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Abstract—The Internet of Things (IoT) is expected to connect
billions of devices, that will interact with their physical environ-
ment through sensors or actuators. The measurements created
from these sensors have varying levels of precision, leading to
measurements that follow a distribution, whose variance presents
an additional challenge for the employed security schemes.

In this work we assume a smart attacker would attempt to
mask his attack in the inherent uncertainty of the measurements,
and attempt to manipulate the distribution of measurements as
covertly as possible to affect the final meaningful value that the
system would result in. We employ Game Theory to examine the
best strategies to slowly corrupt the integrity of an IoT network,
similar to ETSI’s Low Throughput Networks (LTN). We examine
the extent of the changes that can be made to the distribution
without assuming a priori knowledge of it by the attacker, for
different scenarios and compromisation patterns. To the best of
our knowledge this is the first attempt to examine the limits of
the compromise that could be applied by a smart attacker on an
IoT/LTN-type network without triggering outlier-alarms, and can
be applied in the design of better targeted defensive measures.

I. INTRODUCTION

In the vision of an IoT, physical objects have virtual
representations, they can be controlled remotely and they act as
physical access points to internet services[1]. Thus the physical
world can be controlled through the virtual one. However,
this introduces new risks as attackers can potentially gain
access to systems considered so far secure. In addition, the
protocol homogeneity needed for such a network is currently
still missing. Currently, the field is fraught with competing
solutions, based either on open or proprietary standards. This
shifting environment makes designing system-wide security
measures significantly harder as vulnerabilities in one protocol
can act as entry-points to more tightly-secured components of
the network.

Furthermore, in the IoT, the majority of the nodes will be
deployed in locations where they can be exposed to various
external factors, malicious or not. These nodes will be fitted
with sensors with limited precision, to reduce costs, thus
leading to measurements having not one precise value but
rather a distribution of values. Because of the uncertainty
inherent in the measurements, identifying when a node is

malicious or simply malfunctioning is complicated. Similarly
complicated is the process of deciding if a group of nodes are
communicating values that deviate from the mean because they
are compromised or simply because they are the first group to
sense a change in the measured values. In the IoT uncertainty
is embedded in the system.

An intelligent attacker would take all of the above into
account when trying to penetrate an IoT-like network. Thus,
understanding how an attacker would approach the penetration
of the network, is crucial to develop security measures at the
design phase instead of implementing them afterwards (what
is traditionally known as bolt-on security, often not robust
enough [2][3]).

In this paper we examine the strategies available to an
attacker who attempts to compromise an IoT type network
similar to LTNs that are currently on the rise [4] [5]. We apply
game theory to explore the upper limits of the actions that
an attacker can exert on the network before he is detected,
including compromising nodes, changing the reported value
of those nodes and assessing the feasibility of shifting the
distribution of the reported measurements to a false value
without being detected.

The structure of the paper is as follows: Section II discusses
related works in intrusion detection for an IoT-like network.
Section III defines our threat model while Section IV presents
the principles of Game Theory that we apply in our work
and our model. Finally, Section V contains our results and a
discussion of them and section VI offers our conclusions.

II. RELATED WORK

Extensive work has been done in the past in the field of
outlier detection and intrusion detection schemes as a way to
identify malicious nodes in Wireless Sensor Networks (WSN).
In [6] a scheme was proposed where the cluster head collects
information from each node such as the node’s ID or number
of retransmissions per packet to identify possible anomalies.
However, the incurred overhead can significantly reduce the
battery life of the nodes. In [7] a system based on Machine
Learning is employed to identify sampled packets as malicious



or not, depending on the feedback of the enviroment with
high detection rate and low energy consumption for WSNs.
More recent works in the field that employ outlier detection
of malicious nodes can be found in [8] and[9].

However, schemes as the previously mentioned do not
take into account modern penetration strategies, that tend to
compromised a large number of nodes first before changing
their behaviour [10]. Modern botnets tent to remain inactive
until a sufficient number of nodes have been compromised
and then they launch an attack. Furthermore, outlier detection
can lead to false positives in a scenario where the majority of
the nodes have been compromised, as the outliers will be the
uncompromised nodes.

The question of how compromising a number of nodes in
a sensor network would affect the overall system has been
explored in [11] recently. The authors examine the effect of
attacking sensors in a group to the overall distribution of
measurements, however, they assume that the attacker has
access to the measurements of all sensors, which effectively
means that the attacker has already compromised the network.
In contrast, in our work the attacker has access only to the data
of the compromised nodes, a much more realistic scenario.

III. DEFINING A SMART ATTACKER

When discussing the security services of a system, assump-
tions are often made regarding the attacker that narrows the
thread models to the ones that can be dealt by the defender
i.e. the behaviour of the attacker is assumed to fit a pattern
that is not necessarily the worst possible for the defender.
Consider the case of a Jammer [12] for example: Security
measures have been proposed to safeguard systems against
jamming, however, they often assume that the Jammer trans-
mits constantly in the same frequency,something very energy-
inefficient. Fewer works examine the possibility of an reactive
Jammer [13] that listens for transmissions before jamming and
thus is both harder to detect and more efficient.

The aim of this work is to examine strategies that an
intelligent attacker would use. We assume that the highest
priority of this attacker is to avoid detection first, and then
perform a system-wide data integrity attack. Here a data
integrity attack is defined as a type of attack that aims to
mislead the system in such a way as to achieve the goal of
the attackers on a system level.

We assume then, that the attacker has the ability to compro-
mise nodes, but understands that changing the behaviour of a
node too radically would be identified by systems employing
outlier detection techniques [14] [15]. This behaviour has
already been observed in the wild, with most prominent
example being Stuxnet [16], [17]. Stuxnet introduced a new
kind of attack model, where the attacker infects nodes of the
network and propagates without disturbing the network until a
specific condition has been met. The malware then minimally
changes the behaviour of some nodes in some way, enough to
disturb the integrity of the network but not enough to trigger
outlier alarms. We also assume that the attacker, due to the
aforementioned, tries to conceal the compromised nodes in

the inherent measurement uncertainty of an IoT network that
spans hundreds or thousands of nodes.

In practical scenarios, even uncompromised distributions
that should be normal tend to be slightly skewed due to
environmental or other non-malicious reasons like node mal-
function. Thus, comparisons must take into account that there
is a margin for error that does not necessarily identify an attack
but rather the practical realities of an IoT system. It is this
margin of error that an intelligent attacker would exploit to
hide. As a result, the extend that the attacker can shift the
uncompromised distribution is limited by this uncertainty, as
certain shifts might require behaviour that would make the
attack easily identifiable. In this work we aim to assess this
limit and the best strategies to reach it.

IV. APPLYING GAME THEORY

Game Theory has been used extensively in the past for
modelling and solving security related problems in networks
[18][19][20] as it allows us to abstract the network vulnerabil-
ities and develop general security strategies. A game in normal
form is a tuple G = 〈N,A, u〉 where:

• N = {1, 2, ..., n} a set of n rational players indexed by
i. By rational in this context we mean that the player
chooses the strategy that maximizes his payoff when
being able to calculate the results of every action.

• A = A1 × . . . × An, where Ai is a finite set of actions
available to player i. Each vector a = (a1, . . . , an) ∈ A
is an action profile.

• u = (u1, . . . , un) where ui : A → R, is a real valued
payoff function for player i.

The attacker, being rational, ideally follows the minmax strat-
egy, that is the strategy that guarantees a minimum payout for
him no matter the choice of his adversary, instead of another
strategy that can lead to higher payouts in some cases but
losses in others:

ui = min
ai

max
a−i

ui(ai.a−i)

Where i is the index of the attacker, −i is the index of other
players except the attacker, ai is the action taken by player i
and a−i the actions taken by all other players. A minimum
payout of course in this case means that he indeed manages
to shift the distribution by avoiding detection no matter how
strict the threshold is set by the defender. In our game, being
zero-sum, the minmax strategy is the same as the strategy of
the Nash Equilibrium which informally can be understood as
a strategy that the attacker would not want to deviate from, if
he knew what strategies the defender was employing.

A. Proposed Model

We are interested in modelling a network that behaves
similarly to Low Throughput Networks (LTN) that are starting
to become more popular for certain applications. These include
LoRaWAN or Sigfox networks. The networks have a star
topology, and the nodes communicate a measured value in
either scheduled or opportunistic manner. The basestation can



Figure 1: The effects of different strategies in the shape of the
distribution. In both cases the mean of the distribution has been
shifted by 0.2 but the distance of the resulting distribution is much
higher in the case of the fewer compromised nodes.

then use these values to derive the mean value which is the
one that is reported back to the user(s).For an example of a
system that exhibits such behaviour refer to [21].

We expect the measurements to follow a normal distribution
with standard deviation that depends on the quality of the
components, and covariance zero: Cheaper components would
lead to a bigger standard deviation as measurements would
deviate more but measurements that come from different
components will be independent of each other. This in effect
models a system that has been deployed for environmental
monitoring, where the nodes have been deployed in an area
and measure a variable like humidity or acidity.

At a given time, the attacker wishes to move the mean of the
uncompromised distribution towards a value of his choosing.
The attacker earns the reward if he manages to move the mean
to the one of his choosing but pays a penalty that is a function
of the number of compromised nodes. The dilemma that the
attacker faces is if it is better to attempt to compromise more
nodes at a bigger cost and shift their reported value to a lesser
extend, or compromise less nodes and shift their reported value
more radically increasing the chance of detection. An example
can be seen in figure 1.

The defender earns the reward when she detects that an
intrusion is taking place. Because she does not know how
many nodes have been compromised she checks the shape
of the distribution of received values and compares it with
an accepted shape (the accepted shape can be the result of
training).

When attempting to compare two distributions it is intergral

to define how that comparison takes place and which metrics
are used to measure the distance of the two. For a more elab-
orate discussion on the suitability of certain distance metrics,
refer to [22]. We should briefly mention that we examined
using both the Euclidean distance and the Kullback-Leibler
divergence as metrics. However both are overly sensitive to
inequalities of support of the two distributions. Therefore
we employ Hellinger’s distance, a type of f-divergence. f-
divergences were introduced by Csiszár in 1963 and are
extensively used as measures of similarity and orthogonality
between distributions. A full description of their properties is
out of the scope of this paper but for more information refer
to [23]. Hellinger’s distance is defined as

DH(p, q) = −ln

(∑
x

√
p(x)q(x)

)
where p(x) is the uncompromised distribution and q(x) is the
compromised. We have chosen to use this metric as it allows
us to make the least number of assumptions regarding the
compared distributions. It is less sensitive than the previously
mentioned to inequalities in the support of the distributions,
which can emerge even under normal circumstances.

We make the following assumptions
• Our system reports a value that is the mean of the distri-

bution of the values the network of nodes communicate
to the basestation.

• The attacker can see the final reported value.
• Every attack that the attacker attempts is successful,

leading to a compromised node.
• The attacker attempts to change that reported value to

something else, which we name ”Attacker’s Target”.
• The attacker controls the number of compromised nodes

(A) and how much the value of the compromised nodes
differs compared to the value that the node would report
if it wasn’t compromised (lj).

• The attacker does not know the value that the uncompro-
mised nodes communicate to the base station.

• The defender does not know how many nodes have been
compromised.

• The defender knows all the values that the sensor network
reports.

• Both the attacker and the defender are rational.
• The choices of the players are independent, which models

that the choices are not coordinated.
When an attack takes place there are only two possible

outcomes for the attacker: He is either detected, or he succeeds
in compromising the network. This can be modelled as a zero-
sum game. The utility function of this game is the following:

AP = (µ ≥ AT ) · (RWD)−A · (CPA)
− (D(p,q) > Threshold) · 2 · (RWD) (1)

where AT is the ”Attacker’s Target”, RWD is the reward
for compromising the network or detecting the attack, A the
number of compromised nodes, CPA the cost per attack that



leads to a node being compromised and D(p,q) the Hellinger
distance of the distributions. As detection of the attack leads to
an immediate loss for the attacker, the RWD for the defender
is doubled. Moreover,:

µ =

∑N−A
i=1 xi +

∑A
j=1(xj + lj)∑N

i=1 xi

where N the number of deployed nodes, xi the value node i
would report if it was not compromised and lj the difference
between xj and the value the compromised node is reporting.
Furthermore,:

(µ ≥ AT ) =

{
1, if inequality holds
0, otherwise

and similarly

(D(p,q) > Threshold) =

{
1, if inequality holds
0, otherwise

Threshold is the upper boundary that our system will accept
a distribution as uncompromised. The pseudo-code for our
model is:

for N number of nodes
Generate K

end for
for a ∈ {1, 2.., N}

for lj ∈ {µ/250, 2µ/250, ...µ/5}
Create Compromised Distribution(a,lj)

Calculate µ
end for

end for
for T ∈ {Tmin, Tmax}

Calculate D(p,q) for K
Populate PM(T ) according to equation (1)
NashEq(T ) = ne(PM(T ))

end for
Find strategies lead to NashEq ∀(PM(T ))

Where K a normal distribution of identically distributed but
not independent values for the N nodes, T the threshold of the
distance metric and PM the respective payout matrix.

V. RESULTS AND DISCUSSION

We examine three different scenarios that model different
types of compromise.Due to space considerations a subset
of the payout matrices are visualised with contour maps to
facilitate inspection. For each scenario we present how the
feasibility of the attacks change as the attack target gets higher.
For brevity we only illustrate for each scenario the results for
three different attack targets, that is for a shift of the mean
value by 1%, 5% and 8% although our numerical results reach
up to attack targets of 20%. The progression of the cost for
every scenario can be seen in figure 2.

A. Scenario 1: Cost of attacks remain constant

For the first scenario we assume that the cost that the
attacker pays to compromise a node (whether that is measured

in resources or something else is not important) remains
constant over time

We examine first the case where the attacker aims to shift
the mean by 1%; a subset of the results can be seen in figure
3. Each plot represents the payout matrix, where deep red
implies a win for the attacker and other colours a failure for the
attacker. In all related figures to follow, the Nash Equilibrium
is denoted by a white dot.

From our results, we can see that for modest attack targets
it is possible for the attacker to shift the distribution and avoid
being detected. When the attacker’s target is to shift the mean
by 1% there is a Nash Equilibrium strategy that leads to a
successful compromise with 5.2% of the nodes compromised.
As can be expected when facing more strict defenders, a larger
number of nodes must be compromised.

As the attacker becomes more ambitious the percentage of
nodes that must be compromised to retain the expected shape
of the distribution becomes significantly higher. For a shift
of 5% of the mean the attacker needs to compromise 94%
of the nodes for strict defenders but for more relaxed cases,
the objective can be achieved by compromising 25.6% of the
nodes. Shifting the mean by 8% can be achieved by attacking
41% of the nodes, though for stricter thresholds up to 94% of
the nodes must be compromised.

A summary of our results can be seen in figure 4 where
we can see as the relationship between the threshold and the
minimum number of nodes needed to be compromised for the
attacker to achieve his objective. From figure 4, the attacker
can choose his strategy if he has an estimation of the threshold
employed by the defender.

B. Scenario 2: Cost of attacks rises over time

The second scenario assumes that cost of the attacks in-
creases over time. This models that, the possibility of being
detected increases as time passes and transforms the game into
a discounted game, in game theoretical terms. The results of

Figure 2: Cost for the attacker as number of compromised nodes
increases for our scenarios.

Figure 3: Payout for the attacker for the first scenario when the
attacker aims to shift the mean of the distribution 1% higher.



Figure 4: Percentage of Nodes needed to be compromised vs.
Threshold for the attacker to win the first scenario.

Figure 5: Payout for the attacker for the second scenario when the
attacker aims to shift the mean of the distribution 5% higher.

Figure 6: Percentage of Nodes needed to be compromised vs.
Threshold for the discounted game.

our model for this scenario are partially illustrated in figure
5. We can see that the attacker can achieve his objective just
by compromising 5.2% of the nodes when the aim is to shift
the mean just by 1%. That is due to the lower cost compared
with scenario 1 of the initial attacks. A shift of 5% is possible
when compromising 25.6% of the nodes.

However, there is an upper boundary on how much can
an attacker shift the mean, and that is 8%. From that point
on,the total of the deployed nodes need to be compromised.
We should also point here that when the attacker needs to
compromise 100% of the nodes to achieve his objective, his
payout is penalized by an amount equal to the reward (or even
higher as in the case of the second scenario). Thus the nature
of the game is such that the Nash equilibrium is found at the
lowest row of the matrix, that is at 0% compromised nodes,
where he has not earned the reward but there is zero cost
also. Understanding this may seem trivial, but it is important
to explain the results in figures 5 and 7.

C. Scenario 3: Cost of attacks lowers over time

The third scenario assumes that the ease of the attacks is
low at first but increases as more nodes become compromised,
having the inverse effect on the cost.This scenario models
cases where vulnerabilities allow attacks to propagate in a way

Figure 7: Payout for the attacker for the third scenario when the
attacker aims to shift the mean of the distribution 1% higher.

Figure 8: Percentage of Nodes needed to be compromised vs.
Threshold for the third scenario.

Figure 9: FPR vs Threshold.The blue marker denotes the point where
the FPR becomes 0, while the red the point where the FPR becomes
10%.

similar to the one active worms spread, as described in [24].
Once again, it is possible for the attacker to achieve his

objective. However, the high initial cost hinders the attackers
attempts and requires a more relaxed threshold for him to
succeed. We can derive from this that from the defender’s
perspective, this is the best outcome. This provides some
insight to the question faced often when designing a network
regarding its security schemes: Should devices be protected
individually or in groups? The results of scenario 3 hint that
individual protection (which is modelled by the high initial
cost for the attacker) can lead to better results, although in vast
deployments it might be impractical to ensure robust protection
for all nodes.

D. Threshold and False Positives Rate

A common result in the above scenarios is that as the
threshold increases, the attacker needs to compromise less
nodes to achieve his objection. One might wonder what is
a reasonable value for the threshold then and what is the
False Positive Rate (FPR) that emerges in relationship with
the value of the threshold. We can see the numerical results
of that exploration in figure 9. In this study, we define FPR as
FPR=FP/(FP+TN) where FP is number of false positives, and
TN is number of true negatives.



Scenario 1 Scenario 2 Scenario 3
Threshold FPR Attacker’s Target Attacker’s Target Attacker’s Target

1% 5% 8% 1% 5% 8% 1% 5% 8%
0.02 74% 5.2% 94.4% 94.4% 5.2% 100% 100% 5.2% 100% 100%
0.1 40% 5.2% 25.6% 71.6% 5.2% 25.6% 100% 5.2% 100% 100%
0.2 7% 5.2% 25.6% 41% 5.2% 25.6% 100% 5.2% 100% 100%

Table I: Minimum percentage of compromised nodes needed for the attacker to win per scenario and target.

Our simulations show that a system that examines the shape
of the distribution as a security measure would need to set the
threshold as high as 0.19 to keep FPR as low as 10% and at
least 0.306 to eliminate any FP. A summary of the effects of
Threshold to FPR and the percent of compromised nodes that
the attacker needs to compromise to win can be seen in table
I.

VI. CONCLUSIONS

In this work we examined how an intelligent attacker would
proceed to compromise the integrity of a network by attacking
nodes of the network and moderately changing the value
they report to the basestation. This leads to a shifting of the
distribution of measurements and eventually to an attack of
the integrity of the network. We employed Game Theory to
model our network and the attacks in an abstract way and
avoid reaching conclusions that are applicable only to specific
protocols and technologies.

We studied three different scenarios regarding the cost
that the attacker pays to compromise nodes. In all of the
cases it was clear that the attacker can achieve modest shift
targets, even for strict thresholds. Furthermore, for systems
that employ a more lax threshold to avoid false positives
the attacker can achieve even more ambitious objectives like
shifting the mean of a distribution by 8%.

Our work can be extended to aid the design of secu-
rity measures of a network, by employing risk analysis to
techniques to correctly model the cost function that mirrors
the characteristics of designed network. The aforementioned
scenarios model specific cases, however many more can be
explored.
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[23] F. Österreicher, “Csiszár’s f-divergences-basic properties,” RGMIA Res.
Rep. Coll, 2002.

[24] Z. Chen, L. Gao, and K. Kwiat, “Modeling the spread of active worms,”
in INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, vol. 3. IEEE,
2003, pp. 1890–1900.


