cells) of Isochrysis aff. 

galbana (T-Iso) and D. tertiolecta (ID), a two species mixed diet (50%) of Chaetoceros 

gracilis and D. tertiolecta (CD), a three species mixed diet (33%) of T-Iso, C. gracilis 

and D. tertiolecta (ICD). Although the three phytoplankton species tested in this study 

have a different cell size (T-Iso 40-50 µm
3
, C. gracilis 80 µm

3
, D. tertiolecta 170 µm

3
, 

FAO, 2004) and dry weight (T-Iso 29.7 pg/cell, C. gracilis 74.8 pg/cell, D. tertiolecta 

pg/cell, FAO, 1996), we administered an equal number of microalgae cells to the larvae. 

Adopting the rearing method tested by Brundu et al. (2016), every three days we 

restored the amount of phytoplankton consumed by the larvae, guaranteeing constant 

ad-libitum feeding. 

Phytoplankton cultures were maintained in batch lines at 25° C, exposed to a 16/8 h 

(L/D) photoperiod at 63 μmol photons/m
2
/s and supplied with gentle aeration. The 30 
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ppt salinity seawater was pre-filtered (1 µm filter paper), enriched with modified 

Guillard f/2 and autoclaved at 121° C for 30 min. 

The larvae were fed with microalgae cultures in their exponential growth phase, T-Iso 

3.7±0.2 million cells/ml, C. gracilis 3.3±0.2 million cells/ml, D. tertiolecta 4±0.4 

million cells/ml. Larvae were reared in a total of 20 tanks, 5 replicates for each dietary 

treatment. Larval development was assessed every three days by observation of larval 

structures (number of arms, presence and size of the rudiment), according to previous 

studies (Carboni et al., 2012; Liu et al., 2007). For these purposes, a minimum of 10 

randomly sampled larvae from each replicate were placed in a tubular plankton chamber 

and they were observed under a Leica MZ8 Stereomicroscope (15× enlargement). 

Competence of the culture was considered achieved when at least 75% of the sampled 

larvae were considered to be at this stage. 

Larval survival was assessed volumetrically in each replicate and the mean value of 

each measurement was used to calculate the number of larvae in the tanks. Survival was 

expressed as percentage of the initial number of larvae stocked. 

Metamorphosis tests were conducted when larvae reached competence for settlement. 

50 larvae, from each replicate of each treatment, were transferred into shading beakers 

containing 50 ml of filtered NSW and a 50x50 mm polycarbonate layer colonized by the 

macroalgae U. lens, according to the methods described in Daume et al. (2004). The 

number of larvae undergoing metamorphosis was counted after 24, 48, and 72 h. When 

at least 75% of the larvae were metamorphosed, the entire larval culture was considered 

ready to settle and was transferred to 20 rectangular tanks with a volume of 20 L, 

maintaining the same experimental design adopted for the larval rearing (five replicates 

by four dietary treatments). Each tank contained NSW and a 20x18 cm polycarbonate 

layer colonized by the macroalgae U. lens. The animals were kept in a seawater static 
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system for a month, with 36.5±1.0 ppt salinity, without aeration and a 50% seawater 

exchange was performed twice per week. Recorded temperature was 19.0±2.0° C during 

the trial period and 14 h light photoperiod at 22 μmol photons/m
2
/s was applied using 

fluorescent lamps. After the one month, the tanks were connected to a recirculating 

system, provided with biological and mechanical filtration (10 µm).  

The number of post-larvae in each replicate was recorded at 10, 20, 30, 100 and 180 

days post-settlement (DPS) and survival rate was calculated as percentage of the 

initially stocked competent larvae. Moreover, at 180 DPS, 200 randomly sampled 

juveniles were placed on a water proof graph paper and photographed with a Canon 

PowerShot G15 digital camera. Image Processing Analysis in Java (ImageJ 1.49V) was 

calibrated appropriately for image analysis and measurement. A length of 1 mm was 

measured via a ruler, saved and then used as the standard for individual growth 

measurement, in terms of test diameter; the widest part of the sea urchin body was 

measured. To simplify these operations, a solution of KCl 1% was used to induce 

paralysis and detachment of juveniles from the tanks, as tested by Hagen (2003) for S. 

droebachiensis. 

 

2.2 Experiment 2: Effects of substrates and presence of conspecifics on larval settlement 

and post-larvae survival and growth 

In a second experiment we tested the effectiveness of two substrates on the induction of 

metamorphosis in competent larvae. Larvae were exposed to polycarbonate plastic 

layers coated with either U. lens or a natural biofilm. U. lens was cultivated in 

laboratory under controlled conditions according to the method described by Daume et 

al. (2004). Natural biofilm, instead, was naturally cultivated submerging the layers in 

tanks containing estuarine water for 30 days (Cárcamo, 2004). Natural biofilm is widely 
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employed as larval settlement substrate for various species of sea urchins (Mos et al., 

2011) and other invertebrates (Daume et al., 2004; Knauer et al., 1996; Leighton, 1989; 

Searcy-Bernal et al., 1992). 

Furthermore, we tested the effects of the presence/absence of conspecifics on 

metamorphosis, post-settlement survival and growth of settled juveniles.  This trial, 

therefore, consisted of four treatments: U. lens + conspecifics; U. lens; natural biofilm + 

conspecifics; natural biofilm.  A total of 28 tanks (7 replicates by four treatments) were 

employed for this experiment. 

Larvae used for this experiment were reared as previously described in experiment 1 

and fed with a 50% mixture of C. gracilis and D. tertiolecta. Once competence was 

achieved metamorphosis test was conducted as described above and larvae were then 

randomly distributed in equal concentration (1 larvae/ml) between the four treatments.  

Importantly, larvae were never in direct physical contact with adult conspecifics but, 

instead, the water used for the two conspecific treatments was previously passed 

through a 20 L tank hosting 5 wild-harvest P. lividus adults (diameter larger than 45 

mm) and then used for the trial. Conspecifics were starved and hosted for a week in 

previously filtered (1 µm) NSW, in static condition and with gentle aeration. 

The number of larvae undergoing metamorphosis was counted after 24, 48, and 72 h. 

Survival was assessed at 10 DPS by observing the movement of spines and tube feet of 

the settled individuals under a Leica MZ8 Stereomicroscope (60× enlargement); growth 

was assessed at 10 DPS by measuring the individuals’ test diameter with a Leica 

DMC2900 digital camera connected to a Leica MZ8 Stereomicroscope (30× 

enlargement) and using an image analysis software (Leica Application Suite LAS 

V4.5). 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  
 

10 

 

2.3 Statistical analysis 

Data were analyzed by Statistica 6.1 StatSoft, Inc. (2004). The normality and 

homogeneity of the data distribution were assessed with Shapiro Wilk’s W and Levene's 

tests, respectively. Where required, data on larval development and survival were 

analyzed by the non-parametric Kruskal-Wallis test; otherwise, one-way analysis of 

variance (ANOVA) was employed. Post-larvae survival was analyzed using repeated-

measures ANOVA with survival as a factor and DPS as a repeated factor. Tukey's 

honestly-significant difference (HSD) test was used to evaluate all pair-wise treatment 

comparisons (p<0.05). For comparison of the juvenile growth, a size-class distribution 

was constructed. Size-classes were determined as 1 mm increments in diameter; 

Kolmogorov-Smirnov test was used to compare size-class distributions and to test the 

prediction that all size-classes occurred in similar proportions among dietary treatments. 

Metamorphosis percentage was analyzed using repeated-measures ANOVA with 

inducing factor and seawater as factors and time as a repeated factor, while the effects 

on post-larvae survival and test diameter were assessed by a two-way ANOVA. Tukey's 

honestly-significant difference (HSD) test was used to evaluate all pair-wise treatment 

comparisons (p<0.05). 

 

3 Results 

3.1 Experiment 1: Effect of microalgae diets on larvae and juveniles, development, 

growth and survival 

Larval development was significantly influenced by microalgae diets. ICD resulted in a 

faster (p<0.01) development than all other diets, and at 10 days post-fertilization (DPF) 

79.9±7.8% of the larvae fed ICD achieved the competent stage, whilst only 7.9±3.4%, 
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6.1±3.7% and 30.1±13.4% of the larvae fed Duna, ID and CD, respectively, achieved 

this stage. Nonetheless, larvae in all treatments reached the competence by 22 DPF and 

no significant difference were observed after 10 DPF (Table 1). No significant 

differences between treatments were recorded in larval survival up until the competent 

stage (Table 2). However, larvae fed the ICD diet presented a significantly lower 

(p<0.001) larval survival at metamorphosis (4.2±3.5%) than other treatments, Duna 

(65.0±14.9%), ID (61.8±16.5%) and CD (78.4±10.2%) (Table 2). 

All post-larvae in ICD treatment died before 10 days post settlement. Repeated 

measures ANOVA showed a gradual decreasing of post-settlement survival from 10 to 

100 DPS (p<0.001) in all other treatments with no significant difference between 

treatments. Post-settlers resulting from the ID treatment did not survive past 100 DPS; 

at the end of the experiment, 180 DPS, a survival of 1.5±1.5% and 3.0±2.0%, 

respectively for Duna and CD, was recorded (Fig. 1). 

At 180 DPS, survivors from both, Duna and CD treatments, had a test diameter from 1.1 

mm to 10+ mm, but no significant differences were highlighted by Kolmogorov-

Smirnov test on the size-classes distribution, as well as by ANOVA on the mean test 

diameter, 6.4±0.2 mm and 6.6±0.2 mm for Duna and CD treatment, respectively (Fig. 

2). 

 

3.2 Experiment 2: Effects of substrates and presence of conspecifics on larval settlement 

and post-larvae survival and growth 

Metamorphosis was significantly influenced by the presence of conspecifics. Indeed, 

individuals exposed to seawater treated with conspecifics showed a significantly higher 

metamorphosis rate throughout the observation period (p<0.01), whilst no significant 

differences were recorded between substrates (Fig. 3). 
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At 10 DPS survival rate did not differed between treatments. Significant differences 

(p<0.05) in the juveniles’ test diameter, however, were observed between substrates and 

a significantly larger test diameter was, in fact, measured for juveniles feeding on 

natural biofilm (Fig. 4). 

 

4 Discussion 

4.1 Experiment 1: Effect of microalgae diets on larvae and juveniles, development, 

growth and survival 

All dietary treatments tested in this study resulted in a better larval development and 

survival at competence, in comparison with monospecific diets of T-Iso (competence at 

29 DPF and 88.5±4.4% survival) and C. gracilis (competence at 23 DPF and 

43.8±10.1% survival), and a 50% mixture of the same species (competence at 20 DPF 

and 73.7±8.7% survival) previously tested (Brundu et al., 2016). The survival rate at 

competence obtained in this study by using D. tertiolecta (82.8±10.6%) is higher than 

previously reported in the literature (Azad et al., 2011; Carboni et al., 2012; George et 

al., 2004; Kelly et al., 2000; Jimmy et al., 2003; Liu et al., 2007), suggesting that this 

species can indeed support larval development of P. lividus. 

Liu et al. (2007) obtained a 65% survival and a normal development of P. lividus larvae 

fed with D. tertiolecta; moreover, a greater final body width and a faster development 

resulted with this species (settlement by day 18 post-fertilization) than 

microencapsulated formulated feeds (settlement by day 20 post-fertilization). Normal 

development of larvae fed D. tertiolecta was also obtained by Carboni et al. (2012), 

even though with a much lower survival rate. The difference between this and previous 

studies could be explained by the smaller tank volumes and lower larval densities 
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adopted. Nonetheless, our results on the larval survival of P. lividus are comparable 

with those obtained for other sea urchin species fed D. tertiolecta monospecific diet. 

As previously reported by Brundu et al. (2016), a delay between competence and 

metamorphosis completion was also observed in this study, potentially causing the 

unexpectedly mortality observed in larvae fed ICD. It is well known that mixed-species 

algal diets provide a more balanced nutrient profile than a single-algal diet (Azad et al., 

2011; Pechenik, 1987) and they promote better results than single-algal diets on the 

growth of echinoderm larvae (Azad et al., 2011; Basch, 1996; Cárcamo et al., 2005; 

Gonzalez et al., 1987) and other marine invertebrates (Marshall et al., 2010). On the 

contrary, other studies observed allelopathy processes among phytoplankton species, 

which refers to the release of secondary metabolites by plants, microorganisms, viruses 

and fungi, which could result in competition among organisms (Gross, 2003). It has 

been observed, for instance, that Prymnesium parvum and Alexandrium spp. influence 

negatively the growth rate of other microalgae species, causing lysis of algal cells, and 

they can change the natural community structure (Fistarol et al., 2004; Fistarol et al., 

2003). Nonetheless, this phenomenon has never been described for the microalgae 

species used in this study which are, instead, commonly used in combination for 

aquaculture operations.  

The lower larval survival rate of larvae fed the ICD treatment was also reflected in the 

population crash at 10 DPS, when none of the individuals survived. ICD tertiary 

combination, therefore, can be considered as an appropriate diet during the larval 

development stages up to the competence, but it failed to support survival during 

settlement and post-settlement stages. On the contrary, larvae fed Duna and CD showed 

significantly higher survival rates during early development and post-metamorphosis. 

The survival rates at 10 DPS of post-larvae treated with D. tertiolecta alone and mixed 
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with C. gracilis are similar to the values reported in the literature for P. lividus (Liu et 

al., 2007) and other sea urchin species (Jimmy et al., 2003; Kelly et al., 2000). The 

observed differences between dietary treatments are probably due to a different 

proximal composition of the phytoplankton, as well as to the different cell size. It has 

been previously reported that D. tertiolecta is capable of producing healthy larvae 

because it has an appropriate cell size (Basch, 1996; Cameron and Hinegardner, 1974; 

Strathmann, 1971) and fatty acid profile for the larval growth of P. lividus (Carboni et 

al., 2012). On the contrary, T-Iso and C. gracilis have a smaller cell size and dry weight 

in comparison with D. tertiolecta (FAO, 2004, 1996), and contain a lower amount of 

protein, carbohydrate and lipid (FAO, 1996). 

Larvae fed Duna, ID and CD showed a gradual decrease in the survival of post-larvae 

from 10 DPS onwards; ID failed to survive past 100 DPS, while Duna and CD showed a 

similar survival at 100 and 180 DPS, as well as in the test diameter at the end of the 

experiment. This suggests that larval dietary treatment influences the survival for the 

first part of post-metamorphic life, but does not influence the growth of juveniles, as 

observed for E. esculentus by Jimmy et al. (2003). Moreover, the average test diameters 

at 180 DPS reported by this author, 6.83±1.6 mm with D. tertiolecta and 6.55±1.9 mm 

with a mixture of D. tertiolecta and P. tricornutum, are similar to our results, 6.4±0.2 

mm and 6.6±0.2 mm with Duna and CD, respectively. 

The growth of juveniles at 180 DPS was very heterogeneous regardless to the treatment; 

the large variation recorded in test diameter (from 1.1 mm to 10+ mm) was probably 

due to competition between individuals of different sizes, as previously observed in 

other studies (Ebert, 1973; Grosjean et al., 1996; Guillou and Michel, 1993; McCarron 

et al., 2009). 
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In a population of 133 juveniles of L. albus (76 days old), Gonzalez et al. (1987) 

recorded a size ranging between 0.5-2.7 mm. In another experiment, the same authors 

compared two populations (62 days old) treated with D. tertiolecta and a mixture of D. 

tertiolecta and T-Iso, obtaining a larger size-class distribution for the population fed the 

mixture than D. tertiolecta.  

 

4.2 Experiment 2: Effects of substrates and presence of conspecifics on larval settlement 

and post-larvae survival and growth  

Echinoderm species, such as sea cucumber Psolus chitonoides (Young and Chia, 1982) 

and sand dollars D. excentricus (Burke, 1984) and Echinarachnius parma (Pearce and 

Scheibling, 1990b) are known to settle in response to conspecifics, as well as other 

marine invertebrate larvae (Crisp, 1974; Hadfield and Paul, 2001; Pawlik, 1992). 

Among echinoids, only T. gratilla was observed to settle in response to the presence of 

adults and particularly of their faeces, maybe because of a conspecific bacteria mediated 

signal (Dworjanyn and Pirozzi, 2008; Mos et al., 2011). Our results show, for the first 

time, that settlement of P. lividus, regardless of the employed substrate, is improved by 

the presence of adult conspecifics. The underlying mechanisms (e.g. bacteria, chemical 

signals) for the improved metamorphosis rate are however unclear. 

Although it has been shown that U. lens improves larval settlement of P. lividus 

(Hannon et al., 2014; 2015) and abalones (Daume et al., 2000; Krisinich et al., 2000; 

Takahashi and Koganezawa, 1988), our study did not confirm that U. lens is better than 

natural biofilm as metamorphosis inducing factor. Before the metamorphosis tests, the 

polycarbonate plastic layers coated by U. lens were carefully washed and wiped clean to 

remove any unwanted biofilm, which could play an important role for the settlement 
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cue, as previously hypothesized by Daume et al. (2004). In this way, we excluded a 

potential effect on metamorphosis of biofilm developed on the U. lens substrate. 

Hannon et al. (2015) reported a higher larval settlement of P. lividus on U. lens than 

Amphora spp., a commonly used diatom for abalones settlement (Daume et al., 2000; 

Gordon et al., 2006). The mean settlement obtained by Hannon et al. (2015) on U. lens 

(50%) is higher than our results on the same substrate, but it is similar to our result on 

natural biofilm + conspecifics (46.2±3.2%), suggesting that both substrates, U. lens and 

natural biofilm, are good inducing factor for metamorphosis in P. lividus. 

Similarly to our results, Daume et al. (2000) found that settlement of abalone H. rubra 

is higher on U. lens than diatoms, but growth rates were higher on diatoms than U. lens. 

Seki (1997) reported that U. lens sustained growth of post-larval H. discus hannai, but 

growth rates were improved by the inoculation of cultured diatoms. According to 

Kawamura et al. (1983), U. lens has been used in aquaculture centers in Japan for the 

production of the sea urchin S. intermedius, as they suggest that newly metamorphosed 

juveniles feed on diatoms first to then switch to U. lens. 

Although no differences in survival at 10 DPS was recorded between settlement 

substrates, the higher diameter of post-larvae settled on the natural biofilm compared to 

U. lens strengthens the importance of diatoms for the growth and survival of P. lividus 

juveniles. This is particularly true as larger settlers are less susceptible to post-

settlement mortality (Meidel et al., 1999).  

 

5 Conclusions 

This study could represent an improvement in the rearing methods of P. lividus. All 

diets tested in this study supported the larval development of P. lividus, but only 
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juveniles resulting from the Duna and CD treatments survived to 180 DPS. This 

indicates that it is important to consider the survival of post-larvae and juveniles to 

establish the efficiency of the dietary treatment on the production of P. lividus juveniles. 

Seawater previously “conditioned” by the presence of conspecifics increases the larval 

settlement rate of P. lividus. Furthermore, although U. lens provides an appropriate 

settlement substrate for competent larvae, higher growth rate of post-metamorphic 

individuals was achieved on a natural biofilm. Nevertheless, considering that dominant 

species in a natural biofilm change throughout the season and between locations, U. lens 

could represents an efficient and more reliable alternative to natural biofilms as 

metamorphosis inducing factor and first feeding item, but further investigations are 

required to ascertain its nutritional value for P. lividus post larvae. 
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Table 1: Paracentrotus lividus larvae (%) at competence stage (Cp). Days post 

fertilization (DPF), Dunaliella tertiolecta (Duna), mixture of T-Iso and D. tertiolecta 

(ID), mixture of Chaetoceros gracilis and D. tertiolecta (CD), mixture of T-Iso, C. 

gracilis and D. tertiolecta (ICD). The different letters indicate significant 

differences among diets (**=p<0.01). Values are expressed as mean ± SE (n=5). 

Table 2: Survival (%) of Paracentrotus lividus larvae at competence and 

metamorphosis. Dunaliella tertiolecta (Duna), mixture of T-Iso and D. tertiolecta 

(ID), mixture of Chaetoceros gracilis and D. tertiolecta (CD), mixture of T-Iso, C. 

gracilis and D. tertiolecta (ICD). The different letters indicate significant 

differences among diets (***=p<0.001). Values are expressed as mean ± SE (n=5). 

Fig. 1: Survival rate of Paracentrotus lividus post-larvae at 10, 20, 30, 100 and 180 

days post-settlement (DPS). Dunaliella tertiolecta (Duna), mixture of T-Iso and D. 

tertiolecta (ID), mixture of Chaetoceros gracilis and D. tertiolecta (CD). 

Superscripts indicate significant differences among DPS (p<0.001). Values are 

expressed as mean ± SE (n=5). 

Fig. 2: Size-class distributions (diameter in 1 mm intervals) of Paracentrotus lividus 

post-larvae resulting from the Duna and CD treatments, at 180 days post-

settlement (DPS). 

Fig. 3: Metamorphosis rate of competent larvae of Paracentrotus lividus exposed to 

two substrate types, Ulvella lens and natural biofilm, and to the presence or 

absence of adult conspecifics. Superscripts indicate significant differences between 

substrates (p<0.01). Values are expressed as mean ± SE (n=7). 
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Fig. 4: Test diameter and survival of Paracentrotus lividus post-larvae at 10 days 

post-settlement. Superscripts indicate significant differences between treatments 

(p<0.05). Values are expressed as mean ± SE (diameter, n=28; survival, n=7). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  
 

29 

 

Table 1 

 

Diet 

 

10 DPF ** 13 DPF 16 DPF 19 DPF 22 DPF 

Duna 

 

7.9 ± 3.4 
b
 88.3 ± 8.3 90.3 ± 6.3 93.9 ± 4.0 100 

ID 

 

6.1 ± 3.7 
b
 62.8 ± 18.1 70.9 ± 17.5 71.7 ± 16.4 78.8 ± 16.2 

CD 

 

30.1 ± 13.4 
b
 95.3 ± 4.7 98.1 ± 1.9 100 100 

ICD  79.9 ± 7.8 
a
 88.8 ± 3.2 97.0 ± 3.0 100 100 
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Table 2 

Diet 

 

Competence (Cp) Metamorphosis (Mt) *** 

Duna 

 

82.8 ± 10.6 65.0 ± 14.9 
a
 

ID 

 

82.0 ± 14.8 61.8 ± 16.5 
a
 

CD 

 

84.6 ± 9.9 78.4 ± 10.2 
a
 

ICD  72.8 ± 10.6 4.2 ± 3.5 
b
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Figure 1 
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Statement of relevance 

Our work contributes to improving hatchery rearing methods of larvae and post-larvae of the sea 

urchin Paracentrotus lividus. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
  
 

36 

 

Highlights of this study: 

 

1. This study tests the effects of the presence of adult conspecifics on the larval settlement of 

Paracentrotus lividus; results demonstrate that seawater previously “conditioned” by the 

presence of conspecifics increases the larval settlement rate. 

2. This study demonstrates that the macroalgae Ulvella lens could represents an efficient 

alternative to a natural biofilm of diatoms as metamorphosis inducing factor and first feeding 

item, although a higher growth rate of post-larvae was achieved on a natural biofilm than on 

U. lens. 


