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Abstract 

The effect on gas solubilities of adding partially fluorinated alkyl side-chains either on 
imidazolium-based cations or in bis(perfluoroalkylsulfonyl)amide anions was studied. 
The aim was to gain knowledge of the mechanisms of dissolution of gases in 
fluorinated ionic liquids and, if possible, to improve physical absorption of carbon 
dioxide in ionic liquids. We have determined experimentally, in the temperature range 
of 298 K to 343 K and at pressures close to atmospheric, the solubility and 
thermodynamics of solvation of carbon dioxide, ethane and nitrogen in the ionic liquids 
1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8mim][NTf2]), 1-octyl-
3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ([C8mim][BETI]), 1-
(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium 
bis[trifluoromethylsulfonyl]amide ([C8H4F13mim][NTf2]) and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-
tridecafluorooctyl)-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide 
([C8H4F13mim][BETI]). Ionic liquids with partial fluorination on the cation were found to 
exhibit higher carbon dioxide and nitrogen mole fraction solubilities but lower ethane 
solubilities, compared to their hydrogenated counterparts. Molecular simulation 
provided insights about the mechanisms of solvation of the different gases in the ionic 
liquids. 
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Introduction 

Ionic liquids are capable of selectively dissolving carbon dioxide when this gas 

is mixed with nitrogen, oxygen or methane.1 We have previously observed that the 

presence of fluorinated alkyl side-chains in the (imidazolium) cation2 or in the anion3 of 

different ionic liquids enhances the physical absorption of carbon dioxide. Previous 

studies on the physicochemical properties of perfluorinated organic liquids4,5 have 

shown that gases like carbon dioxide are strongly absorbed because the structure of 

the liquids is dominated by the presence of a backbone of strong C-F bonds that 

cause a loss in molecular flexibility and a decrease in polarity.6 In ionic liquids, the 

capacity and selectivity toward gas absorption can be tuned either by choosing 

appropriately the cation-anion pairs7 or by modifying the ions, including chemical 

structures that render the liquid specific for a given task.8,9 

Recent works have reported the physicochemical properties10,11,12 and possible 

applications13 including the gas absorption14,15,16,17,18, of a large variety of ionic liquids 

containing fluorinated or partially fluorinated chains. The liquids studied therein are 

varied, with cations and anions presenting a diversity of molecular structures, the only 

common point being the presence of fluorinated moieties. It is difficult, in their case, to 

establish rational relations between the structure of the liquids and their capacity of 

selectively absorbing gases. To our knowledge, no study of the dependence of the 

solvation properties on the molecular interactions and structures was yet reported.  

The purpose of this work is to study the capacity and clarify the molecular 

mechanisms underlying the solubility of carbon dioxide, ethane and nitrogen in ionic 

liquids containing fluorinated moieties. As a progression of our previous work2,3, we 

report here carbon dioxide, ethane and nitrogen solubilities in a family of imidazolium-

based ionic liquids containing fluoroalkyl chains on the cation, combined with 

fluorinated anions: 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide, 

[C8mim][NTf2];  1-octyl-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide, 

[C8mim][BETI];  and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-

methylimidazolium bis[trifluoromethylsulfonyl]amide;  [C8H4F13mim][NTf2]. From the 

low pressure solubility values, it is possible to estimate the ideal selectivities of these 

ionic liquids for CO2/N2 and CO2/C2H6 separation.  

 

Experimental Section  
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Materials. The gases used for the solubility measurements were carbon dioxide 

from AGA/Linde Gaz, with mole fraction purity of 0.99995; ethane from AGA/Linde 

Gaz, mole fraction purity of 0.995; and nitrogen from SAGA, mole fraction purity 

0.9998. All gases were used without further purification. 

The sample of 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide 

([C8mim][NTf2]) (Figure 1) was synthesised using previously reported procedures19 

and presents a mole fraction purity of 0.99. A volumetric Karl-Fisher titration using a 

Mettler Toledo DL32 titrator was used for determining the water content of an ionic 

liquid sample kept under a primary vacuum during at least 24 hours. The value found 

was 110 ppm of water. The halide content of the ionic liquid was determined using 

suppressed ion chromatography (IC) and it was found to be less than 5 ppm of 

chloride. 

Room-temperature ionic liquid 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-

methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8H4F13mim][NTf2]) (Figure 1) 

was synthesized as described in our previous work2 with a minimum mole fraction 

purity of 0.99, as found by 1H and 19F NMR spectrometry. A coulometric Karl Fisher 

titration (model Mettler Toledo DL32, standard method KF) was used to determine the 

water content of the sample, which was less than 55 ppm. The iodide ion content was 

found to be less than 400 ppm as determined by ionic chromatography.  

Room-temperature ionic liquid 1-octyl-3-methylimidazolium 

bis[pentafluoroethylsulfonyl]amide ([C8mim][BETI]) (Figure 1) and was synthesized by 

metathesis in water of 1-octyl-3-methylimidazolium chloride ([C8mim][Cl]) and lithium 

bis[pentafluoroethylsulfonyl]amide salt (LiBETI). [C8mim][Cl] was synthetized with 

minimum mole fraction of 0.98, after purification, and lithium 

bis[trifluoromethanesulfonyl]amide salt was purchased from Iolitec without any 

additional treatment, puriss. > 0.97. All solvents used are of analytical grade. 

In the synthesis procedure, (14.30 g or 61.96 mmol) of [C8mim][Cl] were 

dissolved in approximately 200 mL of distillated water and the solution was kept at 

ambient temperature before a dropwise addition of lithium 

bis[pentafluoroethylnesulfonyl]amide salt (25 g or 64.58 mmol), in approximately 5 mol 

% excess. After one hour at ambient temperature, the product was extracted with 

dichloromethane (140 mL). The water was decanted and the organic phase was then 

washed with water (5 x 40 mL) until no chloride was detected using a silver nitrate test. 

The organic solvent was removed by rotary evaporation for obtaining 1-octyl-3-
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methylimidazolium bis[pentafluoroethylsulfonyl]amide ionic liquid ([C8mim][BETI]). 

Finally, the ionic liquid was dried under vacuum of 0.3 mm Hg at 40°C overnight to 

give a yellow liquid (60.68 mmol, global yield of 98%). 

Ionic liquid 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium 

bis[pentafluoroethylsulfonyl]amide ([C8H4F13mim][BETI]) (Figure 1) was synthesized by 

metathesis in water of 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-

methylimidazolium iodide ([C8H4F13mim][I]), prepared as described in our previous 

work,9 and lithium bis[pentafluoroethylsulfonyl]amide salt (LiBETI). Lithium 

bis[trifluoroethanesulfonyl]amide salt was purchased from Iolitec without any additional 

treatment, puriss. > 0.97. All solvents used are of analytical grade. 

We dissolve (19.80 g or 35.60 mmol) of [C8H4F13mim][I] in approximately 

300 mL of distillated water and the solution was heated up to 60°C before a dropwise 

addition of lithium bis[pentafluoroethylsulfonyl]amide (14.50 g or 37.46 mmol), in 

approximately 5 mol % excess. After one hour at 60°C, the liquid mixture was cooled 

down to room temperature and the product was extracted with dichloromethane (700 

mL). The water was decanted and the organic phase was then washed with water (4 x 

70 mL) until no iodide was detected using a silver nitrate test. The organic solvent was 

removed by rotary evaporation for obtaining 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-

tridecafluorooctyl)-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ionic liquid 

([C8H4F13mim][BETI]). Finally, the ionic liquid was dried under vacuum of 0.3 mmHg at 

40°C overnight to give a brown solid at ambient temperature (28.24 mmol, global yield 

of 79%).  

The minimum mole fraction purity for both ionic liquids, [C8mim][BETI] and 

[C8H4F13mim][BETI] was estimated to be 0.96, by 1H and 19F NMR spectrometryand 

elemental analysis. The water content of the sample, is less than 10 ppm for 

[C8mim][BETI] and 65 ppm for [C8H4F13mim][BETI], respectively. The total halogen 

content was found to be 0.65 wt.% 0.66 wt.%, respectively.  

Thermal characterization. We use Differential Scanning Calorimetry (DSC, 

Modulated 2920, TA Instruments) to study the melting points and decomposition 

temperatures for all ionic liquids. For [C8mim][BETI] a melting temperature was not 

detected (below 223.15 K), applying a scan rate of 5K min-1. Additionally, the sample 

possesses extremely high thermal stability as its thermal decomposition was detected 

at Tonset of 636.15 K. The scan rate during thermal decomposition was 2 K min-1. 

[C8H4F13mim][BETI] shows a melting temperature at 311.15 K and a cold 
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crystallization temperature at 263.15 K. The glass transition temperature was found to 

be approximately 223 K. The ionic liquid decomposes in many by-products at the 

onset temperature of 626.15 K; more than four peaks were observed in thermograph 

during decomposition of the sample. For all phase transition and decomposition 

temperatures a scan rate of 2 K min-1 was applied. All ionic liquids were kept before 

each measurement under primary vacuum at 303 K for at least 24 h at 303 K. 

 Density measurements. Densities of [C8mim][BETI] and [C8H4F13mim][BETI] at 

temperatures from 293 K to 343 K and pressures up to 25 MPa were measured using 

a U-shape vibrating-tube densimeter (Anton Paar, model DMA 512) operating in a 

static mode, following the procedure described previously.17,19 The uncertainty of the 

density measurement is estimated as 0.1 kg·m-3. Due to the high viscosity of both ionic 

liquids, [C8mim][BETI] and [C8H4F13mim][BETI], (at ambient conditions η > 

100 mPa·s), systematic deviations on the density measurements depending on the 

fluid viscosity occur. Using the available correlations from Anton Paar,20 corrections 

have been made considering the viscosity of the ionic liquid samples at atmospheric 

pressure.  

Viscosity measurements. The dynamic viscosities of [C8mim][BETI] and 

[C8H4F13mim][BETI], previously dried under vacuum, were measured using an Anton 

Paar AMVn rolling ball viscometer, as a function of the temperature from 293.15 K to 

363.15 K (controlled to within 0.01 K and measured with an accuracy better than 0.05 

K) at atmospheric pressure. Before starting the measurements, both, 1.8 and 3.0 mm 

diameter capillaries tubes, used for viscosity measurements, were calibrated as a 

function of temperature and angle of measurement using as reference a standard 

viscosity fluid from Cannon (N35). The overall uncertainty on the viscosity 

measurements is estimated as ±1.5%.  
Gas-solubility Measurements. Gas solubility was measured in an apparatus 

based on an isochoric saturation technique described previously.20,21 An amount of 

solvent previously degassed is put in contact with the gas at a constant temperature, 

inside an accurately known volume. At thermodynamic equilibrium, the solubility of the 

gas can be calculated from the pressure above the liquid solution. A gravimetrically 

known quantity of ionic liquid is introduced in the equilibration cell, liqV , while the 

amount of solute that is present in the liquid phase, liq
2n  (subscript 2 stands for solute 

and subscript 1 for solvent), is calculated by two pVT measurements, one at the 
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beginning when the gas is introduced in a calibrated bulb with volume GBV  and 

another after thermodynamic equilibrium is attained: 

 

eqeqeq2
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where inip  and iniT  are the pressure and temperature in the first pVT determination 

and eqp  and eqT  are the pressure and temperature at thermodynamic equilibrium. 

TotV  is the total volume of the equilibration cell, and 2Z  is the compressibility factor for 

the pure gas. The solubility can then be expressed in mole fraction: 
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where liq
2n  is the amount of solute dissolved in the ionic liquid and liq

1n  = tot
1n  is the 

total amount of ionic liquid. The Henry’s law constant can be calculated using the 

following equation: 

 

               (3) 

 

where 2f  is the fugacity of the solute and 2φ  is its fugacity coefficient. The fugacity 

coefficient, which is very close to unity in the present cases, was included in the 

calculation of the Henry’s law constants for all the gases.  

The total uncertainty associated with Henry’s law constants calculated from the 

present experimental solubilities is estimated to be better than ±5 %. 

Molecular Simulation. We have used an all-atom force field, bases in the OPLS-AA 

framework, specifically developed to represent the ionic liquids.22,23,24 This model 

contains all the parameters needed to simulate the ions C8C1im+, C8H4F13C1im+, NTf2−, 

and BETI−. Molecular dynamics simulations were run in periodic cubic boxes 

containing 256 ion pairs of ionic liquids [C8C1im][BETI] or [C8H4F13C1im][BETI], using 
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the DL_POLY code.25 Equilibration runs started from low-density initial configurations 

(in cubic lattices) and consisted of 500 ps trajectories, with a 2 fs timestep, at constant 

NpT at 423 K and 1 bar (Nosé-Hoover thermostat and isotropic barostat). At the final 

densities of the ionic liquid state, the length of the side of the simulation boxes is 

approximately 56 Å and 59 Å for the ionic liquids with the fully hydrogenated and 

partially fluorinated cation, respectively. Trajectories of 1 ns were generated starting 

from the equilibrated configurations. Additionally, simulation boxes containing 246 ion 

pairs of the liquids [C8C1im][BETI], [C8H4F13C1im][BETI], [C8C1im][NTf2] and 

[C8H4F13C1im][NTf2] and 4 CO2 or C2H6 molecules were equilibrated and then used to 

calculate solute-solvent radial distribution functions between the gas and the solvent 

ions, also from 1 ns trajectories. The potential model of Harris and Yung26 was used 

for CO2 whereas the parameters for C2H6 were those of the OPLS_AA model.27,28 

  The chemical potential of CO2 in the two ionic liquids [C8C1im][BETI] and 

[C8H4F13C1im][BETI], was calculated in a two-step procedure, as in our previous work.2 

First, for CO2, a compact version of the molecule was created by shortening the C-O 

bond length by 1 Å. The Lennard-Jones diameters σO and σC were also reduced by 1 

Å. The chemical potential of this compact version of CO2 can be calculated efficiently 

by Widom test-particle insertion.29 Simulation runs of 600 ps at 373 K were performed, 

and 3000 configurations were stored. In each of these stored snapshots, 105 insertions 

were attempted. Following this initial calculation by test-particle insertion, a stepwise 

finite difference thermodynamic integration procedure30 was used to calculate the free-

energy difference between the compact of the carbon dioxide molecule and the full-

size model, on eight intermediate steps.  

 

Results and Discussion 

We present in Table 1 of the Supporting Information the experimental densities 

of the ionic liquids, [C8mim][BETI] and [C8H4F13mim][BETI], at temperatures from 293 

K to 343 K and at pressures up to 25 MPa. The values of density at atmospheric 

pressure were adjusted to linear functions of temperature as follows:  

)( /K10 x 957.571680.8=m · /kg -3-3 - mim][BETI][C8 Tρ          (4) 

)( /K10 x 1300.112133.8=m ·/kg -3-3 - mim][BETI]FH[C 1348 Tρ         (5) 
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The standard deviation of the fits is always better than 0.05%.  

The values determined for [C8mim][BETI] could be compared with those of the 

literature. The value of 1397.2 kg·m-3 at 296.15 K obtained in this work is 4.3% higher 

that the value reported by Qu et al.,21 however, these authors do not provide 

information about the measurement technique employed. To our knowledge, published 

values for the density of ionic liquid [C8H4F13mim][BETI], originally synthesized in the 

present work, do not exist in literature data.  

The effect on densities of adding longer fluoroalkyl chains on the anion NTf2− 

can be clarified by the comparison of the density values of [C8mim][BETI] and those 

published by Almantariotis et al.2 for the ionic liquid [C8mim][NTf2]. As it can be seen in 

Figure 1 of the Supporting Information, an increase of about 5% on the density is 

observed when changing NTf2− anion with BETI− anion. A similar trend on the density 

was obtained in the case of the partial fluorinated cation ionic liquids ([C8H4F13mim])31   

where an increase on density of about 1.7% was found. 

We determined the dynamic viscosities, as a function of temperature from 

293 K to 363 K, of dried samples of the ionic liquids [C8mim][BETI] and 

[C8H4F13mim][BETI]. Experimental data are listed in Table 2 of the Supporting 

Information together with viscosities of ionic liquids [C8mim][NTf2] and 

[C8H4F13mim][NTf2] measured previously in our laboratory2 to compare the effects of 

changing the anion from NTf2− to BETI−. The measured viscosities are correlated as a 

function of temperature using a Vogel–Fulcher–Tamman (VFT) equation, as previously 

described8 (with  standard deviations of 0.4% and 0.5%, respectively): 

  (6) 

  (7) 

The present data are higher than those reported by Qu et al.21 At 313.15 K, the 

deviation between both series of data is 16.5%, which decreases to 12.5% at 

373.15 K, a deviation probably caused, among others, by the amount of water present 

in the sample used by the authors.  
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Viscosity is affected by the addition of fluoroalkyl chains on the cation or on the 

anion. The trend obtained in this work is η [C8H4F13mim][BETI] > η [C8mim][BETI] > 

η [C8H4F13mim][NTF2] > η [C8mim][NTf2], as can be observed in Table 2 of the 

Supporting Information. Viscosities of all ionic liquids are represented graphically in 

Figure 2 of the Supporting Information where it is clear that the fluorination of the 

cation alters the viscosity more significantly than the fluorination on the anion of the 

ionic liquids studied. 

Multiple experimental data points for solubilities of carbon dioxide, ethane and 

nitrogen in [C8mim][NTf2], [C8H4F13mim][NTf2], [C8mim][BETI] and [C8H4F13mim][BETI] 

were obtained in the temperature interval between 298 K and 343 K, in steps of 

approximately 10 K. The mole fraction solubilities together with the calculated Henry’s 

law constants are reported in Table 1. In all cases, mole fractions are corrected for a 

partial pressure of solute of 0.1 MPa. The relative atomic masses used are the ones 

recommended by IUPAC32 and the second virial coefficients for carbon dioxide, 

ethane and nitrogen, were taken from the compilation by Dymond and Smith.33  

The Henry’s law constants, calculated from the experimental data, were 

adjusted to power series in 1/T in order to obtain representative values of the solubility 

 
 (8) 

The coefficients Ai as well as the standard deviations of the fits, considered as a 

measure of the precision of the data, are collected in Table 2. The Henry’s law 

constants, calculated from the CO2, C2H6 and N2 solubility measurements described in 

this work, are considered to be precise to within less than 1%, 2.1% and 4.4%, 

respectively.  

We present in Figure 2 the experimental solubility data, expressed in gas mole 

fraction, as a function of temperature of the three gases in the four ionic liquids. To 

facilitate the comparison, the data, expressed in mole fraction and in molality, for the 

three gases and the four ionic liquids at 323 K is depicted in Figure 3. Carbon dioxide 

is the most soluble gas in all of the ionic liquids, followed by ethane. Both gases 

present a mole fraction solubility of the order of about 10-2, one order of magnitude 

higher than the mole fraction solubility of nitrogen. In our previous work,2,3 we 

compared the mole fraction gas solubility of CO2 in  [C8H4F13mim][NTf2] and in 



 11 

[C8mim][NTf2], observing that the fluorination of the cation increases the solubility of 

CO2 about 20% in the temperature range studied. Since systematic increase of 

fluorination is a proven method2,6 for absorbing higher quantities of CO2 (in mole) it is 

of great interest to study the effect of increasing fluoroalkyl groups on the anion NTf2−. 

This study can be done by comparing the solubility of carbon dioxide in ionic liquids 

with the same cation associated with the NTf2− or with the BETI− anion. From the 

different in the solubility of CO2 in the ionic liquids [C8mim][NTf2] and [C8mim][BETI] 

reported herein, we have observed a lower increase on CO2 solubility (approximately 

11%) upon the fluorination of the anion than that previously reported linked with the 

partial fluorination of the cation. At 303 K, the Henry’s law constants are equal to 33.3 

± 0.1 bar and 30.2 ± 0.1 bar for CO2 in [C8mim][NTf2] and [C8mim][BETI], respectively. 

The ionic liquid [C8H4F13mim][BETI] (with higher degree of fluorination both in the 

cation and in the anion, does not exhibit higher CO2 uptake, compared to 

[C8H4F13mim][NTf2], since at 303 K, values of KH = 28.3 ± 0.2 bar and 27.9 ± 0.3 bar 

were calculated, respectively.  

Experimental C2H6 solubility data, expressed as a mole fraction for a partial 

pressure of the solute of 0.1 MPa, as a function of temperature, are also depicted in 

Figure 2 and compared at 323 K with the other two gases in Figure 3.  The gas mole 

fraction solubility is higher in cation-hydrogenated imidazolium ionic liquids when 

compared with their partially fluorinated counterparts. More precisely, a high solubility 

of C2H6 was found in [C8mim][BETI] with a value of KH = 48.4 ± 0.6 bar calculated at 

303 K. That last value is significantly lower compared to the values found for C2H6 

solubility in [C8mim][NTf2] (KH = 59.9 ± 0.4 bar) and [C8H4F13mim][NTf2] (KH = 79.8 ± 

0.5 bar), almost 23% and 33%, respectively. The low C2H6 solubility in 

[C8H4F13mim][NTf2] could be explained by analogy with the behaviour of C2H6 in liquid 

perfluorinated hydrocarbons34. However, C2H6 uptake was found to be similar in both 

ionic liquids, [C8mim][NTf2] and [C8H4F13mim][BETI], especially at the higher 

temperatures studied. 

In Figure 2, N2 solubility data, expressed as a mole fraction for a partial 

pressure of the solute of 0.1 MPa, in ionic liquids [C8mim][NTf2], [C8H4F13mim][NTf2] 

and [C8mim][BETI] as a function of temperature are also plotted. [C8H4F13mim][NTf2] 

exhibits the highest gas absorption, with a value of KH = 525 ± 8 bar at 303 K, followed 

by [C8mim][BETI]. The gas mole fraction in all ionic liquids has values between 2 x 10-3 

and 6 x 10-4, in the temperature range covered. The solubility of N2 increases for the 
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ionic liquids with fluorinated cations, like in the case of CO2. This behaviour can be 

explained by the rigidity of the fluorinated chains that leads to a larger free volume in 

the ionic liquids having fluorinated cations.6,35,36 

In Figure 3, the solubility of the three gases in the four ionic liquids is also 

plotted in molality. Although the observations described above do not significantly 

change, it is worthwhile to notice that the differences between the different ionic liquids 

as absorbents of carbon dioxide are much smaller. We have decided to analyze the 

differences in terms of mole fraction as it is a more appropriate unit when addressing 

the physical-chemical study of the gas dissolution processes37.  

By the analysis of the thermodynamic properties of solvation listed in Table 3, 

we can observe that the comportment of CO2 in the ionic liquids studied is explained 

by a more favorable entropy of solvation as the enthalpies of solvation calculated are 

similar for the four ionic liquids and even slightly less negative for [C8H4F13mim][BETI], 

the ionic liquid in which CO2 is the most soluble. The behavior of ethane is more 

complicated to explain as, even if the gas is less soluble than CO2 in the liquids 

studied, the enthalpy of dissolution is more favorable for C2H6. In this case, the 

dissolution process is explained by a balance between enthalpic and entropic factors. 

In the case of N2, a gas one order of magnitude less soluble in the ionic liquids, the 

enthalpy of dissolution is much less negative than for the other gaseous solutes. 

In previous works, the solubility of CO2 was studied in ionic liquids with 

fluoroalkyl groups14,38 but no attention has been given to the effect of fluorination on 

the solubility of other gases. Only Bara et al.39 have discussed the effect of the partial 

fluorination of imidazolium cations on the gas separation using membrane-supported 

ionic liquids. Comparison between [C8mim][NTf2] and [C8H4F13mim][NTf2] reveals an 

improvement on ideal selectivity for CO2 / CH4 separation (9 and 13, respectively) and 

a decrease of the selectivity for CO2 / N2 separation (27 and 16, respectively). The 

calculated ideal gas selectivities are listed in Table 4. We find the same trends as Bara 

et al.39 but unfortunately, pure gas solubilities of CO2, CH4 and N2 are not 

communicated, so direct comparison with our experimental data was not possible.  

In order to explain the molecular mechanisms of solvation of CO2 in ionic liquids 

[C8mim][BETI] and [C8H4F13mim][BETI], we have performed some molecular dynamics 

simulations. The free energy of solvation of CO2 in both ionic liquids was calculated at 

373.15 K, yielding to values of KH = 80.3 ± 0.8 bar and KH = 58.3 ± 0.6 bar 

respectively. Then, from the values of Henry’s constants mole fractions of CO2 in ionic 
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liquids of xCO2 = (1.24 ± 0.1) x 10-2 and xCO2 = (1.72 ± 0.2) x 10-2 at partial pressure of 

the gas pCO2 = 0.1 MPa were calculated, as seen in Figure 3. The comparison of 

simulation results with experiment serves to validate our calculation procedure and the 

force field developed during our work, especially the one for the originally synthesized 

[C8H4F13mim][BETI]. The solubility of CO2 in both ionic liquids was correctly predicted 

while molecular simulation predicts that the CO2 solubility is more important in 

[C8H4F13mim][BETI]. Quantitatively, perfect agreement with experiment was obtained 

in the case of the CO2 solubility in [C8mim][BETI] validating the force field model to 

describe CO2 – ionic liquid interactions. In the case of the CO2 solubility in 

[C8H4F13mim][BETI], an overestimation of about 21% was observed.  

 The molecular structure of the solutions was studied by calculating the site–site 

solute–solvent radial distribution functions for CO2 and C2H6 in all ionic liquids.  As 

observed in Figure 5a, CO2 is more probably solvated near the imidazolium ring of the 

cation when the longer alkyl side-chains are hydrogenated and is more probably 

dislocated towards the fluorinated chains when they exist in the cation (higher peaks in 

Figures 5b and 5c). In this last case, CO2 is found at larger distances from the carbon 

backbone as the fluor atoms are larger than the hydrogen atoms in the alkyl side-chain 

of the cation.  

 Site–site solute–solvent radial distribution functions for C2H6 in all ionic liquids 

are plotted in Figure 6. Ethane is more probably solvated, as expected, near the alkyl 

side-chains of the cation (Figures 6b and 6c) with no particular affinity being found for 

each of the anions studied herein. 

 

Conclusions 

The present work shows that the ideal selectivity of carbon dioxide absorption in ionic liquids 

can be considerably increased by using as absorbents imidazolium-based ionic liquids with 

fluorinated moieties in the cation or in the anion.  

We have observed that the mole fraction absorption of carbon dioxide increases with 

the increase of the fluorination of the ionic liquid, independently on whether it is placed on 

the cation or on the anion. The CO2 mole fraction solubility increases by 10% at 303 K when 

changing from [C8mim][NTf2] to [C8mim][BETI] (increase of the fluorination in the anion with 

hydrogenated chains in the cation) but only by less than 2% when changing from 

[C8H4F13mim][NTf2] to [C8H4F13mim][BETI] (increase of the fluorination in the anion with 
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fluorinated chains in the cation). The fluorination in the imidazolium cation affects more 

significantly the CO2 uptake (expressed in mole fraction of gas) in NTf2− based ionic liquids 

than in BETI− based ionic liquids. We have observed an increase of the CO2 mole fraction 

solubility of 20 % at 303 K when changing from [C8mim][NTf2] to [C8H4F13mim][NTf2] but only 

of 7% when changing from [C8mim][BETI] to [C8H4F13mim][BETI]. 

Ethane is much less soluble in the ionic liquids studied in this work. The fluorination of 

the ions constituting the ionic liquid have a larger relative effect on the gas uptake, the 

presence of fluorinated moieties, in the cation or in the anion, causing a decrease on the 

mole fraction solubility of the gas of 24 % when changing the NTf2− for the BETI− anion 

(independently on the cation) or by 33 % when changing the C8mim+ for the C8H4F13mim+ 

cation (independently of the anion).  

As a consequence of the behaviors described above, the ideal selectivity for the 

carbon dioxide/ethane absorption increases when the ionic liquids contains fluorinated 

chains in the cation and is practically constant (with only a slight decreases) when the 

fluorination in the anion increases.  

The results obtained could be explained by complementing the experimental data on 

gas solubility with molecular simulation studies that provided accurate information about the 

molecular structure of the solutions. As observed before for other fluorinated ionic liquids, the 

higher solubility of carbon dioxide in fluorinated ionic liquids2,3 when compared with their 

hydrogenated counterparts corresponds, at the molecular level, to an increased affinity of 

this gas towards fluorinated alkyl chains.6 Carbon dioxide is, nevertheless, also solvated 

near the charged parts of the ionic liquid, as observed before.2 In the case of ethane, the gas 

interacts preferentially with the non-polar domain of the ionic liquids, its solubility being 

lowered, as expected40, in the fluorinated ionic liquids. 

 

Supporting Information 

Includes a table and a figure with the experimental densities of the ionic liquids C8mim][BETI]  

and [C8H4F13mim][BETI] between 293 and 343 K up to 25 MPa; and a table and a figure with 

the experimental dynamic viscosities of [C8H4F13mim][NTf2], [C8mim][NTf2], [C8mim][BETI] 

and [C8H4F13mim][BETI], as a function of temperature at atmospheric pressure. 
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TABLE 1. Experimental values of carbon dioxide, ethane and nitrogen solubility in 

[C8mim][NTf2], [C8H4F13mim][NTf2], [C8mim][BETI] and [C8H4F13mim][BETI] expressed 

both as Henry’s law constant, KH, and as mole fraction, x2, corrected for a partial 

pressure of solute of 0.1 MPa. p is the experimental equilibrium pressure and the per 

cent deviation is relative to the correlations of the data reported in Table 2 

T / K p / 102 Pa KH / 105 Pa x2 /10-2 dev / % 

[C8mim][BETI] – CO2  

298.14 659.38 27.9 3.56 –0.7 

298.14 696.27 28.0 3.56 –0.7 

298.14 611.35 27.3 3.65 +1.8 

303.14 673.65 30.3 3.29 –0.2 

303.15 711.06 30.3 3.28 –0.4 

303.16 625.57 30.1 3.30 +0.3 

313.16 702.24 35.7 2.79 –0.6 

313.16 740.27 35.7 2.79 –0.5 

313.16 651.73 35.3 2.82 +0.5 

323.20 729.85 41.4 2.41 –0.4 

323.18 768.62 41.3 2.41 –0.3 

323.15 676.99 40.8 2.44 +1.1 

333.15 756.64 47.6 2.09 –0.3 

333.19 796.40 47.5 2.10 –0.1 

333.08 701.91 47.0 2.12 +0.8 

343.17 783.18 54.4 1.83 –0.5 

343.21 823.91 54.5 1.83 –0.6 

343.06 726.34 53.6 1.86 +0.8 

[C8H4F13mim][BETI] – CO2 

303.37 645.10 28.1 3.54 +0.6 

303.38 637.29 28.4 3.50 –0.4 

313.17 630.40 32.5 3.06 +0.2 
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313.17 684.49 32.5 3.07 +0.3 

313.20 682.48 32.9 3.03 –0.9 

323.21 654.24 37.3 2.67 +0.5 

323.22 710.13 37.3 2.67 +0.4 

323.20 707.75 37.8 2.64 –0.9 

333.19 677.78 42.6 2.34 +0.5 

333.19 735.13 42.4 2.35 +0.9 

333.11 732.53 43.2 2.31 –1.0 

343.18 701.18 48.7 2.05 +0.2 

343.20 760.14 48.4 2.06 +0.9 

343.10 757.30 49.4 2.02 –1.3 

[C8mim][NTf2] – C2H6 

303.41 717.10 60.3 1.65 +0.6 

303.44 717.33 60.3 1.65 +0.5 

303.41 513.41 59.5 1.67 –0.8 

303.40 766.76 59.4 1.67 –0.9 

303.40 782.68 60.0 1.65 +0.1 

313.40 744.59 69.9 1.42 +0.9 

313.41 534.14 69.0 1.44 –0.5 

313.37 795.22 69.9 1.42 +0.8 

323.40 771.87 81.4 1.22 +0.7 

323.41 554.74 80.1 1.24 –1.0 

333.36 798.97 95.2 1.04 +0.4 

333.40 575.23 93.3 1.07 –1.8 

333.30 869.77 95.2 1.05 +0.4 

343.33 826.11 113 0.88 +0.6 

[C8H4F13mim][NTf2] – C2H6 

298.14 631.11 74.2 1.34 +0.5 

298.08 715.48 76.2 1.30 –2.1 

298.14 634.05 73.6 1.35 +1.4 

303.17 584.05 79.4 1.25 +0.8 
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303.19 642.66 80.1 1.24 –0.1 

313.20 604.82 91.9 1.08 +0.5 

313.10 665.23 92.9 1.07 –0.7 

323.18 625.40 106 0.93 +0.8 

323.08 688.08 109 0.91 –1.8 

333.17 645.92 123 0.81 +1.3 

333.15 710.45 125 0.80 +0.1 

343.15 666.54 146 0.68 –0.3 

343.19 733.06 146 0.68 –0.3 

[C8mim][BETI] – C2H6 

303.16 729.24 47.7 2.08 +1.4 

303.13 487.34 48.6 2.04 –0.3 

303.17 557.63 48.8 2.03 –0.8 

313.14 757.55 55.9 1.78 +0.6 

313.18 505.59 56.4 1.76 –0.2 

313.16 578.77 56.8 1.75 –1.0 

323.16 785.44 64.9 1.53 +0.4 

323.22 523.55 64.9 1.53 +0.5 

323.16 599.66 65.7 1.51 –0.8 

333.16 813.15 75.4 1.32 –0.2 

333.18 541.27 74.6 1.33 +0.9 

333.17 620.30 75.3 1.32 –0.1 

343.16 840.82 88.0 1.13 –1.6 

343.24 558.86 84.8 1.17 +2.2 

343.16 641.00 87.3 1.14 –0.8 

[C8H4F13mim] [BETI] – C2H6 

313.15 626.55 75.3 1.32 +0.2 

313.13 504.40 77.0 1.29 –2.1 

313.15 577.13 73.9 1.35 +2.1 

323.13 647.77 84.9 1.17 +0.3 

323.13 521.59 87.4 1.14 –2.7 
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323.15 596.83 83.6 1.19 +1.9 

333.11 669.26 97.7 1.02 +0.0 

333.12 538.81 100 0.99 –2.3 

333.16 616.55 94.9 1.05 +3.0 

343.12 690.96 115 0.87 –0.7 

343.11 556.09 116 0.86 –1.5 

343.15 636.60 112 0.89 +2.1 

[C8mim][NTf2] – N2 

303.13 595.64 828 0.12 +1.2 

303.12 675.75 802 0.12 +4.4 

303.63 683.52 854 0.12 +0.5 

313.17 697.85 952 0.11 –5.7 

313.49 705.49 946 0.11 –1.3 

323.22 634.31 1019 0.10 +3.1 

323.21 719.77 1042 0.10 +0.8 

323.37 727.39 1006 0.10 +0.8 

333.20 653.69 1340 0.07 –1.4 

333.18 741.68 1297 0.08 +1.8 

343.21 673.10 1878 0.05 –6.1 

343.18 763.64 1685 0.06 +4.6 

[C8H4F13mim][NTf2] – N2 

303.48 629.07 530 0.19 –0.9 

303.50 700.68 529 0.19 –0.7 

303.53 687.43 515 0.19 +2.0 

313.40 649.29 565 0.18 –0.5 

313.45 723.29 564 0.18 –0.4 

323.23 669.32 606 0.17 –0.9 

323.29 745.60 595 0.17 +0.9 

333.06 689.32 652 0.15 –1.6 

333.10 767.79 625 0.16 +2.7 

343.09 709.67 689 0.15 –0.5 
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[C8mim][BETI] – N2 

303.15 663.54 627 0.16 +3.4 

303.15 679.26 651 0.15 –0.5 

313.15 685.29 671 0.15 –1.9 

313.15 658.21 660 0.15 –0.3 

313.12 701.51 699 0.14 –5.9 

323.16 707.14 747 0.13 +2.6 

323.15 679.21 754 0.13 +1.7 

323.15 723.91 743 0.13 +3.0 

333.16 700.49 1014 0.10 –1.5 

333.13 746.59 990 0.10 +0.7 

343.17 721.70 1424 0.07 +0.1 

343.12 769.31 1438 0.07 –1.0 
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TABLE 2. Parameters of equation (8) used to smooth the experimental results on KH 

from Table 1 along with the standard deviation of the fit, s. 

Ionic Liquid A0 A1 A2 s 

[C8mim][NTf2]     

C2H6 + 18.02 − 7.165 × 103 + 8.921 × 105 0.9 

N2 + 57.35 − 3.052 × 104 + 4.602 × 106 4.4 

[C8H4F13mim][NTf2]     

C2H6 + 16. 36 − 5.973 × 103 + 7.098 × 105 0.9 

N2 + 10. 52 − 1.963 × 103 + 2.035 × 105 1.6 

[C8mim][BETI]     

CO2 + 8.17 − 1.359 × 103 − 2.538 × 104 0.8 

C2H6 + 11.78 − 3.398 × 103 + 3.093 × 105 1.0 

N2 + 78.76 − 4.439 × 104 + 6.816 × 106 2.8 

[C8H4F13mim][BETI]     

CO2 + 10.18 − 2.807 × 103 + 2.227 × 105 0.8 

C2H6 + 22. 07 − 1.003 × 104 + 1.400 × 106 2.1 
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TABLE 3. Thermodynamic properties of solvation in the temperature range 303 K—

343 K.  In italics are included the values calculated from data reported in reference2 

 

   

[C8mim][NTf2] + CO2 − 12.9  23.1 

[C8mim][NTf2] + C2H6 − 13.7  25.5 

[C8mim][NTf2] + N2* − 9.3  27.0 

[C8H4F13mim][NTf2] + CO2 − 12.5  22.3 

[C8H4F13mim][NTf2] + C2H6 − 13.1 25.6 

[C8H4F13mim][NTf2] + N2 − 5.9 23.0 

[C8mim][BETI] + CO2 − 12.6 22.6 

[C8mim][BETI] + C2H6 − 12.6 23.8 

[C8mim][BETI] + N2 − 9.2 25.5 

[C8H4F13mim][BETI] + CO2 − 11.9 21.6 

[C8H4F13mim][BETI] + C2H6* − 7.2 24.0 

* in the temperature range 303—323 K 
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TABLE 4. Ideal gas selectivities of ionic liquids containing on the cation fluoroalkyl 

groups alkyl groups, combined with [NTf2] and [BETI] anions at 303 K                    

Ionic Liquid CO2/C2H6 CO2/N2 CO2/N2a CO2/CH4a 

[C8mim][NTf2] 1.8 24.9 27 9 

[C8H4F13mim][NTf2] 2.9 18.7 16 13 

[C8mim][BETI] 1.6 21.2 -  

[C8H4F13mim][BETI] 2.3b - - - 
a: values taken by ref.39  
b: measured at 313 K 
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