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Visualised predictions of gap anisotropy to test new electron pairing scheme

X. H. Zheng and D. G. Walmsley
Department of Physics and Astronomy, Queen’s University of Belfast, BT7 1NN, N. Ireland∗

(Dated: December 20, 2016)

The rich and fertile but not yet adequately exploited ground of superconductor anisotropy is
proposed as a test bed for a new empirical scheme of electron pairing. The scheme is directed
to resolving a numerical and conceptual difficulty in the BCS theory. The original theoretical
formulation of the anisotropy problem by Bennett is adopted and its outcomes extensively explored.
Here the Bennett conclusion that in metallic superconductors phonon anisotropy is the principal
source of gap anisotropy is accepted. Values of the energy gap are visualised globally in k-space with
unprecedented detail and accuracy. Comparison is made between the anisotropy pattern from the
new and the usual BCS pairing schemes. Differences are revealed for future experimental resolution.

PACS numbers: 71.15.Dx, 74.25.Kc, 31.10.+z

I. INTRODUCTION

Since a superconducting transition temperature (Tc)
up to 203 K has been observed in the sulphur hydride
system, with a definite isotope effect [1], the classic the-
ory of Bardeen, Cooper and Schrieffer (BCS) [2] and its
generalised version due to Eliashberg [3] have returned
to centre stage [4]. Indeed it was the theoretical work of
Li et al based on BCS-Eliashberg theory which first pre-
dicted that sulphur hydride under pressure has a high po-
tential to be superconductive, possibly at temperatures
up to 82K [5]. The BCS-Eliashberg theory is universally
accepted as providing the best microscopic description of
phonon-mediated superconductivity. However, over the
years it has shown some uncomfortable signs of strain and
received criticism [6]. A recent study by Durajski has re-

FIG. 1: Traces (white dots) of electron paths over the Fermi
surface in lead as a result of normal and umklapp scattering.
In each azimuthal direction the absolute value of the electron
momentum, k, increases in equal steps; for geometrical rea-
sons the dots appear to be denser around the initial state, k0,
but more sparse towards the paired state −k0. The ranges of
normal phonon scattering from k0 and −k0 are indicated as
black areas.

∗Electronic address: dg.walmsley@qub.ac.uk

fined the Eliashberg equations by taking into account the
lowest order vertex correction [7, 8]. Our anticipation is
that the BCS theory is fundamentally healthy and will
deliver exceptionally good outcomes to meet the current
demand when its specific difficulties have been identified
and remedied.

The BCS theory has always suffered from a numeri-
cal difficulty: there is an inconsistency in outcome when
the electron-phonon interaction assumed in the theory of
electrical resistivity in the normal state is used in it. The
literature shows that either superconductivity from the
BCS theory is too strong when the calculated resistivity
is reasonable or, conversely but equivalently, resistivity is
too weak when superconductivity is reasonable: somehow
the phonon contribution to superconductivity is excessive
and needs to be curtailed [9, 10].

We have also identified a conceptual difficulty in the
BCS theory [9, 10]. We have introduced an empirical
scheme of electron pairing to overhaul the theory both
conceptually and numerically [9–11]. It can be presented
analytically as a survival rate, S(q) = 0 or 1/2, depend-
ing on whether or not scattered electron pairs fall into
the black areas in FIG. 1, q being the momentum of
the phonons scattering the electrons (see FIG. 2). Ex-
tensive tests demonstrate that the numerical difficulty of
the BCS theory also is remedied to high accuracy when
this consideration is taken into account [9–13].

We now seek further tests of this new empirical pair-
ing scheme. To this end we recall the view of Joynt and
Taillefer [14] that “the student of magnetism has the lux-
ury of being able to consult neutron diffraction data from
which the magnetic structure can be read off. In super-
conductivity, the order parameter sets up no measurable
field and there is no experimental probe which couples di-
rectly to it. Precisely for the reason that experiments to
determine the order parameter structure are so indirect,
a very close connection between experiment and theory
is essential.” We propose to test the new pairing scheme
on the rich and fertile but not yet adequately exploited
grounds of superconducting energy gap anisotropy.

Our test will be based on the framework of Bennett
[16]. It starts with the isotropic electron-phonon spec-
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tral density α2F (ν) that leads to an isotropic energy gap,
∆(ω) (dirty limit). Bennett argues that a metallic super-
conductor is largely isotropic, so that he keeps ∆(ω) but
replaces α2F (ν) with its anisotropic generalisation and
thus finds superconductor anisotropy. Bennett evaluated
his theory for lead with the realistic phonon data avail-
able to him. Both the initial and final electron states are
placed on the Fermi surface exactly in accordance with
the physics. Bennett considered both spherical and more
realistic Fermi surfaces and compared the results. He
concluded that phonon anisotropy is the principal source
of gap anisotropy.

Following the Bennett approach carefully, we place
both the initial and end states of the electrons exactly
on a spherical Fermi surface. In addition we visualise
gap anisotropy globally in k-space with unprecedented
resolution and accuracy and make a detailed comparison
between the outcomes from our empirical pairing scheme
and the BCS scheme. Available experimental data ap-
pear to give marginal support to the new scheme but are
inconclusive. We look forward to future better experi-
mental scrutiny and pairing scheme resolution.

Our article is arranged as follows. In Sections II and III
we outline briefly the Bennett theory of gap anisotropy.
The experimental situation is reviewed in Section IV. In
Sections V and VI we review an historical difficulty of
the BCS theory and the new pairing scheme to resolve
it. In Section VII we study lead with the new and also,
for comparison, the conventional BCS pairing scheme. In
VIII we comment on previous lead studies. In Sections
IX, X and XI we study aluminium, niobium and tantalum
also with both schemes. Brief conclusions are presented
in Section XII.

II. BENNETT THEORY

Anderson [15] first highlighted the significance of the
phenomenon of superconductor anisotropy in 1959. Ben-
nett [16] then developed a formulation for anisotropic su-
perconductivity in real metals. In it the following equa-
tions determine the anisotropic superconducting energy
gap to a good approximation:

∆(ω) =
1

Z(ω)

∫ ∞
0

dω′ <

 ∆(ω′)√
ω′2 −∆(ω′)2

K∆(ω, ω′)

(1)

Z(ω) = 1 +
1

ω

∫ ∞
0

dω′<

 ω′√
ω′2 −∆(ω′)2

KZ(ω, ω′)

where, when T = 0,

K∆(ω, ω′) =

∫ ∞
0

dν α2F (ν)

[
1

ν + ω′ − ω − i0+

+
1

ν + ω′ + ω + i0+
− µ∗

]
(2)

KZ(ω, ω′) =

∫ ∞
0

dν α2F (ν)

[
1

ν + ω′ − ω − i0+

− 1

ν + ω′ + ω + i0+

]
µ∗ being the Coulomb pseudopotential. Here ∆(ω) =
∆(ω, ϕ, θ), ∆(ω) its average over ϕ and θ (dirty limit) and
α2F (ν) = α2F (ν, ϕ, θ), the anisotropic electron-phonon
spectral density.

We can replace ∆(ω) on the left hand side of Eq. (1)
with ∆(ω), provided that we also replace α2F (ν) with
its values averaged over ϕ and θ. Consequently Eqs. (1)
and (2) become the familiar equations for the isotropic
energy gap function, ready to be solved for ∆(ν). After-
wards, with α2F (ν) = α2F (ν, ϕ, θ) in Eq. (2) to man-
ifest phonon anisotropy, we can readily find ∆(ω) =
∆(ω, ϕ, θ). This procedure is exact if we accept Eqs. (1)
and (2) as a valid starting point. It is not an iterative
procedure truncated in the first round: Bennett starts
from a theory allowing no room for further iteration.

When solving Eq. (1) the workload rests mostly on es-
timating the strength of the electron-phonon interaction
from first principles. For lead, niobium and tantalum we
start from the following muffin-tin atomic pseudopoten-
tial:

V (r) = δV cos

(
πr

2r1

)
, when r < r1 (3)

otherwise V (r) = 0. With detailed phonon knowledge we
can find from Eq. (3) both the electron-phonon super-
conducting spectral density, α2F (ν), and the electron-
phonon transport density, α2

trF (ν), for electrical resistiv-
ity in the normal state, see [12] for details. The extent
of phonon involvement can be appreciated from FIG. 1
where the end states are aligned along one half of a great
circle from k0 to −k0 at 101 locations. Furthermore, we
have 80 such half great circles crossing the initial electron
state k0. We also have 210 values of k in an irreducible
section of the Fermi surface, that is a spherical triangle
with its vertices in the [100], [110] and [111] directions,
so that in total we have to solve 1,696,800 sets of 3 × 3
eigen-equations for phonon frequencies. These are pre-
calculated and stored in look-up tables for subsequent
ready use; otherwise the task becomes insurmountable.

III. BENNETT CONCLUSION

In 1964 Geilikman and Kresin studied the effect of
anisotropy on the properties of superconductors theoret-
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ically within the framework of the Bogolyubov formal-
ism [18]. They adopted a Debye phonon model, with an
isotropic phonon distribution and without umklapp pro-
cesses. Therefore their source of superconducting energy
gap anisotropy was the band structure anisotropy acting
through the matrix element of the electron-phonon in-
teraction; it is entirely from the non-spherical shape of
the Fermi surface. They evaluated gap anisotropy ana-
lytically with two types of model Fermi surfaces: closed
(ellipsoid) and open (cylindrical).

In 1965 Bennett studied a similar ellipsoidal Fermi sur-
face model within the BCS formalism. The phonons are
assumed to be from a so-called modified Einstein model,
in which the phonon frequency is largely fixed but per-
turbed by the projection of the phonon wave vector on
the symmetry axis. Bennett found that the effect of
the non-spherical Fermi surface on gap anisotropy, either
from his own calculations or from [18], is much smaller
than the phonon effect.

Bennett also studied superconductor anisotropy in lead
within the framework of the BCS-Eliashberg-Nambu for-
malism [16]. The phonons are from experimental mea-
surement by neutron scattering along high-symmetry di-
rections. Phonons along other directions are from inter-
polation with Kubic harmonics. The initial and end elec-
tron states are placed on a spherical Fermi surface, with
26 values of the angular coordinates of the end states cho-
sen randomly, compared with the numerous end states
shown as white dots in FIG. 1. The initial electron state
is chosen to scan in the ϕ = 45◦ plane and a profile of
∆(ω) is drawn as a function of θ.

In addition Bennett redrew that ∆(ω) profile in the
ϕ = 45◦ plane against θ but with a non-spherical Fermi
surface formulated with a four OPW (orthogonal plane
wave) approximation [16]. Little difference in ∆(ω) was
found apart from that in the region around two values of
θ where the non-spherical Fermi surface ceases to exist.
Bennett concluded that the phonon density of states is
the principal source of gap anisotropy.

In 1975 Tomlinson and Carbotte once more evaluated
the anisotropy of the superconducting energy gap in lead
[19]. They followed the steps of Bennett almost exactly,
including the use of Eq. (1) and a non-spherical Fermi
surface formulated with the four OPW approximation.
Their phonons are from direct evaluation of the Born-
von Kármán theory. On the other hand they probably
had introduced an approximation in [20] that the end
electron state is boldly allowed to run over the interior
of a huge phonon sphere that conceptually envelops the
entire Fermi surface. They did not evaluate lead gap
anisotropy with a spherical Fermi surface for comparison.

In 1971 and 1972 Leavens and Carbotte evaluated gap
anisotropy in aluminium, also via Eq. (1) and a non-
spherical Fermi surface formulated with one OPW, but
did not study the spherical Fermi surface for comparison
[21, 22].

In general all the evidence available to us in the litera-
ture supports the Bennett conclusion. To our knowledge

there is no indication of important contributions to gap
anisotropy in metallic superconductors that can be at-
tributed to Fermi surface geometry.

IV. THE EXPERIMENTAL SITUATION

With respect to superconductor anisotropy study the
experimental side has been plagued with numerous prob-
lems. At one stage the relatively sparse experimental
evidence for gap anisotropy was principally from elec-
tromagnetic absorption and acoustic attenuation investi-
gations. It appeared in the early 1960’s that the newly
developed method of electron tunnelling offered the most
direct method of energy gap measurement [23]. However
interpretation of the tunnelling data needs careful atten-
tion, with some issues persisting to this day.

The tunnel structures usually involve the fabrication of
thin film sandwiches. There are two regimes. Sufficiently
thin films of thickness, d, less than the superconduct-
ing coherence length, ξ0, are polycrystalline with severe
boundary scattering and correspondingly short electron
mean free paths, a regime classified by Anderson as dirty,
and they were expected to show isotropic gaps [15]. Films
of greater thickness (d > ξ0) had longer electron mean
free paths, were expected to behave as clean systems and
should show anisotropy. Townsend and Sutton, in 1962,
found evidence in support of Anderson in the case of
lead, the element that has been most extensively inves-
tigated. They studied two types of tunnel sandwiches:
Ta-I-Pb (tantalum-insulator-lead) with a bulk tantalum
electrode and entirely thin film Al-I-Pb structures [24].

Later, in 1966-67, in a series of experiments using films
of different thicknesses, Campbell and Walmsley further
exploited the technique [25]. Thin (dirty, d < ξ0) films
were found consistently to show unique gaps while thick
(d > ξ0) films showed multiple gaps. In the interpretation
the multiple gaps were associated with distinct grains (of
dimension d > ξ0) having different preferred orientations
in the films and reflecting an anisotropic gap; the idea
that multiple gaps could be associated with a single crys-
tallographic direction was recognised but not explored.
The anisotropy effects were seen in aluminium, lead, in-
dium and tin. In a separate study by Campbell, Dynes
and Walmsley, alloying of lead with bismuth was used
to control mean free paths in films of arbitrary thick-
ness and reduction of anisotropy was again established
for short mean free path systems [26]. In a contempo-
raneous study of lead films Rochlin found closely similar
results [27].

A little later still, in 1969, Blackford and March over-
came previous technical obstacles and investigated tun-
nelling from epitaxially grown lead single crystals [28].
Using a 1500Å thick lead film as top electrode they re-
ported the energy gap on the faces of lead single crystals
in various crystallographic directions. In each direction
the gap had a double value which was attributed to two
or more groups of electrons coming from different parts
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of the Fermi surface of the lead crystal.
By contrast, in 1970 Wells et al examined aluminium

crystals by tunnelling from 5000Å-thick aluminium and
indium films and reported finding some anisotropy (6%)
but no evidence of multiple gaps [29]. In 1971 Lykken et
al, building on the work of Wells et al investigated lead
single crystal films [30]. Their results did show double
gaps in good agreement with Blackford and March. Al-
though they measured top electrode film thicknesses the
values are not recorded in detail with the published gap
results; they appear typically to have been of the order
of 5000Å. Much later, in 2000, Short and Wolfe found
evidence in a phonon imaging experiment for what they
described qualitatively as large anisotropy in supercon-
ducting lead [31].

So, in summary, the experimental electron tunnelling
evidence generally has been interpreted as supporting di-
rectional anisotropy but is conflicted on whether there
are multiple gaps in a single crystallographic direction
of a crystal. The latter view is supported by Blackford
et al [28] and Lykken et al [30] in lead, by Blackford in
aluminium [32] but not by Wells [29] in aluminium. We
note in passing that the data in favour all involve thick
lead counter-electrodes.

V. BCS DIFFICULTY

We now outline briefly the history that leads to the
need for a new pairing scheme in BCS theory. First we
observe that it is natural to expect identical phonons in
the normal and superconducting states, on account of
the BCS premise that the very same electron-phonon in-
teraction is responsible for both electrical resistivity and
superconductivity. So, we should not attach particular
significance to the black polygons in FIG. 1. Unfortu-
nately each and every attempt along this line of thinking
has consistently failed, leaving us with a long trail of ev-
idence in the literature of an unresolved difficulty.

In 1976 Tomlinson and Carbotte [19] evaluated the
spectral function α2F (ν) for lead with the pseudopoten-
tial of Appapillai and Williams which is a specification
of the Heine-Abarenkov potential. Ostensible agreement
with tunnelling measurement was said to be “very good”,
although the numerical peak of α2F (ν) at 9 meV is more
than 2 times as strong as the tunnelling peak. In 1977
Tomlinson and Carbotte [33] in pioneering studies eval-
uated the normal state resistivity ρ(T ) for lead with the
same potential. Between T = 4 and 295 K their ρ(T ) is
only about 75% of the observed values, as can be seen
clearly from the graphical redrawing of the result in 1981
by Eiling and Schilling [34]. A similar discrepancy oc-
curred when aluminium was investigated using the Heine-
Abarenkov potential tabulated by Harrison (where the
discrepancy in ρ was somewhat obscured by a logarith-
mic presentation) [21, 35, 36].

In 1977 Peter, Ashkenazi and Dacorogna determined
the effects of anisotropy on the Tc of niobium [37]. They

found that the electron-phonon coupling constants deter-
mined are probably too large and have to be multiplied
by a factor of 0.7 (which, perhaps significantly in the
light of later developments, means a factor of 0.49 in the
electron-phonon-electron interaction) in order to obtain
the observed Tc.

In 1979 Glötzel, Rainer and Schober [38] evaluated
α2F (ν) for vanadium, niobium, tantalum, molybdenum,
tungsten, palladium, platinum and lead. They care-
fully avoided any uncontrolled approximations. To find
phonon dispersion they used published Born-von Kármán
fits to the force constants. To estimate the strength of
the electron-phonon interaction they used muffin-tin po-
tentials developed for band structure calculation. The
superconducting transition temperature they found, Tc,
turned out to be 2 to 3 times too high. They showed
the value of µ∗ has a significant effect on Tc but stuck
to a reasonable choice µ∗ = 0.13. They concluded that
their careful approach was incapable of reproducing the
observed values of Tc.

In 1987 Al-Lehaibi, Swihart, Butler and Pinski [39]
evaluated both ρ(T ) and α2F (ν) for tantalum also with
a muffin-tin potential from band calculation. While ρ(T )
was found to be slightly lower than experimentally ob-
served, α2F (ν) exceeded the tunnelling values signifi-
cantly, giving Tc = 7.01 K (4.5 K experimentally) which
was regarded as a puzzle [39]. A similar puzzle occurred
when niobium was investigated [40–42].

In 1990 Carbotte [43] reviewed the calculations of
α2F (ν) but surprisingly made no reference to the ear-
lier careful practice of verifying consistency between re-
sistor and superconductor theories via calculations of
normal state resistivity ρ(T ). The agreement between
the numerical and measured tunnelling spectral function
α2F (ν) for niobium by Butler et al [40] was said to be
“not good” (against good numerical ρ) in contrast to the
“very good” numerical α2F (ν) for lead in [19] (against
erroneous numerical ρ).

In 1996 Savrasov and Savrasov [44] evaluated ρ(T ) and
α2F (ν) for aluminium, vanadium, tantalum, lead, nio-
bium, molybdenum, palladium and copper. Their ρ(T )
is lower than experiment, significantly in the case of lead,
in all cases except for niobium at T > 300 K and cop-
per. However their spectral function α2F (ν) still exceeds
experimental values by a factor of 2 or 3 in places. To
reproduce the observed Tc they adjusted µ∗ freely with-
out justification. In the case of vanadium and niobium
(resistivity largely correct) they let µ∗ = 0.30 and 0.21,
instead of the measured tunnelling values 0.15 and be-
tween 0.11 and 0.16 respectively [45].

In brief, in numerous attempts over more than 20 years
the calculated value of the superconducting electron-
phonon spectral density, α2F (ν), is always found to be
too high when the normal state resistivity ρ(T ) is reason-
able (with the potential from band calculation) or con-
versely but equivalently α2F (ν) is found to be reasonable
but ρ(T ) is too low (with the Appapillai-Williams or Har-
rison specifications of the Heine-Abarenkov potential).



5

 

k 

k' 

-k' 

N-process 

U-process 

-k 

FIG. 2: Schematic of a spherical Fermi surface and a pair of
electrons with initial states k and −k. The end states, k′

and −k′, can be accessed via both normal (N) and umklapp
(U) scattering, with different pair occupation probabilities,
causing a dilemma.

Since we have little reason to question the theory of nor-
mal state electrical resistivity this leaves us no choice but
somehow to curtail the strength of the electron-phonon
interaction in the superconducting state in order to re-
produce experimental tunnelling conductance.

VI. NEW PAIRING SCHEME

How does the BCS difficulty arise? In short: normal
and umklapp scattering may compete for the same desti-
nation pair states. In normal electron-phonon scattering
the end states from k are restricted to the grey wedge on
the right (angle = 78.1◦, 60.0◦, 51.8◦, ... when valency
= 1, 2, 3, ...) in FIG. 2 [11]. They can never reach the
wedge on the left. End states of umklapp scattering from
the same initial state, in contrast, do cover the left wedge
[20] and this causes problems.

Specifically in normal scattering an electron in a
Cooper pair experiences a transition from k to k′ (the
other electron in the pair scatters from −k to −k′ by
symmetry) giving a destination pair occupation proba-
bility h(k′) = h(−k′). In umklapp scattering the tran-
sition is from k to −k′ (the other electron scatters from
−k to k′ by symmetry) giving another distinct destina-
tion pair occupation probability u(k′) = u(−k′). In gen-
eral h(k′) 6= u(k′) because of the different phonons (solid
and dashed arrows) involved in the N and U -processes.
Should we adopt h(k′) or should we adopt u(k′) when
the processes co-exist? That is the dilemma underlying
the historical BCS difficulty.

In response we introduce an empirical rule which can
be presented analytically as the following interaction sur-
vival rate:

S(q) =


0, if k′ ± k is in BZ

1/2, otherwise

(4)

FIG. 3: Gap edge in lead calculated with new pairing scheme.
Upper: gap edge profiles in the [001] and [110] planes, circles
represent dirty limit. Lower: panoramic map, normalised lin-
ear colour scale against minimum gap, standard deviation =
0.15 (in kBTc/2) or 3.41% of dirty limit, 4.40 (same units)
(∼1.365 meV).

where q = k′−k and BZ stands for the first phonon Bril-
louin zone shown in FIG. 1 as the black areas; S(q) ≡ 1
for the BCS scheme. The rule weights the strength of the
electron-phonon interaction and hence curtails the con-
tribution to α2F (ν) of that interaction. Clearly Eq. (4)
helps to circumvent the BCS conceptual difficulty; see
[9, 10] for detailed microscopic justifications. In a se-
ries of publications we established the worth of Eq. (4)
in that it allows the same pseudopotential to be used to
evaluate the electron-phonon interaction for both normal
state resistivity and superconductivity with high accu-
racy [9, 10, 12, 13]. Indeed it becomes clear that the new
pairing potential is much better in that it is close to the
resistivity-derived potential and contrasts with the BCS
potential.

VII. LEAD: TWO PAIRING SCHEMES

We describe briefly the numerical procedure for solv-
ing Eq. (1). Interested readers may consult [46] for fur-
ther details. We start by determining the lead phonon
dispersion curves. For lead this used to be seen as a
difficult task and led Chen and Overhauser to suspect
involvement of spin-density waves in 1988 [47] but a test
experiment by Overhauser and Giebultowicz gave a null
result in 1993 [48]. We solved the problem within the
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FIG. 4: Gap edge in lead calculated with BCS pairing scheme.
Upper: gap edge profiles in the [001] and [110] planes, circles
represent dirty limit. Lower: panoramic map, normalised lin-
ear colour scale against minimum gap, standard deviation =
0.16 (in kBTc/2) or 3.64% of dirty limit, 4.40 (in same units)
(∼1.365 meV).

TABLE I: SUMMARY OF PSEUDOPOTENTIAL
PARAMETERS

Element potential theory r1/a δV/εF errora

resist 0.834 -3.408 0.12%
Pb muffin-tin new 0.790 -3.773

BCS 0.369 -1.651

resist 0.413 -2.669 0.69%
Al Gaussian new 0.389 -2.721

BCS 0.333 -1.066

resist 0.999 -4.087 0.38%
Nb muffin-tin new 1.110 -3.773

BCS 0.419 -1.781

resist 1.004 -4.556 0.55%
Ta muffin-tin new 1.084 -4.297

BCS 0.448 -1.833

a against ρ at 295K

framework of the Born-von Kármán theory with a force
model having central symmetry across 20 neighbouring
atomic shells. In this model, at each atomic shell, the
force constant matrix arises from a pair of parameters:
we have a total of 40 parameters to determine.

We follow the numerical procedure of direct search due
to Hooke and Jeeves [49] to determine the 40 or so pa-

TABLE II: LEAD ENERGY GAP a

[100] [110] [111] std dev %b

Experimental
Blackford 4.19 4.23 4.15 0.03 0.78
Lykken 4.14 4.25 4.15 0.05 1.19

Previously calculated
Bennett 4.69 4.04 4.44 0.27 6.10
Tomlinsonc 4.21 5.01 4.23 0.37 8.31

Currently calculated
New pairing scheme 4.94 4.36 4.66 0.24 5.09
BCS scheme 4.31 4.35 3.93 0.19 4.51

a in kBTc/2 with Tc = 7.193K
b against average gap in the row
c approximate directions

rameters of the central force model. There is no strict
linkage between the number of atomic shells and the size
of the experimental dataset. In the pattern search phase
of the procedure the 40 parameters of the force model are
perturbed in turn. A perturbation is registered as posi-
tive if it improves fitting between theory and experiment,
otherwise it is registered as negative. In the pattern move
phase all the positive perturbations are performed simul-
taneously, negative perturbations are performed simulta-
neously in opposite directions, to the extent needed for
best fitting. This procedure is repeated until the fit no
longer improves [46].

In the normal state we use Eq. (3) to evaluate α2
trF (ν),

that in turn is used to evaluate the extended version
of the Mott-Jones equation for electrical resistivity, as-
sumed to be isotropic, and umklapp scattering is in-
cluded. Calculated values of resistivity are compared
with the experimental data and the parameters r1 and
δV in Eq. (3) are adjusted via the Hooke-Jeeves proce-
dure for a best fit, see [50] for further details. We could
refine the shape of the muffin-tin potential in Eq. (3) for
better fitting, but chose not to do so due to the sheer
amount of calculations involved. The calculation is suf-
ficiently accurate with r1 = 0.834a and δV = −3.408εF ,
a being the crystal constant and εF Fermi energy. On
average the calculated resistivity differs from measure-
ment by just 0.12% of the lead resistivity at 295 K. For
convenience of reference we present these and other pseu-
dopotential parameters determined in the course of the
present work in Table I.

In the superconducting state Eq. (3) is used to eval-
uate α2F (ν) which in turn is used to evaluate Eq. (1).
We apply the new pairing scheme, in which the electron-
phonon interaction contributes to superconductivity only
when the end states of the scattered electron fall beyond
the black regions in FIG. 1. The strength of the surviving
interaction is, as in all our previous related publications,
also halved. We first find the dirty limit, ∆(ω), via the
Hooke-Jeeves procedure for best fitting. En route we de-
termine µ∗ in Eq. (2), see [12] for details.

Equipped with α2F (ν), the dirty limit of the gap and
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µ∗ for lead, it is straightforward to find the anisotropic
gap from Eqs. (1) and (2). We see from TABLE II that
in the outcome for lead we have the maximum value of
the gap edge in the [100] direction, a lower value along
[110] and an intermediate value along [111]. These are
shown in the upper part of FIG. 3. In the lower part of
FIG. 3 we map values of the gap edge globally over the
Fermi surface with 20160 pixels.

Next, out of interest and for comparison we switch to
the usual BCS pairing scheme by allowing both normal
and umklapp scattering to contribute to superconductiv-
ity, regardless of whether the end states in FIG. 1 fall
within or beyond the black regions. Calculated tun-
nelling conductance fits experimental data reasonably
well, though not as well as found with the new pairing
scheme. The atomic potential weakens significantly, with
r1 = 0.369a and δV = −1.651εF , in order to accommo-
date additional contributions by normal electron-phonon
scattering in the original BCS scheme.

Anisotropy of the energy gap also changes pattern sig-
nificantly under the BCS scheme. In TABLE II the max-
imum value of the gap edge is now in the [110], direction,
with a lower value in the [100] direction and a lower still
value along [111]. This appears to suggest a rotation of
45◦ from the 4 lobes of the gap profile in the [001] plane
for the calculation with the new pairing scheme in the
upper part of FIG. 3. We see from the upper part of
FIG. 4 that in the [001] plane the gap profile calculated
with the BCS pairing scheme has 8 lobes with reduced
amplitudes. The global map in the lower part of FIG. 4
also changes significantly in comparison with the map in
FIG. 3. In general the magnitude of the anisotropy is
broadly comparable in both calculations. The difference
between the two pairing schemes lies most obviously in
the pattern of the gap edge in the [001] plane.

VIII. LEAD: REVIEW OF PREVIOUS RESULTS

Experimentally the energy gap in lead single crystals
was reported to have two (sometimes three) values, re-
flecting fine structure in the tunnelling current. It was
said to be due to two (or more) groups of tunnelling elec-
trons coming from different parts of the Fermi surface of
the crystal [28, 30]. (Such structure was not found in
aluminium single crystals by Wells [29]).

Before accepting this view at face value it is worth look-
ing again at the experimental evidence and its interpre-
tation. The tunnel sandwiches consisted of an epitaxially
grown single crystal as one electrode and an evaporated
film as the other. In their case, Blackford and March
report that the top film is 1500Å thick [28]. In lead the
coherence length is ξ0 = 830Å so these films fall into the
thick category. They are expected to have grains with
dimensions of the same order as the film thickness and
should show multiple gaps according to earlier studies
[26, 27]. Inspection of the data suggests that the double
gaps observed can be attributed to the top film electrode

with a cluster of values at 2.45 meV and another at 2.77
meV. If we attribute the multiple gaps to the top film
exclusively then the mean value in each case corresponds
to the gap of the single crystal. It varies from 2.60 meV
by at most 0.03 meV or 1% from one direction to an-
other. This implies only weak anisotropy in the single
crystal. Later, Lykken et al used lead films of thick-
ness approaching 5000Å and again multiple gaps should
arise therefrom. These were indeed observed and the
results were interpreted in the Blackford fashion. How-
ever, with the alternative attribution of the multiple gaps
and anisotropy to the top film the crystal gap again is
unique in each crystallographic direction and varies in
different directions from 2.60 meV by only 0.03 meV.
The film gaps cluster around 2.40meV and 2.75 meV. By
contrast, in the case of aluminium studied by Wells et
al the counter-electrode used was 5000Å thick, much less
than the coherence length in aluminium (ξ0 = 16, 000Å)
and therefore multiple gaps were not expected here in the
top film nor were they observed in the experiment [29].

With this revised interpretation the experimental ev-
idence points to modest anisotropy in lead single crys-
tals, perhaps 1%. There is good consistency between the
measurements reported by the two research groups for
the [111] and [110] directions as summarised in TABLE
II though slightly less so for the [100] direction [28, 30].
On the other hand, theory suggests, as seen in TABLE
II, anisotropy magnitudes of 5 to 8% [16, 51]. The dis-
crepancy is dramatic.

Tomlinson and Carbotte [51] highlighted some consis-
tency between their calculations and the earlier inter-
pretation of the experiment of Blackford [28] because in
both cases the gap peaks about two values. However, the
current discussion questions that interpretation of the ex-
perimental data. The difference between FIG. 3 here and
the result of Tomlinson and Carbotte in [51] will in part
reflect the details of the pairing scheme. They will have
adopted the original BCS pairing scheme, together with
their procedure of including umklapp scattering to cal-
culate phonons in an enlarged sphere that conceptually
envelopes the entire Fermi sea [20]. Indeed we see from
TABLE II and FIG. 4 that choice of pairing does make
a significant difference in gap anisotropy variation and
the trends seen by Tomlinson and Carbotte are reflected
there: maximum gap along [110], minimum along [100]
and intermediate along [111]. The relative impact of elec-
tron band structure which they also included is hard to
quantify.

From TABLE II the theory of Bennett [16] appears,
rather unexpectedly, to show the same general trend as
the results of our calculations based on the new pairing
scheme in FIG. 3 though there are numerical discrepan-
cies: the maximum gap is in the [100] direction, a lesser
gap is found in [110] and an intermediate gap along [111].
Indeed in FIG. 8 in [16] the gap profile in the [110] plane
resembles closely the corresponding profile in the upper
part of FIG. 3 here. We refrain from reading too much
into this, because Bennett applied rather bold approxi-
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TABLE III: ALUMINIUM ENERGY GAPa

[100] [110] [111] std dev %b

Experimental
Biondi 3.44 3.37 3.50 0.05 1.55
Kogure 3.56 3.46 3.14 0.18 5.29
Blackford 3.38 2.69 0.35 11.4
Wells 3.64 3.41 0.12 3.26

Previously calculated
Dynes 3.78 3.68 3.39 0.17 4.57
Leavens 3.64 3.51 2.93 0.31 9.19
Leung 3.32 3.27 3.11 0.09 2.77

Currently calculated
New pairing scheme 3.93 3.24 3.17 0.34 10.0
BCS scheme 3.54 3.57 3.08 0.22 6.60

a in kBTc/2 with Tc = 1.25K
b against average gap in the row

FIG. 5: Gap edge in aluminium, new pairing scheme. Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.29 (in
kBTc/2) or 8.24% of dirty limit, 3.52 (same units) (∼ 0.1895
meV). Blackford sample points shown in the clear sector.

mations in his calculation. For example in [16] the form
of α2F (ν) is assumed to be a Lorentzian, with parame-
ters adjusted to fit an experiment in the normal state.

The overall tentative conclusion for lead is that the-
ory and experiment are in serious disagreement. The
experimental anisotropy data from tunnelling into single
crystals is in magnitude (1%) well short of theoretical
prediction (5-8%).

FIG. 6: Gap edge in aluminium, BCS pairing scheme, Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.20 (in
kBTc/2) or 5.67%, of dirty limit, 3.52 (same units) (∼ 0.1895
meV).

IX. ALUMINIUM

Study of the superconducting energy gap in aluminium
has been a central focus of the electron tunnelling tech-
nique since the beginning but the low transition temper-
ature, 1.196 K reported by Wells et al [29] and 1.180 K
by Blackford [32], made reliable superconductivity mea-
surement challenging. Experimentally the gap edge was
found to be 2.3 ± 0.3 (in kBTc/2) at 0.8 K by Nicol,
Shapiro and Smith in 1960 [52], 3.20±0.30 at 1 K by Gi-
aever and Megerle in 1961 [23] and finally an asymptotic
value of 3.53 ± 0.02 at absolute zero, transition temper-
ature = 1.250 K, by Blackford and March in 1968 [53].
Beware that for some reason it is still often listed as 3.3
in popular textbooks [54].

Study of anisotropy of the gap in aluminium also
started early. Experimentally, Biondi et al in 1964 had
found anisotropy via millimeter-microwave studies and
Claiborne and Morse detected considerable difference in
attenuation of ultrasonic shear waves in a superconduct-
ing aluminium single crystal in the [100], [110] and [111]
directions [55, 56]. With the latter technique Kogure et
al found the maximum gap in [100], a lower value in [110]
and least in [111] [57]. Blackford and Wells et al carried
out tunnelling measurements and found results consis-
tent with these relative values, see TABLES II and III
[29, 32]. Early theoretical contributions were made by
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TABLE IV: ALUMINIUM ENERGY GAPa

θ ϕ Blackfordb newc BCSd

0.0 0.0 3.38 3.97 (0.59) 3.54 (0.16)
5.6 30.9 3.25 3.96 (0.71) 3.55 (0.30)

16.4 5.7 3.53 3.97 (0.44) 3.65 (0.12)
19.8 5.6 3.53 3.91 (0.38) 3.65 (0.12)
21.6 8.6 3.34 4.01 (0.67) 4.86 (1.52)
22.4 39.0 3.18 3.70 (0.52) 3.50 (0.32)
25.6 10.2 3.43 3.77 (0.34) 3.67 (0.24)
29.3 11.7 3.57 3.61 (0.04) 3.65 (0.08)
29.4 9.2 3.58 3.68 (0.10) 3.73 (0.15)
30.6 4.1 3.53 3.69 (0.16) 3.79 (0.26)
32.1 40.8 3.12 3.40 (0.28) 3.37 (0.25)
32.5 37.5 3.53 3.39 (0.14) 3.37 (0.16)
37.1 28.6 3.58 3.34 (0.24) 3.35 (0.32)
37.3 5.7 3.06 3.66 (0.60) 4.02 (0.96)
38.5 18.1 3.05 3.30 (0.25) 3.46 (0.41)
39.8 5.2 3.68 3.24 (0.44) 3.54 (0.14)
39.9 9.4 2.91 3.29 (0.38) 3.58 (0.67)
40.6 12.4 2.66 3.27 (0.61) 3.53 (0.87)
43.3 14.7 3.23 3.18 (0.05) 3.47 (0.24)
45.4 33.9 3.25 3.25 (0.00) 3.20 (0.05)
46.9 24.8 3.40 3.24 (0.16) 3.29 (0.11)
48.3 32.5 2.79 3.24 (0.45) 3.19 (0.40)
48.9 43.1 3.71 3.20 (0.51) 3.11 (0.60)
54.7 45.0 2.69 3.19 (0.50) 3.08 (0.39)

a angle in degrees, gap in kBTc/2, deviation bracketed
b experimental, average gap = 3.29
c new scheme, average gap (deviation) = 3.52 (0.36)
d BCS scheme, average gap (deviation) = 3.55 (0.37)

Carbotte and collaborators [21, 36, 58].
In order to calculate the anisotropy in aluminium

within our model we proceed much as before. Specifi-
cally we evaluate Eq. (1) for aluminium as we did the
equation for lead in Section VII, apart from the fact that
we find we now have to replace the muffin-tin potential
in Eq. (3) with the following Gaussian potential:

V (r) = δV exp

[
−
(
r

r1

)2
]

(5)

which we apply to calculate α2F (ν) in Eq. (2) [46]. We
find r1 = 0.389a and δV = −2.721εF in the supercon-
ducting state with the new pairing scheme, compared
with r1 = 0.333a and δV = −1.066εF with the BCS for-
mulation. We also find r1 = 0.413a and δV = −2.669εF
for the normal state with average error = 0.69% in normal
state electrical resistivity between 0 and 295 K compared
with the value of resistivity at 295 K.

With the new pairing scheme, the outcomes of our cal-
culation demonstrate a clear pattern of gap anisotropy: a
maximum in the [100] direction, a lower value along [110]
and a lower still value along [111], as is shown clearly
in TABLE III and FIG. 5. The tunnelling data from
several experimental groups [29, 32, 57], also shown in
TABLE III, demonstrate a consistent dominant pattern,
despite significant differences in absolute values of the
data. The Biondi microwave data are the least compat-

TABLE V: NIOBIUM ENERGY GAPa

[100] [110] [111] std dev %b

Experimental
Dobbs 3.77 3.68 3.74 0.04 1.00
MacVicar 3.59 3.91 4.02 0.18 4.75
Bostock 3.93 3.93 3.93 0.00 0.00
Hahn 2.91 4.01 4.37 0.62 16.5

Currently Calculated
New pairing scheme 4.10 3.34 3.86 0.32 8.42
BCS scheme 4.37 2.92 4.24 0.65 17.0

a in kBTc/2 with Tc = 9.50K
b against average gap in the row

ible [56]. Overall we are encouraged by the comparison
between experiment and theory.

On the other hand, with the usual BCS pairing scheme,
it is clear from TABLE III that the maximum value of
the aluminium gap edge is in the [110] direction, with
a slightly lower value along [100] and a lower still value
along [111], which is closely similar to the pattern of lead
anisotropy in TABLE II calculated with the BCS pairing
scheme. We see from the upper part of FIG. 6 that, now,
the aluminium gap profile in the [001] plane has 8 lobes
with reduced amplitudes, similar to the lead gap profile
in the [001] plane in the upper part of FIG. 4.

Blackford measured the values of the aluminium gap
edge in numerous other directions [32], as illustrated in
the clear sector in the lower part of FIG. 5, data listed
in TABLE IV. We show calculated aluminium gap edge
values in each direction, with both the new and usual
BCS pairing schemes, also in TABLE IV. On average the
Blackford data yield a gap edge 3.29 (in kBTc/2), com-
pared with 3.52 (0.36 average deviation) from the new
pairing scheme and 3.55 (0.37 average deviation) from
the BCS scheme. The experimental gap appears to be
too low (should be ∼3.53) [53] possibly due to measure-
ment difficulty rather than sample selection, considering
the fairly random distribution of the sample points in the
clear sector in the lower part of FIG. 5.

X. NIOBIUM

Electron tunnelling measurement of gap anisotropy in
niobium has a long and unsettled history. In a care-
ful study in 1973 Bostock et al [59] conducted tun-
nelling experiments on niobium single crystals in 26 direc-
tions, with carefully prepared indium and lead-bismuth
counter-electrodes, only to detect no anisotropy, see TA-
BLE V. This conclusion overrode earlier outcomes such
as the 1967 MacVicar and Rose study [60] which con-
ducted superconducting tunnelling experiments on nio-
bium single crystals in 6 directions and found a minimum
gap in the [100] direction, an intermediate value in [110]
and large values in [111] and [311], see TABLE V. Later,
in 1969 MacVicar [61] conducted similar experiments in
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FIG. 7: Gap edge in niobium, new pairing scheme, Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.25 (in
kBTc/2) or 6.70% of dirty limit, 3.73 (same units) (∼ 0.1525
meV).

numerous directions and found gap values grouped non-
randomly in k-space. The final view was that there is no
observed anisotropy.

In 1962 in mild support of this conclusion Townsend
and Sutton found no clear evidence of anisotropy or
multiple gaps in a tunnelling study of zone-refined in-
gots of niobium [24]. The coherence length, ξ0, in nio-
bium is 380Å and the grain size in zone-refined ingots
might be expected to exceed this value, in which situa-
tion anisotropy should be observable. In 1980 Wolf and
co-workers, too, reported isotropic measurements from
thin niobium films [62].

But other authors do report anisotropy in supercon-
ducting niobium. In 1964 Dobbs and Perz [63] found nio-
bium gap anisotropy from ultrasonic measurements, with
a maximum in the [100] direction, minimum along [110]
and an intermediate value along [111], see TABLE V,
that is characteristically different from the result of Hahn
et al [64] because now the gap edge in the [100] direction
is no longer a minimum, indicative of a 45◦ rotation of the
gap profile in the [001] plane. Theoretical calculations by
Daams and Carbotte also demonstrate anisotropic gaps
in niobium [65] but with scarcely further details.

In 1983 Durbin et al [66] measured tunnelling current
in niobium single crystals in the [100] and [111] directions
over an extensive range of applied voltages, in order to
recover α2F (ν) via McMillan inversion. In principle this

FIG. 8: Gap edge in niobium, BCS pairing scheme,Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.40 (in
kBTc/2), or 10.7% of dirty limit, 3.73 (same units) (∼0.1525
meV).

would have allowed them to find the gap edges numeri-
cally but the inversion program failed to converge for the
[111] data. Unfortunately they did not report a directly
measured gap from conductance characteristics. In 1998
Hahn et al [64] adopted a similar approach, involving
the Andreev approximation and Bogoliubov-De Gennes
equation, and found gap edges in [001], [110] and [111]
with large anisotropy, see TABLE V.

For niobium our evaluation of Eq. (1) is similar to
that for lead in Section VI. We find r1 = 0.999a and
δV = −4.087εF in the normal state, average error =
0.38% for electrical resistivity between 0 and 295 K, com-
pared with the value of resistivity at 295 K. For the new
pairing scheme we find r1 = 1.110a and δV = −3.773εF .
We find a pattern of anisotropic gap edge in niobium with
a maximum in the [100] direction, lower value along [111]
and least along [110], see TABLE V and FIG. 7. This pat-
tern is similar to that found experimentally by Dobbs and
Perz [63] but the magnitude calculated is much greater
than that measured.

For the usual BCS pairing scheme there is little change
in superconducting niobium gap anisotropy: we still have
the maximum gap edge in the [100] direction, lower value
along [111] and least along [110], but gap amplitude
varies more significantly, see TABLE V and FIG. 8.

Hahn et al argued in an overview, see [64] and the ref-
erences therein, that successful anisotropy measurement
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TABLE VI: TANTALUM ENERGY GAPa

[100] [110] [111] std dev %b

Experimental
Sarafi 3.32 3.34 0.01 0.30

Currently Calculated
New pairing scheme 4.12 3.39 3.61 0.31 8.25
BCS scheme 4.33 3.02 4.17 0.58 15.2

a in kBTc/2 with Tc = 4.483K
b against average gap in the row

FIG. 9: Gap edge in tantalum, new pairing scheme. Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.22 (in
kBTc/2), or 6.08% of dirty limit, 3.62 (same units) (∼ 0.7
meV).

can be expected only with strong forward focusing tunnel
injection through a barrier, characterised by a low mag-
nitude of transmission probability, D ∼ 10−8. In reality
D can be much greater and for aluminium-oxide barriers
used on niobium for proximity electron tunnelling, D is
between 0.01 and 0.1 or even close to unity, 6 to 8 orders
above the maximum D for gap anisotropy detection.

XI. TANTALUM

In 1962 Townsend and Sutton found no anisotropy
from tunnelling in zone-refined tantalum ingots [24]. In
1968 Sarafi [67] measured gap anisotropy in tantalum
single crystals by means of ultrasonic attenuation. Only
two directions in the [001] plane were measured and the

FIG. 10: Gap edge in tantalum, BCS pairing scheme. Upper:
gap edge profiles in the [001] and [110] planes, circles represent
dirty limit. Lower: panoramic map, normalised linear colour
scale against minimum gap, standard deviation = 0.34 (in
kBTc/2), or 9.39% of dirty limit, 3.62 (same units) (∼ 0.7
meV).

result appears to indicate scarcely any anisotropy, see
TABLE VI.

Our evaluation of Eq. (1) for tantalum is similar to
that for lead in Section VI, with r1 = 1.084a and
δV = −4.297εF for the new pairing scheme, compared
with r1 = 0.448a and δV = −1.833εF for the BCS
scheme. We also find r1 = 1.004a and δV = −4.556εF
in the normal state, average error = 0.55% for electrical
resistivity between 0 and 295 K, compared with the value
of resistivity at 295 K.

Under the new pairing scheme we found a maximum
gap in the [100] direction, a substantially lower value
along [110] and an intermediate value along [111], see
TABLE VI and FIG. 9. Once more phonon-induced
anisotropy (8%) from calculation turns out to be much
greater than reported in the sparse experimental data in
the open literature.

For the usual BCS pairing scheme there is little change
in superconducting tantalum gap anisotropy: we still
have the maximum gap edge in the [100] direction, lower
value along [111] and least along [110], but gap amplitude
varies more significantly, see TABLE VI and FIG. 10.
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XII. CONCLUSIONS

Previous anisotropy studies of conventional supercon-
ductors have been far from satisfying or conclusive. The
underpinning Bennett theory has not been adequately
evaluated. Furthermore, the experimental measurements
on single crystals have offered sparse and sometimes con-
fusingly conflicting data which are inadequate to discrim-
inate between theories. Indeed the question arises as to
whether or not electron tunnelling spectroscopy can re-
veal single crystal anisotropy. In this article the Bennett
theory is numerically evaluated and the gap displayed
visually for all directions in k-space with high resolu-
tion for the fcc metals lead and aluminium and bcc met-
als niobium and tantalum. Conditions required by the
theory are carefully observed. The Bennett conclusion
that phonon anisotropy is the principal source of gap
anisotropy is adopted and a spherical Fermi surface is as-
sumed. A comparison is made between the predicted gap

values in the usual BCS scheme of electron pairing and
those of a new scheme that rectifies a fundamental inade-
quacy in the BCS theory. A generic pattern of anisotropy
is found with the new scheme: the maximum gap value
lies in the [100], [010] and [001] directions, exceeding the
minimum by 5 - 8%. The profile of the gap edge in the
[001] plane always has 4 lobes reminiscent of a mixture
of s and d-wave patterns. In contrast this profile has 8
lobes with the BCS scheme in the fcc metals. We can
hope to see an experimental determination of this pat-
tern in real metals to resolve the question of whether the
new pairing scheme is supported. Magnesium diboride,
MgB2, a conventional superconductor with Tc of 39K has
previously been analysed numerically by Choi et al [68]
with the BCS pairing scheme in terms of its isotropic
properties. It will be interesting and challenging to anal-
yse its anisotropic properties with both pairing schemes
both numerically and experimentally [69, 70].
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