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Abstract 

 

 The Golden Ratio (a ratio of ~1.618:1) appears 

repeatedly in nature including structural and functional 

traits of organisms (e.g. Fibonacci spirals of snail shells 

and certain seed heads), the spiraled shape of galaxies 

and hurricanes, and even in much cultural architecture 

and art. In the mid-19th century, branching structures in 

plant and animal vascular systems were found to follow 

the Golden Ratio; that is, successive branches in the 

vascular systems of plants and animals tend to follow a 

length ratio of about 1.618:1. Here we present a model 

that uses this empirical evidence as a branching ratio in 

theoretical vascular systems. We then use a defined 

mass of the model system as a predictor of log-log 

scaling of terminal units. In this model, log terminal 

units and log mass scale similarly with that of other 

models as well as empirical evidence, but with more 

parsimony and a perspective not yet offered among all 

available models of allometric scaling. This model 

invites novel and broad hypotheses on the influence of 

the Golden Ratio on power scaling in organisms.  

 

Keywords: Golden Ratio; vascular branching; power 

scaling; allometry. 

 

Introduction 

 

 Organismal power scaling is a well-established 

phenomenon in the field of biology (Rubner 1902, 

Kleiber 1932). Scientists have known for over a century 

that biological rates and processes scale at log-log

 

 

 

slopes of less than one (Rubner 1902). We present a 

general model, which uses the golden ratio as the 

branching ratio (i.e. the ratio of the length of a single 

branch to the length of one of its successive branches) to 

describe power scaling in a defined vascular system 

predicted as the number of terminal units compared to 

the defined mass of the overall system.  

 In the mid-1800s, Adolf Zeising found that the 

arrangement of plant branches and leaf veins, as well as 

animal arteries, tended to follow the golden ratio. The 

golden ratio is a proportion of φ:1, where φ ≈ 

1.61803399. It is widely found in mathematical phen-

omena (e.g.. Fibonacci’s sequence) as well as various 

natural and cultural phenomena such as human 

proportions, architecture, visual arts and music (Livio 

2003, Putz 1995, Tool 2001).  

 Nearly two decades ago, West, Brown, and Enquist 

(West et al. 1997, hereafter referred to as WBE) 

published a model that mechanistically explained power 

scaling for all vascular organisms using first principles 

of physics. The WBE model uses branching ratios to 

predict the supply volume of vascular fluid to terminal 

units (e.g. capillaries or leaves). 

 WBE mathematically show that as organisms 

increase in size, and hence mass, the amount of tissue 

that each terminal unit must supply also increases. In 

essence, the logarithmic number of terminal units 

increases by about 3/4 for every logarithmic increase in 

the mass of organisms. In the WBE model it is assumed 

that terminal units are invariant in size and can supply
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Figure 1. Model of Phi Branching Structure. Graphical depiction of the model of branching patterns where the base 

branch at each level k+1 increases by φ from the base branch at level k. The three graphs presented here represent 

the first three furcation levels that are discussed in the paper; bifurcation (n=2), trifurcation (n=3), and n=4. 

 

 

an invariant amount of fluid. Therefore, as mass 

increases, the amount of tissue that each terminal unit 

must supply also increases.  

 Zeising discovered that branches in the vascular 

systems of plants and animals were about φ times as 

long as a successive branch (Zeising 1854, 1856). Our 

model uses this ratio to determine length and mass of 

branches in a simulated vascular system. We show, 

using a simple model, the relationship between the 

defined mass of a model organism and the number of 

terminal units when the branching ratio follows the 

golden ratio.  

 

Model 

 

We define the model at the lowest branching level as 

a single vascular tube where the branching level (k) is 0 

and the length and mass of the initial branch are each 1 

(Figure 1). At successive levels of k, each branch 

diverges into n branching structures such that there are k 

branching points for each level of k. Therefore, each 

level of k could be thought of as representing an 

organism that has k-level branching points in its 

vascular system. For each level k this produces a 

number of terminal units such that 

Tk = n
k
 

where Tk is the number of terminal units for an organism 

with k branching points and n is the number of branches 

that diverge at each branching point; n is a furcation 

constant that is defined a priori and represents the 

number of branches extending from the previous branch 

(Figure 1). In this model we simply count the number of 

terminal units; however, this could have a wide range of 

interpretation in biological reality ranging from capil-

laries in birds and mammals to leaves in plants. For sake 

of comparison we interpret terminal units the same as 

WBE (i.e. capillaries or leaves). 

 Additionally, we define length of the base vascular 

piece at each successive level as increasing at a ratio of 

φ : 1 such that, 

lk+1 / lk ≡ φ 

where lk is the length of the base branch at level k. 

We define mass of the initial branch as equal to 1; 

therefore, mass in the model is equivalent to the sum of 

lengths for all vascular tubes in the system. We assume 

that branches run continuously from source to terminal 

unit such that at level k there will be nk vascular units of 

length φk. Therefore, the mass at each level of the 

model is as follows, 

Mk = φ
k
n

k
 + (Mk-1 · n) 

where Mk is the mass of the model at branching level k 

and φ ≈ 1.61803399. 

 

Results and Discussion 

 

The number of terminal units scales logarithmically 

with defined mass of the system at a slope near 2/3 

when n = 3 and closer to 3/4 when n = 4. The 

relationship between ln(Tk) and ln(Mk) at n = 4 reveals a 

pattern that matches very closely with what WBE 

predict (Fig. 2). Note that this result holds true when the 

mass of a piece of the model vascular system is equal to 

its length. Changing this assumption would lead to a 

different result in the model output. 

 Interestingly, we can compare our model to the WBE 

equation for volume-preservation in the space-filling 

fractal (West et al. 1997), which is γk
3 ≡ (lk+1 / lk)

3 ≈ 

n−1/3, where WBE derive as a scale factor for branch 

length between levels. Here n means the same as in our 

model, which is a furcation constant for each branching 

level. WBE essentially use γ and n along with β, a 

branch radii scaling factor, to derive the exponent that 

ultimately determines allometric scaling in organisms. 

We can compare the equation for γ to branching ratio in 

our model because we define mass of a vascular piece 

as being equal to its length. Therefore, if we take the last 

term in the WBE equation for γ and plug in different 

furcation levels we will see where γ for our model 

(which is φ) best fits. In order to do this, however, the 

last term in the WBE equation for γ must be inverted as 

Mk

 

in our model builds on its previous branching level
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Figure 2. Results from the model. Subfigure (a) shows the correlation between ln(Terminal Units) and ln(Mass) for 

100 branching levels. Slopes of 1 (black line), 3/4, and 2/3 (red dashed lines) are included for reference. Points for 

n=4 fall very closely in line with the 3/4 line predicted by WBE while points for n=3 are nearer to 2/3. However, the 

quadratic model described by Kolokotrones et al. (2010) fits points for k = 100 significantly better than the single-

term linear model (F1,97

 

= 6.58, p < 0.05, ∆AIC=-4.6). Subfigure (b) shows the change in slope across levels of k. 

The y-axis represents the slope of the log-log relationship between terminal units and mass.  

 

 

 whereas the ratio for γ in WBE is compared to the 

subsequent k level. Inverting the last term in WBE 

reveals that when n=2 (which is basic bifurcation in 

branching) then γ = 1.26, when n=3 (trifucation), γ = 

1.44, and when n=4, γ = 1.59, which is close to φ. 

Therefore, when we calculate the number of terminal 

units and mass using our model at n = 4 we see a pattern 

very close to what WBE predict (Figure 2a). WBE state 

that in their model the power scaling exponent is 

invariant of branching ratio, and the main reason for this 

is that the length ratio (γ) in branches changes with 

branch ratio (n) as seen above. 

 This observation invites novel and broad hypotheses 

about power scaling in organisms and its cause. Firstly, 

do all organisms follow the same power scaling patterns 

regardless of n? WBE state that allometric scaling does 

not depend on branching ratio (West et al. 1997); 

however, in our model the log number of terminal units 

corresponded to log mass at a ratio of 3/4 when n = 4, 

but as closer to 2/3 when n = 3. The mechanism behind 

the WBE model relates to how much body tissue can be 

supplied by terminal units, and that the number of 

terminal units does not scale as 1 with mass (but rather 

as 3/4). If terminal units actually scale differently 

between branching types, then according to our model 

exponents of power scaling will differ as well. Our 

simple model reveals a basic mathematical pattern 

between the number of terminal units of a vascular

 

system and the system’s branching ratio and furcation 

constant. This then brings up the question of what 

exactly did Adolf Zeissing measure? Did all of the 

organisms for which he measured branching ratio in 

animal vessels and plant stems have a furcation constant 

of 4? This seems unlikely (e.g. simply look at any tree 

and see how many branches stem at each node; rarely is 

it 4, although sometimes as in the case of pine and 

spruce trees it is greater than 4). It would be interesting 

to compare allometric scaling between organisms that 

are known to branch at n = 3 and those that are n = 4 to 

see how they differ. Additionally, it would also be 

interesting to measure the branch length ratios in these 

organisms to see if they all follow the golden ratio or if 

branch length ratios differ between them. 

 It is also interesting to note that there is a slight 

curvature in the trend presented in Figure 2a. This 

correlates nicely with the pattern found by Kolokotrones 

et al. (2010) which shows that basal metabolic rates in 

organisms follow a quadratic model quite well on a log-

log scale. While this difference is difficult to discern a 

basic comparison of linear model fits between the linear 

vs. quadratic model shows a significant difference 

between the two models (F1,198= 19.448, p < 0.0001), 

and the quadratic model exhibits a lower AIC value by 

about 16 (∆AIC=16.3). This curvature in the output of 

the model can be readily seen in Figure 2b. Since 

Kolokotrones et al. (2010) measure basal metabolic rate 
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and our model relates to vascular scaling, this is only an 

interesting, notable correlation. However, WBE attempt 

to correlate metabolic rates with a vascular branching 

model that largely depends on the number of terminal 

units of a system. In essence, the number of terminal 

units among organisms that differ in mass determine 

metabolic rate in the WBE model.  

 Our model, just as every other model, is a 

simplification of nature in order to gain an 

understanding about certain components. Obviously we 

cannot take into account all biological realities such as 

known patterns in conduit packing and hydraulic 

architecture (Sperry et al. 2008) or differences in vessel 

structure between, say, furcating stems and reticulate 

leaves. Similarly, that mass equals the length of vascular 

units in this model is perhaps another overlooked reality 

as different structures on the same individuals perform 

different tasks and are likely to be composed of different 

materials consisting of different densities. While this 

would likely create problems in the model at higher 

levels of biomass (e.g. trees, where cellulose and lignin 

is used for structural support at the base of the vascular 

system), our goal was to get a broad overview of a very 

simple system across a wide range of branching levels 

to understand how fractal branching ratios near the 

golden ratio determine the physical structure of the 

system (in terms of terminal units, which provide the 

cells with the resources necessary for life). Although we 

have neglected some of these biological realities for the 

sake of parsimony we feel that this model reveals 

interesting correlations between a well-developed theory 

of allometric scaling and empirical measurements that 

follow patterns of a well-established mathematical 

relationship. The golden ratio is present in a wide 

variety of organismal traits (Mitchison 1977, Douady 

and Couder 1992) and represents a common thread 

among patterns in organismal structure. It is interesting 

that this ratio, which determines optimum form, could 

also lead to consistent patterns of scaling at constant 

branching ratios.  
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