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Abstract 

The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and 

carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial 

variability in surface water pH and saturation states (Ω) for two biologically-important calcium carbonate 

minerals calcite and aragonite was observed in Ryder Bay, in the coastal sea-ice zone of the West 

Antarctic Peninsula. Glacial meltwater and melting sea ice stratified the water column and facilitated the 

development of large phytoplankton blooms and subsequent strong uptake of atmospheric CO2 of up to 

55 mmol m-2 day-1 during austral summer. Concurrent high pH (8.48) and calcium carbonate mineral 

supersaturation (Ωaragonite ~3.1) occurred in the meltwater-influenced surface ocean. Biologically-

induced increases in calcium carbonate mineral saturation states counteracted any effects of carbonate 

ion dilution. Accumulation of CO2 through remineralisation of additional organic matter from productive 

coastal waters lowered the pH (7.84) and caused deep-water corrosivity (Ωaragonite ~0.9) in regions 

impacted by Circumpolar Deep Water. Episodic mixing events enabled CO2-rich subsurface water to 

become entrained into the surface and eroded seasonal stratification to lower surface water pH (8.21) 

and saturation states (Ωaragonite ~1.8) relative to all surface waters across Ryder Bay. Uptake of 

atmospheric CO2 of 28 mmol m-2 day-1 in regions of vertical mixing may enhance the susceptibility of the 

surface layer to future ocean acidification in dynamic coastal environments. Spatially-resolved studies 

are essential to elucidate the natural variability in carbonate chemistry in order to better understand and 

predict carbon cycling and the response of marine organisms to future ocean acidification in the Antarctic 

coastal zone. 
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1. Introduction  

 

The rapid increase of carbon dioxide (CO2) in the atmosphere due to human activities is causing 

shifts in ocean chemistry, as oceanic CO2 uptake lowers seawater pH and the concentration of 

carbonate ions in the process of ocean acidification (Caldeira and Wickett, 2003; Feely et al., 2004; Orr 

et al., 2005; Royal Society, 2005). Dissolving CO2 in the ocean increases the partial pressure of CO2 

(pCO2) and the concentration of dissolved inorganic carbon (CT) in seawater (Feely et al., 2004; 

Takahashi et al., 2009). An immediate impact of ocean acidification on marine ecosystems is lowering of 

the saturation state (Ω) of calcium carbonate minerals in seawater (Feely et al., 2004; Millero, 2007; 

Fabry et al., 2008). Waters become corrosive to un-protected calcareous shells and skeletons when 

undersaturation with respect to calcium carbonate saturation states (Ω <1) occurs (Andersson et al., 

2005; Royal Society, 2005; Doney et al., 2009). Biogenic carbonate minerals exist as one of two 

crystalline forms, aragonite or calcite, where aragonite is the less stable form and reaches 

undersaturation and dissolution in advance of calcite (Mucci, 1983; Orr et al., 2005). Ocean acidification 

as a result of anthropogenic CO2 uptake has led to a shallowing of the aragonite saturation horizon (Ω  

1) in the water column, such that corrosive waters can flow above the depth of shelf breaks and enter 

coastal regions (Sabine et al., 2004; Feely et al., 2008; Bates et al., 2009). Oceanic CO2 timeseries data 

show that the surface ocean concentrations of CO2 are following the atmospheric CO2 increase (Bates et 

al., 2014). The pH of the global oceans has reduced by 0.1 units over the last 200 years (Caldeira and 

Wickett, 2003) and is predicted to drop by a further 0.3-0.4 units by 2100 (Feely et al., 2004; Orr et al., 

2005).  

The polar oceans are particularly vulnerable to ocean acidification as the cold waters are naturally 

CO2-rich and have a low total alkalinity (AT) to CT ratio that reduces the degree of carbonate mineral 

saturation and the buffering capacity for further CO2 uptake (Egleston et al., 2010; Shadwick et al., 2011; 

Shadwick et al., 2013; Takahashi et al., 2014). Additionally, the solubility of calcium carbonate minerals 

increases at lower temperatures (Zeebe and Wolf-Gladrow, 2001). Climatological data from Drake 

Passage have revealed decreasing time-trends in surface water pH with an associated reduction in the 

saturation states of calcite and aragonite of 0.09 ± 0.08 and 0.06 ± 0.05, respectively, per decade 

(Takahashi et al., 2014). Surface waters of the Southern Ocean are predicted to experience wintertime 

aragonite undersaturation by 2030, driven by seasonal variations and a synergy of reduced sea-ice 

cover, surface water freshening and increased air-sea CO2 exchange (Orr et al., 2005; McNeil and 
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Matear, 2008; Steinacher et al., 2009; Sasse et al., 2015). This has implications for pelagic and benthic 

calcifiers, such as Southern Ocean pteropods (Bednaršek et al., 2012), foraminifera (Moy et al., 2009) 

and other Antarctic molluscs (McClintock, et al., 2009) that have already shown reduced calcification and 

shell dissolution under acidification pressures. Furthermore, shifts in ocean chemistry influence Antarctic 

phytoplankton productivity, the biological carbon pump and community composition in the Southern 

Ocean (Neven et al., 2011; Trimborn et al., 2013). However, Antarctic sea urchins and other calcifiers 

have shown resilience to ocean acidification (Orr et al., 2005; Ericson et al., 2010).  

The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem with an effective 

biological carbon pump that creates important sinks for atmospheric CO2 in the coastal sea-ice zone of 

the Southern Ocean (Arrigo et al., 2008b; Ducklow et al., 2007; Clarke et al., 2008). Primary production 

is strongly influenced by the seasonal advance and retreat of sea ice and the eastward flowing Antarctic 

Circumpolar Current (ACC) that impacts the western shelf of the Antarctic Peninsula. The proximity of 

the ACC to the WAP shelf allows warm Circumpolar Deep Water (CDW) to intrude into glacially-eroded 

canyons, which act as conduits to channel the CDW into the coastal zone (Martinson et al., 2008; 

Meredith et al., 2008; Moffat et al., 2009; Klinck and Dinniman, 2010). Mixing of CDW with overlying 

Antarctic Surface Water (AASW) and subsurface waters across the WAP shelf results in a modified form 

of CDW that occupies deep levels of the coastal areas (Klinck, 1998; Smith et al., 1999). Meltwater 

inputs form the fresh and less-dense AASW that overlies the permanent pycnocline and the warm, saline 

and CO2-rich CDW beneath (Meredith et al., 2013). Seasonal warming and freshening stratify the upper 

ocean to cap a cold and saline remnant of the winter mixed layer, termed the Winter Water, at around 

100 m depth (Mosby, 1934). Mixing of the AASW and Winter Water with CDW provides a supply of heat, 

nutrients and CO2 to the upper ocean, which stimulates some the of highest rates of phytoplankton 

primary production in the whole of the Southern Ocean (Prezelin et al., 2000; Arrigo et al., 2008a; 

Wallace et al., 2008). 

 

Ocean carbonate chemistry and air-sea CO2 exchange along the WAP is strongly regulated by 

primary production, sea-ice dynamics, glacial meltwater inputs and the mixing of water masses (Carrillo 

and Karl, 1999; Carrillo et al., 2004; Wang et al., 2009; Montes-Hugo et al., 2010; Tortell et al., 2015; 

Hauri et al., 2015; Legge et al., 2015; Eveleth et al., 2016). The dominant freshwater source to the region 

is meteoric (glacial meltwater and precipitation) with a contribution from melting sea ice (Meredith et al., 

2008; Meredith et al., 2010). Meltwater inputs stabilise the water column whereas reductions in winter 

sea-ice cover leads to deep mixing and reduced stratification the following summer (Venables and 

Meredith, 2014). Melting glaciers and sea ice have been found to be a source of iron that fuel 

phytoplankton blooms in the Antarctic (Alderkamp et al., 2012; Gerringa et al., 2012; Annett et al., 2015). 

Enhanced biological carbon uptake has been observed in the wake of retreating sea ice in the coastal 
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Antarctic (Gibson and Trull, 1999; Sweeney, 2003; Roden et al., 2013) and Southern Ocean (Bakker et 

al., 2008; Jones et al., 2010; Jones et al., 2015). Freshwater inputs can enhance carbonate mineral 

undersaturation as the concentration of carbonate ions becomes diluted, as observed in the Arctic 

Ocean (Yamamoto-Kawai et al., 2009; Chierici and Fransson, 2009; Bates et al., 2009; Azetsu-Scott et 

al., 2010; Evans et al., 2014). However, strong primary production in the coastal zone of the WAP 

increases carbonate mineral saturation states and compensates any dilution effects (Mattsdotter Björk et 

al., 2014; Hauri et al., 2015).  

The timing and longevity of phytoplankton blooms and biological CO2 drawdown is strongly 

influenced by seasonal sea-ice cover, which impacts light availability and water column stratification 

(Stammerjohn et al., 2008; Vernet et al., 2008; Venables et al., 2013). Wintertime cooling and sea-ice 

formation create deep mixed layers of Winter Water, during which vertical entrainment of CDW can 

occur (Meredith et al., 2004; Clarke et al., 2008). Sea-ice cover reduces light levels in the upper ocean 

and acts as a barrier to impede air-sea CO2 exchange, enabling CO2 enrichment in the underlying water 

(Delille et al., 2014). During spring and summer, retreat of the ice pack and glacial meltwater inputs 

promote the formation of large phytoplankton blooms through increased light levels, water column 

stratification and potential seeding by sea-ice algae and nutrients (Smith and Nelson, 1985; Clarke et al., 

2008; Vernet et al., 2008; Meredith et al., 2013; Venables et al., 2013). The intensification of the 

biological carbon pump through photosynthetic carbon uptake and production and export of organic 

matter creates strong seasonal CO2 sinks in coastal zones of the WAP and Antarctica (Gibson and Trull, 

1999; Carillo et al., 2004; Montes-Hugo et al., 2009; Wang et al., 2009; Buesseler et al., 2010; Montes-

Hugo et al., 2010; Roden et al., 2013; Legge et al., 2015).  

The WAP has experienced rapid changes in atmospheric and oceanic warming over the latter part 

of the twentieth century (Vaughan et al., 2003; Meredith and King, 2005; Martinson et al., 2008; 

Martinson et al., 2012). Many of the glaciers along the WAP have rapidly retreated and there has been a 

reduction in sea-ice cover and shortening of the sea-ice season (Stammerjohn et al., 2012; Meredith et 

al., 2013; Ducklow et al., 2013; Cook et al., 2016). These changes impact upon biological production 

(Mitchell and Holm-Hansen, 1991; Montes-Hugo et al., 2009) and the dynamics of carbonate chemistry 

and atmospheric CO2 drawdown (McNeil and Matear, 2008; Steinacher et al., 2009; Montes-Hugo et al., 

2010). Ryder Bay (northern Marguerite Bay), Adelaide Island, is fringed with several marine-terminating 

glaciers with variable seasonality in sea-ice cover and extent. The modified CDW from the WAP shelf 

flows along the Marguerite Trough to supply the upper ocean with warm, nutrient-rich deep water 

(Martinson et al., 2008; Meredith et al., 2010). Exchange of water masses between Ryder Bay and 

northern Marguerite Bay occurs across a sill at 350 m depth. Warming of ACC-derived CDW and 

enhanced inputs of deep waters onto the WAP shelf have contributed to the degradation of glaciers and 

changes in sea-ice dynamics (Martinson et al., 2012; Prichard et al., 2012). The southward flowing 
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Antarctic Peninsula Coastal Current enters the region along the coast of Adelaide Island and generates 

a predominantly cyclonic circulation in Marguerite Bay (Beardsley et al., 2004; Moffat et al., 2008). 

Melting glaciers, sea-ice formation and melting, and mixing of the water masses influence the physical 

characteristics of the water column of Ryder Bay (Clarke et al., 2008; Meredith et al., 2008; Wallace et 

al., 2008; Meredith et al., 2010). These processes strongly regulate primary productivity and 

biogeochemical cycling and as such, Ryder Bay can be considered as an ideal natural laboratory to 

study oceanic CO2-carbonate chemistry in a dynamic Antarctic coastal environment. This study 

complements the existing time series studies conducted in Ryder Bay through detailed descriptions of 

the spatial state of carbonate mineral saturation and pH and the controlling factors that influence ocean 

acidification in the coastal sea-ice zone of the WAP. 

 

2. Methods 

 

2.1. Seawater and ice sampling  

 

Biogeochemical samples and physical measurements were collected in austral summer (January to 

March 2014) in Ryder Bay, a glacially-carved embayment (maximum depth 520 m) in northern 

Marguerite Bay, Adelaide Island, on the West Antarctic Peninsula (Fig. 1). This was a complement to the 

Rothera Time Series (RaTS) programme of the British Antarctic Survey. Long-term monitoring at this 

site, located about 4 km offshore from Rothera Research Station, has been carried out since 1997 

(Clarke et al., 2008; Venables et al., 2013). Figure 1 shows the sampling locations used in this study: 

main time series site (RaTS1), secondary time series site (RaTS2), mouth of Ryder Bay (site A), along 

the glaciated coast (sites B, C, D), in front of Sheldon Glacier (site F), close to Horton and Hurley 

Glaciers (sites G,I) and proximal to Léoni Island (site J) and Lagoon Island (site K).  

 Vertical profiles of potential temperature and salinity were obtained using a conductivity, 

temperature, depth (CTD) sensor (Seabird SBE19+) attached to a line equipped with several 3.5 L 

Niskin bottles deployed from a rigid inflatable boat. Seawater samples for carbonate chemistry were 

drawn from Niskin samplers into 250 ml borosilicate glass bottles and returned to the laboratory for 

immediate analysis or stored for 1 week, whereby 50 L saturated mercuric chloride solution was added. 

Samples for macronutrient analyses were taken from the Niskin samplers into pre-rinsed 200 ml 

Nalgene© plastic bottles, kept in the dark and returned to the laboratory for processing. Sea-ice and 

glacial-ice samples were collected between November 2014 and March 2015. Sea-ice samples were 

taken from fast ice in Hangar Cove, north of Ryder Bay and adjacent to Rothera Research Station. 

Glacial-ice samples were taken from the Sheldon Glacier (Fig. 1). Ice samples were collected into 

plastic, sealable bags in the field and transferred into 1 L Tedlar bags and sealed in the laboratory. The 
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residual air was evacuated using a Nalgene© hand pump. The samples were allowed to melt at ambient 

temperature (18-20C) in the dark. Upon complete ice melt (20-24 hours), samples were transferred to 

250 mL borosilicate glass bottles, poisoned with 50 L saturated mercuric chloride solution and stored in 

the dark until analysis (as above).  

Two sites (LMG1, LMG2) were occupied in Marguerite Bay by ARSV Laurence M. Gould on 18 

January 2014. Vertical profiles of potential temperature and salinity were obtained using a CTD sensor 

(Seabird SBE911+) mounted onto a General Oceanics rosette equipped with 12 L Niskin bottles. The 

mixed layer depth (MLD) is defined as the depth where the potential density exceeds that at 2 m by 0.05 

kg m-3, based on definitions in Venables et al. (2013). The depth of the potential temperature minimum 

(θmin) is taken to represent the core of the Winter Water, typically at 75-100 m (Table 1). Salinity values 

are reported on the practical salinity scale. Ocean Data View 4 (http://odv.awi.de) was used for data 

visualisation. 

 

2.2. Analytical methods  

 

 Seawater and ice meltwater samples for total dissolved inorganic carbon (CT) and total alkalinity (AT) 

were analysed at Rothera Research Station using a VINDTA 3C (Versatile INstrument for the 

Determination of Total Alkalinity, Marianda) following methods prescribed in Dickson et al. (2007). 

Determination of CT was made through sample acidification with 8.5% H3PO4 and gas extraction with 

coulometric analysis (Johnson et al., 1987) and AT by automated potentiometric titration with 0.1 M 

hydrochloric acid (Dickson, 1981). Analyses of Certified Reference Material (CRM, batch 130) supplied 

by A.G. Dickson (Scripps Institute of Oceanography) every 10-20 samples were used to calibrate the 

measurements. The precision of the CT and AT measurements was 1.6 and 1.0 μmol kg-1, respectively, 

based on the average difference between CRM in-bottle duplicate analyses (n  47).  

 The Lamont-Doherty Earth Observatory (LDEO) measured surface underway pCO2 (pCO2 ship) 

aboard ARSV Laurence M. Gould (LMG) with a precision of 0.5%, together with salinity and temperature 

using a shower-type water-gas equilibrator and infrared CO2 gas analyser (see 

www.ldeo.columbia.edu/pi/CO2 for the operational and engineering details; Takahashi et al., 2015). A 

range of five standard gas mixtures spanning between 100 and 700 ppm mole fraction CO2 certified by 

the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA) 

was used to calibrate the system every 4 hours. The mean atmospheric CO2 mixing ratio (xCO2) 

measured during 18 January 2014 (at and between sites RaTS1, LMG1, LMG2) was 393 ± 1 ppm (n  

45), consistent with the mean xCO2 during January-March 2014 of 394 ± 3 ppm (n  18) measured at 

Palmer Station, 64.77°S 64.05°W (Dlugokencky et al., 2014). Air pCO2 was determined as a product of 

xCO2 and barometric pressure, corrected for water vapour pressure (Weiss and Price, 1980), where 
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atmospheric pressure measured at Rothera was processed into daily means. Seawater pCO2 was 

determined from xCO2 using the solubility of CO2 as a function of temperature and salinity (Weiss, 1974) 

with corrections for water vapour pressure (Weiss and Price, 1980). 

For macronutrient analyses, filtered (0.2 μM) seawater and ice meltwater was collected into pre-

rinsed 5 mL polyethylene vials and stored at 4°C for silicate samples and at 20°C for nitrate and 

phosphate samples. All analyses were carried out with a Technicon TRAACS 800 Auto-analyzer at the 

Royal Netherlands Institute for Sea Research, Texel. During each run a daily freshly diluted nutrient 

standard was measured in triplicate to monitor the performance of the analyzer. Precision for silicate, 

phosphate and nitrate is determined as 0.6 μmol L-1, 0.016 μmol L-1, 0.13 μmol L-1, respectively. 

 

 2.3. CO2-carbonate chemistry 

 

The saturation states (Ω) of CaCO3 minerals calcite and aragonite, pH in the total scale (pHT) and 

pCO2 (pCO2 AT-CT) were calculated from CT and AT, accompanied by in-situ temperature, salinity, 

pressure and nutrient concentrations using the CO2SYS program (Lewis and Wallace, 1998; van 

Heuven, 2011). The equilibrium equations of Zeebe and Wolf-Gladrow (2001) with carbonic acid 

dissociation constants (pK1 and pK2) of Mehrbach et al. (1973) as refit by Dickson and Millero (1987) 

were selected. These dissociation constants are appropriate for the AT-CT input pair in the range of 

temperatures and salinities in this study. Values for dissociation constants K1 and K2 and solubility 

product Ksp for calcite and aragonite are pressure-corrected (Mucci, 1983; van Heuven, 2011). 

Saturation states are a measure of the thermodynamic potential of CaCO3 to precipitate or dissolve; 

when Ω < 1 seawater becomes corrosive to calcifying organisms.  

Shipboard sea surface pCO2 values at sites RaTS1, LMG1 and LMG2  on 18 January 2014 were 

161 ± 4 μatm, 158 ± 6 μatm and 172 ± 13 μatm, respectively, and were used for consistency checks 

between measured (pCO2 ship) and calculated (pCO2 AT-CT) seawater values (Table 1). The pCO2 is the 

difference between pCO2 AT-CT in surface seawater and the daily mean  air pCO2 value. Fluxes of CO2 

(Equ. 1) were calculated from      , solubility of CO2 (  ) and the gas transfer coefficient ( ), which is a 

function of wind speed (Wanninkhof et al., 2013). 

 

                            (1) 

 

Fluxes of CO2 were calculated using wind speed data measured at Rothera, taken as a mean over the 

growing season until the time of sampling (Δt; Table 1) and corrected to 10 m above sea level (Hartman 

and Hammond, 1985). Negative values of pCO2 and CO2 flux indicate CO2 undersaturation with respect 

to the atmosphere and uptake of atmospheric CO2.  
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3. Results 

 

3.1. Summer sea surface of Ryder Bay   

 

The salinity along the glaciated coastline was low (S <32.8) due to meltwater influence (Fig. 2a and 

b). Sea surface temperature varied from 0.6 C to 1.7 C with warmer waters typically located closer to 

the coast (Fig. 2c). Low concentrations of CT (<2000 μmolkg-1) were found in this region (Fig. 2d). 

Surface water AT followed a similar distribution to salinity as higher values (>2250 μmolkg-1) were found 

in saltier water at the mouth of Ryder Bay (site A) and close to island shelves (sites J and K) (Fig. 2e). 

Near-depleted nitrate concentrations indicated high biological uptake in the meltwater-influenced sites 

(Fig. 2f). Surface waters across Ryder Bay were undersaturated (pCO2 AT-CT of 119-252 μatm; Fig. 2g) 

with respect to atmospheric CO2 and the whole region was a strong sink for atmospheric CO2 (Table 1). 

Total scale pH (pHT) ranged from 8.21 to 8.48 (Fig. 2h). The saturation states of aragonite and calcite 

had large spatial variability, ranging from 1.8 and 3.1 (Fig. 2i) and 2.9 to 5.0 (not shown), respectively.  

Lowest concentrations of CT (1911 μmolkg-1), AT (2211 μmolkg-1) and strong pCO2 undersaturation 

(119 μatm) were observed by melting sea ice (site D), marked by the lowest salinity (32.1) relative to 

the rest of Ryder Bay. Concurrent aragonite supersaturation (Ω >2.5) occurred in this area and along the 

glaciated coastline. Central Ryder Bay (sites C and G) and shelf waters of Léoni and Lagoon Islands 

(sites J and K) were characterised by higher salinity (S >32.8) and high CT (2055-2085 μmol kg-1). The 

lowest pHT (8.21) and the lowest aragonite saturation levels (1.8) near Lagoon Island (site K). The 

coldest water of 0.6 C was observed in front of Sheldon Glacier (site F) with higher AT, CT and lower 

saturation states compared to other coastal sites.  

 

3.2. Deep waters of Ryder Bay 

 

Waters occupying the deepest levels across Ryder Bay (Fig. 3a) had higher salinity and lower 

temperatures (not shown) with much less variability compared to the surface layer. Exceptions were the 

waters overlying the shallow island shelf (site K) and in front of Sheldon Glacier (site F), where the 

lowest values of CT (2166-2172 μmolkg-1) and AT (2285-2292 μmol kg-1) were found. Both sites exhibited 

the highest deep water pHT and aragonite saturation states (Fig. 3b-c). In contrast, the highest values of 

CT (>2240 μmolkg-1) and AT (>2310 μmolkg-1) occurred in deep waters of the coastal zone and in central 

Ryder Bay. Concurrent high nitrate concentrations (>34.2 μmolkg-1) indicated remineralisation of organic 

matter at these locations. All deep waters had low pHT (7.84-7.87) and were undersaturated with respect 

to aragonite (Ω ~0.9-1.0) across Ryder Bay. 
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3.3. Water mass and meltwater carbonate chemistry  

 

Distinct water masses could be identified from salinity and potential temperature characteristics in 

Ryder Bay (Fig. 4a). Warm and fresh Antarctic Surface Water (AASW) occupied the summer mixed layer 

with high and variable aragonite saturation states (2.5 ± 0.5). The Winter Water layer was identified by a 

distinct potential temperature minimum and steep, decreasing gradients in aragonite saturation. The 

deepest levels (>200 m) of Ryder Bay and Marguerite Bay were filled with modified CDW, which was 

distinguished within a given salinity range (34.6  S  34.7) as measured on the shelf of the WAP from 

upper CDW of the ACC offshore (Smith et al., 1999). Modified CDW was found intruding the shelves of 

the WAP with CT and AT values of 2253 μmol kg-1 and 2350 μmol kg-1, respectively (Hauri et al., 2015). 

The CDW identified in Marguerite Bay had potential temperature and salinity values of 1.23 ± 0.04 C 

and 34.64 ± 0.01, respectively. In comparison, the CDW in Ryder Bay was cooler (1.14 ± 0.08 C) and 

fresher (34.60 ± 0.03). Relative to ACC-derived CDW, the CDW in Marguerite Bay had higher 

concentrations of CT (2276 ± 1 μmol kg-1), whereas AT values (2348 ± 1 μmol kg-1) were similar. The 

CDW identified in Ryder Bay had higher CT concentrations (2279 ± 3 μmol kg-1) whereas AT values 

(2348 ± 4 μmol kg-1) were conserved. The shift in water mass properties is indicative of entrainment of 

thermocline water into the CDW (Venables et al., this issue) and organic matter remineralisation. The 

modified CDW across Ryder Bay was undersaturated with respect to aragonite. 

The distribution of AT and CT relative to salinity revealed high meltwater-induced variability (Fig. 4b). 

Meltwater carbonate chemistry was determined for glacial ice (S = 0, CT = 16 ± 5 μmolkg-1, AT = 100 ± 5 

μmolkg-1) and sea ice (S = 7, CT = 277 ± 150 μmolkg-1, AT = 328 ± 150 μmolkg-1) as a freshwater end 

member, similar to 300 μmolkg-1 previously reported for melting sea ice (Anderson and Jones, 1985; 

Bates et al., 2009; Yamamoto-Kawai et al., 2009). The modified CDW end member is defined as above. 

Values of AT closely followed the salinity-dilution lines with positive deviations of about 20 μmolkg-1 at 

lower salinities. This pattern indicates an excess of alkalinity in the meltwater-influenced surface waters. 

The salinity and CT correlation showed strong negative CT deviations from the theoretical mixing lines. 

This divergence suggests that elevated biological production removes substantial CT between 50-200 

μmolkg-1 in meltwater-influenced surface waters, thereby increasing aragonite saturation states.  

Vertical distributions of AT across the upper and lower sections of Ryder Bay (Fig. 5a) generally followed 

the trends in salinity with low values in the upper waters that increased with increasing depth (Fig. 5b-c). 

Concentrations of CT increased with depth and had steep vertical gradients to the highest values in the 

deepest parts of the bay (200-500 m) with CDW influence (Fig. 5d and e). The lowest CT and AT in the 

upper 25 m occurred in the productive meltwater layer, which corresponded to high aragonite 

supersaturation (Fig. 5f and g). Weak vertical gradients of CT near Sheldon Glacier (site F) and over the 
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shelf of Lagoon Island (site K) were accompanied by a deepening of the aragonite saturation horizon. 

From east to west across the lower part of Ryder Bay, the shoaling aragonite saturation horizon 

impacted the Winter Water layer with strong undersaturation at the glaciated coast (site I). 

 

4. Discussion  

 

4.1. Biologically-induced sea surface carbonate supersaturation and deep water acidification  

 

Biological processes in meltwater-impacted areas had a large control on surface water calcium 

carbonate saturation states and pHT across Ryder Bay. Since the saturation state for calcite is about 

50% higher than that for aragonite and shows the same distribution and trend, for example in relation to 

pHT (Fig. 6a), the discussions that follow will focus only on aragonite saturation states and pHT. 

Aragonite supersaturation (Ω >2.0) was concurrent with surface water salinity in the range 32.1-33.1 

where biological carbon uptake reduced surface water CT to less than 1950 μmolkg-1 and counteracted 

any meltwater-induced suppression of saturation states. This theory is supported by the strong anti-

correlation between saturation states with salinity where high aragonite saturation was found in the 

meltwater-influenced surface waters (Fig. 6b). These values fall into the range of aragonite saturation (Ω 

= 1.7-3.5) found in summer surface waters at other coastal sites in the Ross Sea (Sweeney, 2003) and 

Prydz Bay, East Antarctica (Gibson and Trull, 1999; McNeil et al., 2011) and in Southern Ocean waters 

close to the Antarctic Peninsula (Tynan et al., 2016).  

Meltwater-stratification, high light levels and macro- and micro-nutrient supplies are essential for 

sustaining the large phytoplankton blooms that are characteristic of this region (Venables et al., 2013; 

Annett et al., 2015; Henley et al., this issue). High primary productivity and intense photosynthetic 

reductions in CO2 and CT increased summertime carbonate mineral saturation states in Ryder Bay. The 

hypothetical mixing relationships of glacial ice and sea ice with modified CDW indicate that biological 

uptake of up to 200 μmol CT kg-1 was accompanied by aragonite supersaturation in surface waters. 

Nitrate concentrations at or close to depletion (<0.2 μmolkg-1) with associated low CT of 1911-1955 

μmolkg-1 in the surface layer showed the close coupling of nitrate and carbon cycling (Fig. 6c). Nitrate 

concentrations may reach transient periods of exhaustion due to phytoplankton growth but are 

regenerated and re-supplied in the upper water column during the summer (Henley et al., this issue). 

These findings support the hypothesis that biological CT uptake was a driving force for high aragonite 

saturation states in the AASW. Previous studies along the WAP have also linked spatial variability in 

carbonate saturation states to biological productivity and meltwater inputs (Hauri et al., 2015).  

Surface waters of Ryder Bay were strongly undersaturated with respect to  atmospheric CO2 

(ΔpCO2 up to 256 μatm) to create areas of substantial CO2 uptake of up to 55.4 mmol m-2 day-1 during 
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austral summer. It is predicted that such strong atmospheric CO2 uptake persists in Ryder Bay during the 

summer (January and February) as consistently low sea surface CO2 coupled to high chlorophyll-a 

concentrations in shallow mixed layers (< 10 m) is known to occur throughout these months on an 

annual basis (Legge et al., 2015; Legge et al., this issue). This study found a stronger degree of CO2 

undersaturation with respect to atmospheric values compared to data from three summer seasons 

presented in Legge et al. (2015) and higher carbonate saturation states than those reported by Legge et 

al. (this issue) for January-February 2014 at 15 m depth at RaTS1. These features can be attributed to 

the finer-scale vertical sampling (2, 5, 15 m) in the surface layer in this study, which resolved the 

biological production signal in very shallow meltwater layers. Both studies confirm that favourable 

conditions (high light levels, nutrient supply) drive carbonate mineral supersaturation and create strong 

sinks for atmospheric CO2 in Ryder Bay. 

Steep vertical gradients in CT were found from productive surface waters to the deep parts (200-500 

m) of Ryder Bay that were impacted by CDW, for example CT increased with depth by up to 2 μmolkg-1m-

1 between the AASW and CDW layers in the productive coastal zone. Biologically-driven aragonite 

supersaturation in high-pHT (>8.47) surface water swiftly changed with depth to reach intense aragonite 

undersaturation with minimum values of pHT of 7.84 at and below the Winter Water layer. Whilst 

recycling and advective losses of organic carbon in the upper water column are important components of 

biogeochemical fluxes in the WAP, export of at least 10% of the net primary production provides a 

supply of organic carbon to subsurface waters and sustains rich benthic communities (Buesseler et al., 

2010; Weston et al., 2013; Constable et al., 2014; Stukel et al., 2015). The sinking particulate organic 

carbon in highly productive coastal waters and subsequent remineralization likely contributed to high 

concentrations of CT (>2280 μmolkg-1) found in the CDW. Remineralisation through oxidation recycles 

organic material back into inorganic forms CT and nitrate and enriches deep water concentrations with 

associated suppression of calcium carbonate saturation states. The proposed mechanism is supported 

by negative correlations of aragonite saturation states with nitrate and CT concentrations (Fig. 6c-d).   

An intensification of the biological carbon pump in the productive coastal zone generated carbonate 

mineral supersaturation in surface waters and undersaturation in subsurface waters, through 

remineralisation of exported organic material. This process was likely to further increase CT in the CDW 

as it flowed inland to drive pHT and saturation states to their minimum values in Ryder Bay. The shoaling 

of the aragonite saturation horizon in the coastal zone presents acidification conditions the marine 

communities of Ryder Bay. Antarctic benthic organisms have shown vulnerability to ocean acidification 

pressures that is likely influenced by local environmental conditions (Ahn, 1993; McClintock, et al., 2009; 

Morley et al., 2009; Cummings et al., 2011). However, contemporary distributions and natural spatio-

temporal variations in carbonate mineral saturation levels suggest that pelagic-benthic organisms of the 

WAP and Southern Ocean may exhibit a degree of resilience to further ocean acidification (McNeil et al., 
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2011). Future studies should investigate synergistic effects and analyse a range of biological variables to 

attain a more comprehensive view of the likely ecological impacts of Antarctic environmental change.   

 

4.2. Impact of ice melt on carbonate mineral saturation states  

 

 Glacial meltwater is the dominant freshwater source to Ryder Bay (Meredith et al., 2008) and, 

combined with seasonal sea-ice melt, exerts an important influence on carbonate saturation states and 

pHT. Glacial and sea’ice meltwaters were found to exhibit very low CT-AT signatures, which have the 

chemical potential to suppress carbonate mineral saturation states through dilution of carbonate ion 

concentrations, as found in the Arctic Ocean (Chierici and Fransson, 2009; Yamamoto-Kawai et al., 

2009; Evans et al., 2014). However, this was not evident in Ryder Bay as the highest aragonite 

saturation states (Ω >3.0) were concurrent with the freshest (S of 32.1-32.8) surface water. 

Phytoplankton production probably counteracted any meltwater dilution effects as photosynthetic CO2 

uptake reduced surface water CT, thereby decreasing the ratio of CT to AT and increasing the state of 

carbonate saturation (Bates et al., 2009). This is consistent with other observations in coastal Antarctic 

waters (Shadwick et al., 2013; Mattsdotter Björk et al., 2014; Hauri et al., 2015).  

Surface AT is primarily governed by meltwater inputs with contributions from carbonate mineral 

precipitation and dissolution and mixing into AT-rich deep water. As phytoplankton utilise nitrate as the 

nitrogen source for primary production, AT is affected through the principle of electroneutrality; uptake of 

nitrate (NO3
-) removes hydrogen ions (H+) thereby increasing AT (Brewer and Goldman, 1976; Wolf-

Gladrow et al., 2007). The concentration of nitrate in surface waters varied between 0.1-14.4 μmolkg-1 

due to biological utilization versus re-supply from recycling in the surface layers and mixing with nitrate-

rich subsurface waters (Henley et al., this issue). To compensate for the effects of nitrate changes on AT 

values, potential alkalinity (AT*; the sum of AT and nitrate) is considered and thus resulting variability can 

be attributed to carbonate processes and mixing. Surface water potential alkalinity and salinity has a 

positive relationship (AT* = 69.S + 2; r2 = 0.97) and data fall between the glacial ice, sea ice and CDW 

mixing lines (Fig. 7). The positive deviations of AT up to 20 μmolkg-1 relative to the hypothetical 

meltwater-seawater mixing trends revealed excess AT in meltwater-impacted surface waters. We 

hypothesise that these changes may result from the dissolution of the carbonate mineral ikaite 

(CaCO3.6H2O), which forms in sea ice during winter (Dieckmann et al., 2008; Fransson et al., 2011; 

Rysgaard et al., 2012). Upon sea-ice melt, ikaite crystals dissolve  to release carbonate ions (increasing 

alkalinity) and reduce pCO2 in the surrounding seawater  to drawdown atmospheric CO2; the sea-ice 

CO2 pump (Papadimitriou et al., 2004; Delille et al., 2007; Rysgaard et al., 2007; Geilfus et al., 2012). In 

addition, sea-ice meltwater may exhibit AT-CT deficits from residual brines where ikaite precipitation has 

taken place, which would also reduce sea surface pCO2 in the meltwater layer (Jones et al., 2010). 
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Currents, such as the Antarctic Peninsula Coastal Current (Beardsley et al., 2004; Moffat et al., 2008), 

winds and tides transport sea ice into and out of Ryder Bay (Clarke et al., 2008; Meredith et al., 2008; 

Wallace et al., 2008; Meredith et al., 2010). As such, sea ice that formed elsewhere in the WAP may 

contribute additional biogeochemical characteristics upon melting in Ryder Bay. Therefore, dissolution of 

ikaite crystals from melting sea ice likely contributes to CO2 drawdown during seasonal sea-ice melt in 

Ryder Bay, as suggested by Legge et al. (this issue).  

The potential alkalinity-salinity relationship agrees with those in the Antarctic region (60-70 S) of the 

Atlantic Ocean (AT* = 58.S + 368) and in the circumpolar Southern Ocean (south of 60S) region (AT* = 

74.S  192) from climatological data distributions (Takahashi et al., 2014). The sign and magnitude of 

the slope and intercept for the Ryder Bay data fit between the two groups of climatological data and 

show low alkalinity typical of Antarctic waters (Egleston et al., 2010) and the influence of mixing with 

upwelled deep waters of higher alkalinity and salinity as typical for Antarctic shelf and coastal regions. 

The Ryder Bay data have a comparatively narrow range of potential alkalinity (2210-2275 μmolkg-1) at 

lower salinities (32.1-33.1), which is attributed to glacial and sea-ice meltwater influences in the WAP 

coastal zone. Time series sampling with finer temporal resolution at the ice-ocean interface and within 

meltwater plumes would help to better understand the carbonate chemistry of meltwaters and improve 

climatological estimates of carbonate chemistry distributions and carbon cycling in the under-sampled 

Antarctic coastal zone. 

 

4.3. Deep mixing drives weak carbonate saturation gradients   

 

 Episodic wind-driven mixing and turbulent water column conditions destabilised any stratification 

and eroded summer surface biological signals. Weak vertical gradients in CT resulted from the downward 

mixing of productive surface waters, which allowed exchange with carbon-rich, low pHT Winter Water 

and modified CDW. For example, the mixed water column overlying the shelf of Lagoon Island had a 

shallow gradient with an increase of 85 μmol CT kg-1 between AASW and the Winter Water layer, 

compared to rapid CT increases with depth, up to four times greater (332 μmolkg-1) for the same depth 

range, along the meltwater-stratified coast. The effect of phytoplankton production over the island 

shelves was strongly compensated, based on relatively high residual nitrate concentrations of 14.4 μmol 

kg-1 at the sea surface and CT values of 2085 μmol kg-1, and as such mixing processes re-supplied the 

upper ocean with carbon and nitrate.  

 Coldest surface waters (0.6 C) near Sheldon Glacier were relatively salty (S = 32.9) 

compared to other coastal sites, which indicated strong vertical mixing into saline subsurface waters 

despite close proximity to the glacier face and meltwater inputs. Reduced nitrate (4.4-6.1 μmol kg-1) and 

CT (~2031 μmol kg-1) showed evidence of summertime biological production with concomitant high 
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aragonite saturation states of 2.3 in the surface layer. These features likely resulted from episodic wind-

driven mixing that recently impacted the otherwise productive water column and as such the depth of the 

aragonite saturation horizon deepened from its location at around 75 m across Ryder Bay. The effects of 

mixing and vertical water mass exchange reduced aragonite saturation states throughout the water 

column relative to values across Ryder Bay at Sheldon Glacier and Lagoon Island, for example ranging 

from 1.83 to 1.36 between AASW and the Winter Water near Lagoon Island. These waters would be 

particularly sensitive to future ocean acidification as summertime sea surface pCO2 undersaturation 

enabled further atmospheric CO2 uptake of 27.9 mmol m-2 day-1, which could drive carbonate mineral 

undersaturation and create areas of surface water corrosivity. 

 

4.4. A wider regional context  

 

Key variables of CO2-carbonate chemistry in an ocean acidification context are pH, carbonate 

mineral saturation states and air-sea CO2 fluxes. Values of these variables measured in central Ryder 

Bay (RaTS1) were similar compared to the mean value from all other Ryder Bay sites for the air-sea CO2 

flux of 48.6 and 43.2 mmol m-2 day-1 and aragonite saturation state in AASW of 2.6 and 2.5, 

respectively. Winter Water aragonite saturation states at RaTS1 and the Ruder Bay mean value were 

both 1.1 (Table 1). Whilst large spatial variability existed during the summer, the carbonate chemistry 

distributions at RaTS1 can be considered as broadly representative of those of Ryder Bay. The values 

were put into a wider regional context by comparison to CO2-carbonate chemistry data from Marguerite 

Bay. To remove temporal variability, sampling at RaTS1 and in Marguerite Bay was carried out on the 

same day. Shipboard measurements of sea surface pCO2 varied between 135 μatm and 199 μatm to 

show that the whole region was highly undersaturated with respect to atmospheric CO2 (Fig. 8). 

Variability in the degree of CO2 undersaturation likely resulted from the balance of the dominant controls 

on surface water carbonate chemistry distributions in the sea-ice coastal zone, i.e., biological CO2 

drawdown versus vertical mixing with CO2-rich subsurface waters (section 4.1 and 4.3).   

Shipboard pCO2 (pCO2 ship) measurements (averaged over a 30-minute period during the time of 

surface water CT and AT sampling) provide a consistency check for those calculated from CT and AT, 

pCO2 AT-CT, as described in section 2.3. Sea surface pCO2 AT-CT at RaTS1 and in southern Marguerite Bay 

(LMG1) was 155 and 157 μatm, respectively, which was very close to pCO2 ship of 161 ± 4 μatm (RaTS1) 

and 158 ± 6 μatm (LMG1). Northern Marguerite Bay (LMG2) had higher pCO2 AT-CT of 187 μatm, which 

showed a larger offset compared to 172 ± 13 μatm as measured onboard. From the available data, pCO2 

AT-CT largely replicated the measured values and showed that the calculation approach for the carbonate 

chemistry variables is sufficiently robust within the given analytical precision. Larger offsets between 

measured and calculated pCO2 (~15 μatm) as shown in northern Marguerite Bay are likely due to the 
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high spatial variability in surface water pCO2 and the difference in sampling time between the automated 

sea surface pCO2 system (taking seawater measurements every 3 minutes) and the closing of a surface 

water Niskin bottle (one snap-shot time) in moving ocean waters. 

Values of the air-sea CO2 flux (41.7 and 44.9 mmol m-2 day-1) and aragonite saturation states in 

modified CDW (1.0) in Marguerite Bay were very close when compared to those values of 44.9 mmol 

m-2 day-1 and 0.9 determined at RaTS1. The similarity of physical properties (Venables and Meredith, 

2014) and vertical distributions of CT-AT (Fig. 9) between Ryder Bay and Marguerite Bay suggest that the 

principle processes influencing the carbonate chemistry are consistent between the two bays. The 

increase in absolute values of CT between the CDW present in Ryder Bay relative to that in Marguerite 

Bay is likely due to modification of the water mass that includes a signal of export and remineralisation of 

organic carbon in the productive coastal waters. The processes impacting carbonate chemistry in Ryder 

Bay and Marguerite Bay are likely to also likely to occur in northern parts of the coastal sea-ice zone of 

the WAP, as currents such as the southward flowing Antarctic Peninsula Coastal Current advect water 

masses into the study area and transfer biogeochemical properties into Ryder Bay (Klinck et al., 2004; 

Wallace et al., 2008). Therefore, observations in Ryder Bay are likely to incorporate biogeochemical 

signatures from waters farther north as well as from Marguerite Bay. Spatio-temporal studies are, 

therefore, essential to elucidate the controls on carbon cycling in seasonally and regionally dynamic 

environments and to better understand ocean acidification impacts on marine ecosystems in the 

climatically-vulnerable Antarctic coastal waters.  

 

5. Conclusion 

 

High spatial variability in summertime surface water pH and carbonate mineral saturation states was 

observed in Ryder Bay in the coastal sea-ice zone of the West Antarctic Peninsula. Primary productivity 

had the largest impact on calcium carbonate mineral saturation states, generating supersaturation with 

respect to biogenic minerals calcite and aragonite of up to 3.1 and 5.0, respectively. Glacial meltwater 

and melting sea ice stratified the water column and facilitated the development of large phytoplankton 

blooms that resulted in high pH (8.48) and calcium carbonate supersaturation (Ω >3). The sea surface of 

Ryder Bay was strongly undersaturated with respect to atmospheric CO2 as biological carbon uptake 

reduced seawater pCO2 AT-CT to 119-252 μatm and created intense CO2 sinks (55 mmol m-2 day-1) in 

meltwater-impacted areas during austral summer. Effects of transient sea-ice melt were superimposed 

onto the glacial melt signal, where any carbonate ion dilution was completely compensated by 

biologically-driven carbon uptake and increases in carbonate mineral saturation states.  The presence of 

excess alkalinity in sea-ice meltwater indicated that dissolution of sea ice-derived carbonates likely had 

minor contributions to atmospheric CO2 drawdown during the seasonal thaw. A strong biological carbon 
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pump in the coastal sea-ice zone created (i) surface water calcium carbonate supersaturation and (ii) 

deep-water corrosivity, as additional organic debris produced in productive waters are settled to depth 

and remineralised, thus adding CO2 to naturally carbon-rich Circumpolar Deep Water in the deepest 

levels of Ryder Bay. Deep mixing enabled entrainment of CO2-rich waters into the surface, which 

supressed surface water aragonite saturation states (Ω ~1.8) and induced low vertical gradients in pH. 

Episodic mixing events may enhance the vulnerability of the surface layer to ocean acidification upon 

further uptake of anthropogenic CO2 during the summer. Variations in calcium carbonate mineral 

saturation states and air-sea CO2 fluxes across Ryder Bay can be considered as largely representative 

of Marguerite Bay, with relevance to the wider West Antarctic Peninsula coastal zone. The findings here 

highlight the importance of higher resolution sampling for the accurate assessment of carbon cycling in 

dynamic environments that are influenced by meltwater inputs, high productivity and mixing of water 

masses. These processes generated high spatial variability in oceanic carbonate chemistry, which 

impacted the drawdown of atmospheric CO2 and functioning of the biological carbon pump. As such, the 

productive coastal sea-ice zones of Antarctica are key regions to study the response of marine 

ecosystems to impacts of ocean acidification.   
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Fig. 1. Map of the West Antarctic Peninsula (WAP) showing Adelaide Island, Marguerite Bay and Ryder 

Bay (insert). Sampling sites A, B, C, D, F, G, I, J, K, RaTS1, RaTS2, LMG1 (1), LMG2 (2) are marked by 

black dots. The locations of Rothera Research Station, Sheldon Glacier, Horton Glacier, Hurley Glacier, 

Lèoni Island and Lagoon Island are marked. General flow of the Antarctic Circumpolar Current is 

indicated along the WAP in the offshore Bellingshausen Sea region. 

 

Fig. 2. Site locations in Ryder Bay (a) and sea surface distributions of (b) salinity; (c) potential 

temperature (θ, C); (d) CT (μmolkg-1); (e) AT (μmolkg-1); (f) nitrate (NO3, μmolkg-1); (g) pCO2 AT-CT (μatm); 

(h) pHT; and (i) aragonite saturation state (Ωaragonite) across Ryder Bay. Ωaragonite is calculated at in-

situ temperature and pressure. Sampling sites are marked by black dots. 
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Fig. 3. Site locations in Ryder Bay (a) and deep water distributions of (b) pHT; and (c) aragonite 

saturation state (Ωaragonite) across Ryder Bay. Black dashed line in (c) shows the location of 

undersaturated (Ω <1) water. pHT and Ωaragonite are calculated at in-situ temperature and pressure. 

Sampling sites are marked by black dots. 

 

Fig. 4. (a) Potential temperature (θ, C) versus salinity plot, related to aragonite saturation state 

(Ωaragonite); (b) relationship of AT (upper line; μmolkg-1) and CT (lower line; μmolkg-1) as a function of 

salinity, related to aragonite saturation state (Ωaragonite). Principle water masses are labelled in (a): 

Antarctic Surface Water (AASW), Winter Water (WW), and modified Circumpolar Deep Water (mCDW). 

Trend lines in (b) represent salinity-dilution using glacial ice endmember S = 0, CT = 16 μmolkg-1, AT = 

100 μmolkg-1 (solid line) and sea-ice endmember S = 7, CT = 277 μmolkg-1, AT = 328 μmolkg-1 (dashed 

line) with S = 34.7, CT = 2276 μmolkg-1, AT = 2348 μmolkg-1 as the end member for mCDW (Smith et al., 

1999). Ωaragonite is calculated at in-situ temperature and pressure. 

 

Fig. 5. Site location in Ryder Bay showing upper (sites F, D, C, RaTS1, B, RaTS2, A) and lower (sites I, 

G, J, K) sections (a) and depth distributions of (b) AT (μmolkg-1) upper section; (c) AT (μmolkg-1) lower 

section; (d) CT (μmolkg-1) upper section; (e) CT (μmolkg-1) lower section; (f) aragonite saturation state 

(Ωaragonite) upper section; (f) aragonite saturation state (Ωaragonite) lower section. Ωaragonite is 

calculated at in-situ temperature and pressure. Sampling sites in Ryder Bay are marked by black dots 

and labelled in (a). Sampling depths in the water column are marked by black dots in (b-f).  

 

Fig. 6. Relationship of (a) calcite saturation state (Ωcalcite) and aragonite saturation state (Ωaragonite) 

as a function of pHT, related to salinity; (b) aragonite saturation state (Ωaragonite) as a function of 

salinity, related to water column depth; (c) aragonite saturation state (Ωaragonite) as a function of nitrate 

(NO3; μmolkg-1) concentrations, related to salinity; and (d) aragonite saturation state (Ωaragonite) as a 

function of CT (μmolkg-1) concentrations, related to salinity. Ωcalcite and Ωaragonite are calculated at in-

situ temperature and pressure. Surface data (<10 m) highlighted with open black circles. The horizontal 

black-dashed line represents when saturation states are equal to 1 where data below the line represent 

carbonate mineral undersaturation.  

 

Fig. 7. Relationship of potential alkalinity (A*T; μmol kg-1) as a function of salinity for all data (grey dots) in 

the summer mixed layer AASW, sea surface data (<10 m) are highlighted with open black circles. The 

solid-black line represents the potential alkalinity-salinity linear regression trend AT* = 69.S + 2. The 

black-dashed lines represent hypothetical salinity-dilution lines using glacial ice endmember S = 0, AT = 
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100 μmol kg-1 and sea-ice endmember S = 7, AT = 328 μmol kg-1 and S = 34.7, AT = 2348 μmolkg-1 as 

end members for mCDW (Smith et al., 1999). 

 

Fig. 8. Sea surface pCO2 (pCO2 ship; μatm) aboard ARSV Laurence M. Gould in the Marguerite Bay and 

Ryder Bay region during 18 January 2014. Data points are marked by black dots. Sites occupied for 

water column sampling (RaTS1, LMG1, LMG2) are marked by black circles and labelled. 

 

Fig. 9. Depth profiles of (a) potential temperature (θ, C); (b) salinity; (c) AT (μmolkg-1); and (d) CT 

(μmolkg-1) from all sites in Ryder Bay (grey dots) and Marguerite Bay (black dots).  

 

Table 1. Ryder Bay and Marguerite Bay sampling sites; location; sampling date (2014); Δt (days) time 

from winter (t0) 17 September 2013 until sampling date; water column depth (m); mixed layer depth 

(MLD, m); depth of potential temperature minimum (θmin, m); AASW average aragonite saturation state 

(Ω); Winter Water average aragonite saturation state (Ω); mCDW average aragonite saturation state (Ω); 

ΔpCO2 (μatm) from the difference between shipboard daily mean air pCO2 and calculated seawater 

pCO2 AT-CT; CO2 flux (mmol m-2 day-1). Ω is calculated at in-situ temperature and pressure. Average 

values and standard deviations for all Ryder Bay data are shown beneath the respective variable.  

means no data. 

site location 
dat

e 
Δt 

dept

h 

ML

D 
θmin 

AASW 

Ω 
WW Ω 

mCD

W Ω 
ΔpCO2 CO2 flux 

  
dd-

mm 

day

s 
m m m    μatm 

mmol m-2 

day-1 

RaTS

1 

Ryder 

Bay coast 

18-

01 
123 503 14.0 

73.

0 
2.6 1.1 0.9 228 48.6 

RaTS

2 

Ryder 

Bay coast 

29-

01 
134 340 2.5 

49.

5 
3.0 1.0 0.9 243 49.3 

A 

Ryder 

Bay 

entrance 

21-

01 
126 317 3.5 

49.

0 
3.1 1.1 1.0 256 55.4 

B 
Ryder 

Bay coast 

31-

01 
136 372 3.0 

49.

0 
2.9 1.0 0.9 243 50.4 

C 
Ryder 

Bay coast 

21-

02 
157 378 7.0 

61.

0 
1.9 1.0 1.0 162 32.5 

D 

Ryder 

Bay sea 

ice 

05-

02 
141 252 2.5 

53.

0 
3.1 1.0  254 55.1 

F 
Sheldon 

Glacier 

16-

01 
121 174 20.5 

94.

0 
2.3 1.4  202 43.3 
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G 

Ryder 

Bay 

centre 

19-

02 
155 136 19.5 

76.

0 
1.9 1.0  145 29.8 

I 

Horton-

Hurley 

Glaciers 

28-

01 
133 184 5.0 

52.

0 
3.1 1.0  242 48.1 

J 

Léoni-

Lagoon 

Islands 

12-

02 
148 300 10.5 

52.

0 
2.2 1.1  176 34.7 

K 
Lagoon 

Island 

01-

03 
165 94 48.5 

87.

5 
1.8 1.4  133 27.9 

average 
2.5±0.

5 

1.1±0.

2 

0.9±0.

0 

208±4

6 

43.2±10.

2 

LMG1 
Marguerit

e Bay 

18-

01 
123 584 7.0 

49.

0 
2.7 1.0 1.0 226 44.9 

LMG2 
Marguerit

e Bay 

18-

01 
123 475 10.0 

52.

0 
2.4 1.0 1.0 197 41.7 
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