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Abstract 

This paper introduces a localized phase compensation method 

for the design of power system stabilizers (PSSs) to suppress 

the oscillation occurred in a single-machine infinite-bus 

(SMIB) power system. The proposed method is used to 

design stabilizers to suppress power system oscillations and 

only requires the available generator and transformer 

parameters thus eliminating the need to receive and verify 

entire power system parameters. This paper establishes the 

extended linear Phillips-Heffron model for a SMIB system 

with a PSS installed in the generator and demonstrates 

application of the model to determine damping and thus 

preserve power system oscillation stability. The paper also 

presents several examples where the proposed method has 

been used with two models to design PSSs with comparative 

results presented in a case study. 

1 Introduction 

Power system low-frequency oscillations threaten the security 
of power system operation as in some cases they may interrupt 
stable operation of systems. One effective way of suppressing 
the oscillations is that the auxiliary controllers which formed 
power system stabilizers (PSSs) are installed in the excitation 
power system of generators, to provide additional damping to 
the low-frequency power oscillations [1-2]. Since 1970s a 
variety of design procedures and algorithms have been 
proposed for the design of power system stabilizers using 
either linear or nonlinear models of power system. 
 

On the basis of the damping torque principle, Gibbard [3-5] 
and Wang [6-7] have investigated the stabilizer design based 
on global model of power system. For a long time period, 
damping torque principle has been considered as an 
engineering heuristics [8]. However, it needs the parameters of 
the whole network and the generators to apply the method of 
modal analysis. Thus the extension of the phase compensation 
method becomes very complicated and the simplicity of the 
global model is lost. That is the reason why that the modal 
analysis has been more often used for the design of stabilizers 
to suppress the inter-area power oscillation in systems. 

Recently Gurrala and Sen suggested one approach which 
employs the secondary bus voltage of generator's step-up 
transformer to establish a Phillips-Heffron model and applying 
the phase compensation method to design [9]. The application 
not only keeps the advantage of simplicity of the global phase 
compensation method, but also does not require the 
information of complete power system, which in practice may 
not always be readily available and is difficult to be validated 
when the system scale is large and complex [10-11]. 
 

This paper introduces a localized phase compensation method 
for the design of power system stabilizers (PSSs) to suppress 
the oscillation occurred in a single-machine infinite-bus 
(SMIB) power system. The proposed method is used to design 
stabilizers to suppress power system oscillations and only 
requires the available generator and transformer parameters 
thus eliminating the need to receive and verify entire power 
system parameters. This paper establishes the extended linear 
Phillips-Heffron model for a SMIB power system with a PSS 
installed in the generator and demonstrates applications of the 
model on aspects of damping determination and thus power 
system oscillation stability preservation. This paper also 
presents several examples where the proposed method has 
been used with two models to design PSSs with comparative 
results presented in a case study. 

2 Local and global model of power system 

2.1 Local model 

Fig.1 shows a single-machine infinite-bus power system with 

one transformer. 
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Figure 1: Single-machine infinite-bus power system 
 

The system shown in figure 1 is used to obtain the linearized 
dynamic model (extended Phillip-Heffron model). The 
dynamic equations of the power system are as follows: 
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Fig.2 shows the local Phillips-Heffron model of single-

machine infinite-bus power system. 
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Figure 2: Local Phillips-Heffron model of SMIB power 
system 
  

The reference axis of local model is 
sV  in power system, with 

the reactance of transmission line 
LX  ignored. 

 

Linearization of Eq.(1), it can be obtained that: 
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The parameters of PSS can be set to satisfy with phase 

compensation method for the PSS to provide a pure positive 

damping torque. The forward path of the output signal of PSS 

is given as follow: 
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The damping torque contributed by PSS to the 

electromechanical oscillation loop is 1pssD . Then the 

parameters of PSS are set by phase compensation method: 
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And the dynamic equations are shown below: 
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From computational results above, the state equation of the 

power system with full mathematical model of the generator 

applied can be established as follow: 

gX A X .                                                                     (7) 

gA  is the closed-loop matrix of power system installed with 

PSS. 
 

Thus, the local oscillation mode is moved to g g gj      

based on the local model of power system installed with a 

PSS. 

2.2 Global model 

The reference axis of global model is 
bV , and the reactance of 

transformer and transmission line is L tX X . Hence the 

linearization of simplified global model in power system is: 
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Fig.3 shows the global Phillips-Heffron model of single-
machine infinite-bus power system. 
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Figure 3: Global Phillips-Heffron model of SMIB power 
system 
 

The power system stabilizer (PSS) can be designed by using 

the method of phase compensation and installed to provide a 

pure damping torque 
2pssD . The expression for the forward 

path is given by: 
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The PSS design based on global model is the same as it is in 

Eq.(5). From computational results above, the state equation 

of the power system with full mathematical model of the 

generator applied can be established as follow: 

kX A X .                                                                  
 
(10) 

kA  is the closed-loop matrix of power system installed with a 

PSS. 
 

Thus, the global oscillation mode is moved to k k kj     

based on the global model of power system installed with a 

PSS. 

3 Case Study  

3.1 The comparison between local and global model with 

different load conditions 

From Eq.(4) and Eq.(9), the transfer function of the forward 

path of the stabilizer at the oscillation frequency is calculated  

as follows: 

1 0.1995 0.5166 0.5524 69.2744pssF j    

 
2 0.8094G  3 2.5000G   

6 0.4673G   

2 0.1781 0.3998 0.4376 65.9867pssF j      

2 0.6871K  3 2.0000K   6 0.6199K   
 

And from Eq.(7) and Eq.(10), the oscillation modes of single-

machine infinite-bus power system are shown in tables below: 
 

 Oscillation mode 

Without the stabilizer 0.0821 5.4072j   

With the stabilizer 0.6911 5.2783j  

 

Table 1: Local Oscillation mode of power system 
 

 Oscillation mode 

Without the stabilizer 0.0896 5.6643j   

With the stabilizer 0.7478 5.5886j  

 

Table 2: Global Oscillation mode of power system 
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Figure 4: Simulation results of oscillation modes based on 

local model with or without a PSS installed 
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Figure 5: Simulation results of oscillation modes based on 

global model with or without a PSS installed 
 

To validate the effectiveness of the stabilizer, table 1 gives 

the computational results of the local oscillation mode of the 

power system and table 2 gives the computational results of 

the global oscillation mode of the power system. Figure 4 and 

figure 5 show the non-linear simulation results of local and 

global of the power system respectively. 
 



Then the load condition is changed from 0.2 to 0.8 per unit in 

power system. Table 3 and table 4 give the local oscillation 

modes and global oscillation modes in power system under 

different load conditions. 
 

Load condition (per unit) 

0tP  
Oscillation mode g  

0.2 0.3280 5.2983j   

0.5 0.6911 5.2783j   

0.8 0.8657 5.2467j   

  

Table 3: Local oscillation mode with different load condition 
 

Load condition (per unit) 

0tP  

Oscillation mode k  

0.2 0.3535 5.3314j   

0.5 0.7476 5.5888j   

0.8 0.9161 5.7171j   

 

Table 4: Global oscillation mode with different load condition 
 

Above of all, it can be seen that two stabilizers are designed 

successfully by using the phase compensation method. The 

power oscillation is effectively suppressed by the stabilizer 

installed in the generator. The stabilizer designed based on 

local model of power system retain the robustness of the one 

designed based on global model in terms of damping 

oscillations. 

3.2 Influence of transmission line with local and global 

model 

The reactance of transmission line is changed from 0.3 to 0.6 

per unit and the other parameters of power system remain 

unchanged. From Eq.(4) and Eq.(9), the transfer functions of 

the forward path of the stabilizers at the oscillation frequency  

are calculated to be: 

1 0.2672 0.5740 0.6331 65.0376pssF j    

 

2 0.8094G  3 2.5000G   6 0.4673G   

2 0.2074 0.3624 0.4176 60.2158pssF j      

2 0.6076K  3 1.7500K   
6 0.6981K   

 

Fig.6 and fig.7 show the simulation results of local model and 

global model respectively. Compared with the previous power 

system ( 0.3LX  ), the values of parameters in global model 

(
2 3 6, ,K K K ) are changed, and the values of parameters in 

local model (
2 3 6, ,G G G ) are invariable. It is found that the 

global model is influenced by transmission line reactance so 

that the design of PSS is inaccurate. Thus, the local oscillation 

mode is
 

0.5750 4.4237g j   
 
and the global oscillation 

mode is 0.5677 4.8813k j    . 
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Figure 6: Simulation results without/with PSS in local model 

when 0.6LX   
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Figure 7: Simulation results without/with PSS in global 

model when 0.6LX   
 

From fig.6 and fig.7, it can be obtained that: the local model 

can ignore the influence of transmission line reactance on 

power system, which is the advantage of local model for 

design power system stabilizer by using localized 

compensation method in SMIB power system to damp 

oscillations.
 
Actually, it is difficult to measure the reactance 

of transmission line in the practical engineering so that the 

designing of PSS based on local model is better than the 

global model in power system. 

4 Conclusion 

Power system stabilizer is always a local power device, and 

most of design methods must rely on a mathematical model of 



the whole power system which is known as global model. 

This paper proposes a localized phase compensation method, 

which only requires the locally available information of the 

generator and the transformer. Thus it avoids the difficulty to 

obtain and validate the complete power system information 

for design of the stabilizers. The simulation result of 

designing a stabilizer attached on the generator in a single 

machine infinite-bus power system by using the proposed 

method is given in the case study. Comparison between the 

results obtained by local and global model validates the 

success of localized phase compensation method to design the 

stabilizers and can be used to effectively suppress power 

oscillations. The robustness of localized phase compensation 

method based on the local model is the same as conventional 

phase compensation method based on the global model in 

terms of design of power system stabilizer in power system. It 

is found that the local model can ignore the influence of 

transmission line reactance in power system, which is the 

advantage of local model for design power system stabilizer 

by localized compensation method in SMIB power system.  

As it is difficult to measure the reactance of transmission line 

in the practical engineering, the PSS design based on local 

model is better than the global model in power system. 
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Appendix 

Parameters of example single-machine infinite-bus power 

system (in per unit except indicated): 
 

Generator  
2

'

0

1.18, 1.0, 1.0, 1.13, ' 0.2951,

M 7, 0, 5.044

ad

d q ad f d d

f

d

X
X X X X X X

X

D T s

      

  
 

Transmission line  

0.3, 0.3L tX X 
 

AVR 

0.01, 20.0A AT K 
 


