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Exploratory tactile servoing with active touch
Nathan F. Lepora, Member, IEEE, Kirsty Aquilina, Luke Cramphorn Student Member, IEEE

Abstract—A key unsolved problem in tactile robotics is how
to combine tactile perception and control to interact robustly
and intelligently with the surroundings. Here we focus on a
prototypical task of tactile exploration over surface features such
as edges or ridges, which is a principal exploratory procedure of
humans to recognize object shape. Our methods were adapted
from an approach for biomimetic active touch that perceives
stimulus location and identity while controlling location to aid
perception. With minor modification to the control policy, to
rotate the sensor to maintain a relative orientation and move
tangentially (tactile servoing), the method applies also to tactile
exploration. Robust exploratory tactile servoing is then attained
over various 2D objects, ranging from the edge of a circular
disk, a volute laminar, and circular or spiral ridges. Conceptu-
ally, the approach brings together active perception and haptic
exploration as instantiations of a common active touch algorithm,
and has potential to generalize to more complex tasks requiring
the flexibility and robustness of human touch.

Index Terms—Force and Tactile Sensing; Biomimetics

I. INTRODUCTION

TACTILE sensing is widely recognized as necessary for
future robots to physically interact with their surround-

ings in a controlled and robust way, enabling progress in
applications such as autonomous manufacturing and personal
assisted living. Yet the combination of robust control with
tactile sensing and perception is proving elusive. Over the last
few years there have been several physical demonstrations of
combined tactile control and perception, e.g. [1]–[5]. However,
progress is still far from a general purpose solution with the
flexibility and robustness of human touch.

A principal issue for robot touch is that tactile sensation de-
pends upon how a tactile sensor contacts a stimulus. Therefore,
the coupling between motion and sensing must be a principal
aspect of artifical tactile perception [6], [7], as supported
by numerous human and animal studies on active touch.
Recent work on biomimetic active touch with fingertips and
whiskers [8] spans robotics and neuroscience by combining an
evidence accumulation model of perceptual decision making
with a control policy for overt focal attention to regulate how
the tactile sensor contacts a stimulus. In consequence, the tac-
tile perception attains superesolved accuracy (hyperacuity) [9],
[10] and is robust to uncertainty in sensor placement [11].
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Fig. 1: Tactile robotic system, comprising a tactile fingertip
(the TacTip) mounted as end effector on a 6-DOF robot arm.

The aim of this paper is to examine how biomimetic
active touch [8] applies to exploring surface features (e.g.
edges). Tactile exploration represents a prototypical task that
combines tactile sensing and control, and is of psychophysical
importance in humans as a basic exploratory procedure for
recognizing objects [12]. Earlier work had an inner active
perception loop within an exploration control loop [2], [3],
[13]. Here we consider instead a single control loop for both
active perception and exploration. The tactile sensor explores
around an object by maintaining its perceived orientation
relative to surface feature or edge and moving tangentially
(termed servoing) while tuning its normal displacement to
ensure robust perception (termed active perception). A sup-
plementary video clip shows this task being performed.

The performance is validated on several exploratory tasks
with a biomimetic tactile fingertip (Fig. 1), including edge
following around circular disks and volute (spiral) laminae
of varying curvature. Further generality is demonstrated by
tracing curved ridges, rather than edges. Robust exploration
does require some tuning of the gains for controlling the sen-
sor, but we found a standard set of values that generally give
good performance. Overall the approach works robustly and
straightforwardly on all considered tasks, and holds promise
to generalize to more complex tasks in higher dimensions with
more sophisticated control.

II. BACKGROUND AND RELATED WORK

The focus of this paper is around using active tactile
perception to control a robot. In general, active touch combines
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Fig. 2: The tactile fingertip (TacTip) - a 3D-printed modular
optical tactile sensor (left) comprising a compliant tip con-
taining the sensing elements, main housing for the electronics
and CCD camera, and a standalone base. Right: image from
internal CCD showing the array of sensing elements.

a method for controlling a sensor with interpretation of that
data, using control based on the interpreted data, and has been
considered both in human psychophysics [14] and robot con-
trol [6], [7], [15]. An influential definition of active perception
was made by Bajcsy as ‘purposefully changing the sensor’s
state parameters according to sensing strategies’ such that
these controlling strategies are ‘applied to the data acquisition
process which will depend on the current state of the data
interpretation and the goal or the task of the process’ [15].

For a task, we consider tactile exploration, where the goal
is for a tactile sensor to explore the unknown perimeter or
an extended feature (e.g. a ridge or edge) around an object.
Robotics work on tactile edge following dates back a quarter
of a century [16], [17], and has focussed on edge following
with image processing techniques such as median filters, Hu
transforms and, more recently, geometric moments [18] and
image dilation [19]. Image processing techniques have also
been integrated into a control framework for tactile servoing
to follow extended features such as planar wires [4].

Over the last few years, multiple approaches have been
proposed that combine tactile sensor control with perception.
When the control of the sensor is the main goal, then the work
has has been termed tactile servoing [4], exploration [20] or
manipulation [1], [5], [21]. When the perception is the main
goal, this work has been termed active perception [11] or active
exploration [22]. Here we use a method for biomimetic active
perception that decides upon an object’s location and identity
(e.g. edge position and angle on the sensor) over multiple
contacts while actively controlling that location based on the
object perception [8].

This work builds on past studies of using active perception
to control an iCub fingertip mounted on a 2D Cartesian robot
to follow an edge [2], [3], [13], where the active perception
loop was instead embedded in another exploration loop with
the sensor orientation held fixed – i.e. there was no tactile
servoing. In the present paper, we show that exploratory tactile
servoing results in a greatly reduced training phase (1/4 the

number of angle classes), applies to a wider range of objects
(including both edges and ridges), links to recent progress on
biomimetic active touch [8] and brings in aspects of control
that hold promise to extend to more complex tasks.

III. METHODS

A. Robotic system: Tactile sensor mounted on a robot arm

1) The Tactile fingerTip (TacTip): In this study, we use a
tactile sensor developed our lab – the BRL TacTip. Originally
developed in 2009 [23], it has since progressed through
many design improvements to result in the present version,
TacTip v2 (Fig. 2, left). This tactile sensor has a 40 mm-
diameter hemispherical sensing pad with 127 tactile pins
arranged in a triangular hexagonal lattice with pin-to-pin
spacing ∼3 mm (Fig. 2, right). Deformation of the sensing pad
is transduced into pin movements, with the pin displacements
tracked optically in 2D using a webcam CCD and circuit board
(resolution 640×480 pixels, sampled at ∼20 fps) mounted
inside the central column. Image capture and preprocessing
uses opencv (http://opencv.org/); pin detection and localization
uses a Gaussian spatial filter with adaptive threshold; and pin
tracking uses a nearest neighbour algorithm. Similar methods
are used in other recent papers [10], [24], [25].

The performance of the TacTip compares well with state-
of-the-art tactile sensors such as the iCub skin and fingertips,
as demonstrated in a recent comparative study of sensor
performance in biomimetic active touch [8]. Moreover, the
TacTip design lends itself to tactile superresolution [9], giving
a localization accuracy ∼ 0.1 mm that is 30× finer than the
sensor resolution given by the pin spacing [10].

2) Robot arm mounting: The TacTip is mounted as an
end-effector on a six degree-of-freedom robot arm (IRB 120,
ABB Robotics) that can precisely and repeatedly position the
sensor (absolute repeatability 0.01 mm). The removable base
of the TacTip is bolted onto a mounting plate attached to the
rotating (wrist) section of the arm, then the other two modular
components (central column and tip) are attached by bayonet
fittings, resulting in a rigid yet easily detachable assembly. The
USB cable from the TacTip is attached by a cable tie to the
arm, with enough slack that rotating the end-effector does not
pull the cable out of the base (Fig. 1).

3) Integrated sensing and control: A modular software
framework is deployed whereby the main control and percep-
tion algorithms are implemented in MATLAB on a standard
windows 2007 PC, which communicates via TCP/IP ports
with software that (i) sends control commands to the robot
arm; and (ii) receives and pre-processes the TacTip data. The
robot arm has its own controller running a native RAPID API
(in C#), to which we interface an iron python client on the
PC that converts MATLAB outputs into local variables for
custom RAPID routines to reposition the arm. Simultaneously,
a python server on the PC receives data via USB from
the TacTip, implements the opencv pre-processing described
above, and outputs a multi-dimensional time series of tactile
sensor values to MATLAB. The system is capable of real-
time operation with sub-second latency, although in practise
the ABB arm is capable only of point-to-point position control
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Fig. 3: Biomimetic active touch applied to exploratory tactile
servoing. During each perceptual decision, sensory data from
discrete tactile contacts is fed into a likelihood model for
radial displacement and edge angle, which updates evidence
represented as posteriors that is used to move the sensor radi-
ally to maintain contact with the edge and explore by moving
tangentially along the edge. After a perceptual decision when
the evidence crosses a threshold, the sensor is rotated to
maintain relative alignment with the edge (termed servoing)
and the posteriors reset to start a new decision.

and so the tactile data is processed in ∼ 1 sec segments.
Hence, for simplicity, the MATLAB code is implemented as a
state machine, with each segment of tactile data received and
processed to determine the control commands to send to the
arm, cycling about once per second.

B. Algorithmic methods: Biomimetic active perception

Our method for tactile perception and control has been
developed over a series of publications [9], [11], [26] and
recently consolidated in a synthetic treatment of biomimetic
active touch for a range of tactile sensors [8]. In this work,
we follow the conceptualization and notation from that recent
study [8] adapted to the present task of tactile exploration.

Biomimetic active touch is defined by three principles
based on biological perception (Fig 3): (i) an underlying
decision making part based on leading models from perceptual
neuroscience; (ii) an action selection part enacted during the
decision making, which includes active movement strategies
based on human and animal focal attention; and (iii) sensory
encoding of how percepts relate to stimuli, here considered as
a probabilistic model with analogues to neural coding.

We now describe how these three principles apply to tactile
exploration. Further details such as their biological basis can
be found in the original reference [8].

1) Perceptual decision making: The first component of
biomimetic tactile perception is to implement a perceptual de-
cision process in which evidence for distinct perceptual classes
is summed until reaching a threshold that triggers the decision,
with competition between the alternatives. Mathematically,

this evidence accumulation process can be represented by
recursive Bayesian analysis (e.g. [8]).

Here we implement evidence accumulation to threshold for
a tactile sensor making successive contacts zt (t = 1, 2, ...)
with a stimulus. Every contact gives an increment of evidence
for each perceptual class according to the likelihoods of that
contact P (zt|rl, θi), taken over the normal radial displacement
from the edge rl and edge orientation θi (discretized into
Nr and Nθ classes, respectively). Evidence accumulation is
implemented with Bayes’ rule applied recursively, represented
by the posterior belief

P (rl, θi|z1:t) =
P (zt|rl, θi)P (rl, θi|z1:t−1)

P (zt|z1:t−1)
, (1)

with competition between alternatives from the normalization

P (zt|z1:t−1) =

Nr∑
l=1

Nθ∑
i=1

P (zt|rl, θi)P (rl, θi|z1:t−1), (2)

according to the marginal probability of the current contact
given the previous contact.

The perception is complete when a marginal belief for
edge orientation reaches a decision threshold pdec, when the
maximal a posteriori estimate of the angular class is taken:

if any P (θi|z1:tdec) =

Nr∑
l=1

P (rl, θi|z1:tdec) > pdec

then θdec = arg max
θi

P (θi|z1:tdec
). (3)

The decision threshold is free parameter that trades off the
number of contacts tdec to make a decision against decision
accuracy (here set at pdec = 2/Nθ to give tdec . 3).

During the perceptual decision, an intermediate estimate of
the normal displacement will be used for active perception

rest(t) = arg max
rl

Nθ∑
i=1

P (rl, θi|z1:t), (4)

as described below in Sec. III-B2 on action selection.
For a task such as tactile exploration, the perceptual deci-

sions are made consecutively with the result of each decision
used to control the robot. Therefore the decision making parts
of the algorithm for biomimetic active perception (Fig. 3) are
complemented with a reset stage that sets t = 0 and flat priors
P (rl, θi|z0) = 1/NrNθ. In principle, evidence from previous
decisions could contribute [2], but for simplicity we consider
here only flat (uniform) prior evidence.

2) Action selection: The second component of biomimetic
active perception is the selection between alternative actions
during perception (i.e. deciding ‘where to move next’). These
actions are selected with a control policy that inputs the
perceived angle class and intermediate estimates of the radial
displacement class. The policy makes an action that combines
rotating the sensor towards the currently perceived edge angle
after an angle decision, with a tangential (exploratory) move
along the edge and a normal (active perception) move onto
the edge after every contact.
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Fig. 4: Tactile data for the TacTip contacting an edge of a circular disk. Contacts were at a constant rate of one tap every
second with 1 mm displacement normal to the edge after every tap to span a 20 mm location range (panels A and B); this is
repeated for 9 rotations of the sensor between -40◦ and +40◦ in 10◦ steps (panels C and D). The color of the plotted trace
corresponds to the pin locations (color scheme to top right) and its magnitude the x-deflection (panels A,C) or y-deflection
(panels B,D) of the pin from its initial position at the beginning of the contact.

The tactile servoing part of the action orients the sensor
towards the perceived edge angle θdec by trying to maintain a
fixed angle θfix relative to the edge

∆θ = πθ [P (rl, θn|z1:tdec
)] = [ gθ(θfix − θdec) ]i , (5)

and performed immediately after a decision. Here the fixation
is chosen in the center of the perceptual range θfix = 0◦. The
notation [·]i represents that the action is rounded down to the
nearest edge angle class θi, including an angular gain gθ factor
(here 0.5 or 1).

The exploratory part of the action moves the sensor tangen-
tially along the edge by a fixed amount ∆e (here set to 3 mm),
and is performed after every contact (in combination with the
corrective component of the action below). The direction of
movement is always given by the θ = 0◦ egocentric angle
class relative to the sensor orientation; in practise, the center
of the angular range is kept as an allocentric variable that is
initialized at 0◦ and is updated by ∆θ after every angle action.

The corrective component of the action moves the sensor
radially towards a pre-set fixation radial displacement rfix

relative to the edge. The direction of movement is perpen-
dicular θ = 90◦ relative to the sensor orientation, and its
magnitude proportional to the distance from the currently
estimated normal displacement class

∆r(t) = πr [P (rl, θn|z1:t)] = [ gr(rfix − rest(t)) ]l , (6)

and performed after every contact. Here the fixation dis-
placement is chosen in the center of the perceptual range
rfix = 0 mm, which is aligned to center on the edge. The
notation [·]l represents rounding down to the nearest normal
radius class rl, including the gain factor gr (here 0.5 or 1).

Following previous work on biomimetic active touch [8],
[11], after every action for active perception (radially along the

normal) it is necessary to make a compensatory transformation
of the perceptual beliefs to maintain an allocentric frame for
the beliefs

P (rl, θi|z1:t)← P ([r −∆r(t)]l, θi|z1:t). (7)

For simplicity, the (undetermined) beliefs shifted from outside
the location range are assumed uniformly distributed.

3) Sensory encoding: The third component of biomimetic
active perception encodes the sensory data as evidence to be
used in the perceptual decision making and action selection.
A standard ‘histogram’ likelihood model has been used in our
work on robot touch, originally defined in relation to sensory
processing [26], which we summarise here and refer to ref. [8]
for further details.

Here we consider data zt that is a multi-dimensional time
series of sensor values,

zt = {sk(j) : 1 ≤ j ≤ Nsamples, 1 ≤ k ≤ Ndims}, (8)

with index j denoting the time sample and k the sensor
dimension (x- and y-components of pin movement).

The sensory encoding determines the increment of evidence
for each perceptual class, based on the logarithm of a likeli-
hood model of the contact data from training

logP (zt|rl, θi) =

Nsamples∑
j=1

Ndims∑
k=1

logPk(sk(j)|rl, θi)
NsamplesNdims

(9)

assuming statistical independence between all data dimensions
k and time samples j. A histogram method is then applied to
the training data to give Pk(sk|rl, θi) = Pk(b|rl, θi), binning
the sensor values sk into Nbins = 100 intervals [8].
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Fig. 5: Exploratory tactile servoing, shown over a few steps
of the control loop from Fig. 3 (with unit radial and angular
gains in this example). After each contact, the sensor makes
an exploratory move ∆e tangential to the edge, and a radial
move ∆r towards the fixation point rfix = 0 mm based on the
estimated radius rest. An angle decision θdec is made when
the angle posterior crosses a threshold, defining a rotation ∆θ
towards the fixation angle θfix = 0◦ relative to the edge. Hence
the control tries to maintain the same sensor orientation and
displacement with respect to the edge, with the radial and
tangential directions of motion rotating with the sensor.

C. Task: Exploratory tactile servoing

Here we consider tasks in which a tactile sensor moves
along a continuously extended tactile feature, such as the edge
of an object or ridge across a surface, while maintaining align-
ment with that feature using biomimetic active perception. We
consider this to be an exploration task because the sensor
moves onto a previously unknown part of the object and tactile
servoing because the sensor moves to maintain its angle of
alignment with the stimulus feature (here the edge).

For simplicity, we consider planar objects with the axis of
the tactile sensor perpendicular to that plane. We also assume
that the sensor can be moved along the plane to maintain a
constant depth with each contact. In practise, there will be
small deviations from these conditions that affect the tactile
sensing, and part of the challenge of this task is to be robust
to this form of ‘noise’.

Here we consider ‘tapping’ contacts, where the tactile sensor
begins a sensing movement away from the surface (here
∼ 2 mm), taps vertically down onto the surface by a fixed
distance (here 5 mm), and then returns back to its original
position. This tapping motion is supposed to have a fixed
duration (here about 15 time samples over ∼ 1 sec), although
again there will be variations due to issues such as network
delays (between the PC and robot) and deviations in camera
frame rate, which are also treated as ‘noise’. Our use of
tap-based sensing conveniently segments data for the state
machine and reduces sensor hysteresis that would otherwise
introduce significant history dependence into the sensing.

The task has a training phase, in which the sensory encoding
model (Sec. III-B3) is learned off-line, and a distinct testing

phase, in which the tactile servoing is implemented in real-
time on the tactile robotic system.

1) Training: For training, the tactile robotic system samples
a local region (e.g. an edge) of a planar object over a range of
normal radial displacements and angles (Fig. 4, right diagram).
In the terminology of our methods for biomimetic active touch
(Sec. III-B2), the sensor systematically samples a grid of Nr
‘where’ rl radial displacements normal to an edge, and Nθ
edge angles θi by rotating the sensor about its axis. Here we
consider Nr = 20 locations spanning −9 ≤ rl ≤ 10 mm
centred (approximately) on an edge, and Nθ = 9 angles
spanning −40◦ ≤ θi ≤ 40◦. Examples from the training data
show the sensor readings over the location range for one angle
θ = 0◦ (Figs 4A,B) and over the angle range for a central
location at r = 0 mm (Figs 4C,D).

2) Testing: For testing, the tactile robotic system seeks to
move around the perimeter of a planar object by perceiving
the edge angle and radial location relative to the sensor, which
define three movements (Fig. 5): (i) active perception moves
∆r along the (estimated) normal to the edge to relocate the
sensor towards a fixation point rfix relative to the estimated
location rest; (ii) exploratory moves ∆e along the (estimated)
tangent to the edge with perceived angle θdec; and (iii)
reorientation of the sensor ∆θ towards an angle fixation θfix

relative to the edge. Here we use a location training range
symmetric about the edge, and hence take a central fixation
point rfix = 0 mm. Similarly, the angle fixation is also at the
central point θfix = 0◦. During testing, the robot begins at the
fixation points and seeks to maintain them over the task.

The perception and control algorithm proceeds sequentially
(Figs 3,5), with an active perception loop for individual radial
displacement and edge angle perceptual decisions, interleaved
with initialization steps that reset the evidence and re-orient the
tactile sensor towards the perceived edge orientation. Individ-
ual perceptual decisions are made according to an evidence
accumulation process (Sec. III-B1) up to a pre-set decision
threshold that balances the accuracy of a decision against the
number of taps needed to achieve that accuracy. Here we
manually set the threshold at Edec = log 2/Nθ = log 2/9
to decide typically over 1-3 contacts.

IV. RESULTS

A. Perception of edge location and angle

For an initial validation, we first check that the biomimetic
perception methods (Sec. III-B) can accurately perceive edge
angle and radial displacement. We consider a basic validation
with the threshold set to give a decision after only one contact
Edec = log 1/Nid = log 1/9. We also check that a location
range centred on the edge is appropriate, with fixation point
in the center of the range.

The data collection was ran twice, to give a first set
for training and a second for offline validation (shown in
Fig. 4). To assess the edge angle error, we apply the Bayesian
perception method (Sec. III-B) to the perceived radial location
and edge angle (rdec, θdec) and compare with the ground truth
(r, θ). Errors are averaged over multiple test runs, with angle
error eθ(r, θ) = 〈|θdec − θ|〉 over runs with the same ground
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Fig. 6: Angle perception errors for decision after a single
contact. A: mean angle errors ēθ(r, θ) evaluated over runs with
ground truth (r, θ). B: mean errors over all angles in range,
depending only on the radial displacement. The best location
for perception is in the center of the range r = 0 mm.

truth (r, θ), and mean angle error ēθ(r) =
∑Nθ
i=1 eθ(r, θi)/Nθ.

Averages were taken over 10,000 randomly generated runs.
The mean perceptual errors ēθ(r) for edge angle vary

smoothly over the radial location range (Fig. 6) from a
maximum of ∼ 40◦ at -9 mm away from the edge (with no
contact on the object) down to a minimum of zero error in
the central region near 0 mm, and then rising again as the
sensor moves more fully onto the object. Therefore, actively
controlling the sensor to contact the edge in the middle of this
location range will lead to the best edge angle decision for the
exploratory tactile servoing task.

B. Exploratory tactile servoing around a circular disc

Next, we consider the exploratory tactile servoing task
(Sec. III-C) for a circular disc of diameter 110 mm. The task is
successfully performed if the tactile robotic system can make
a full 360◦ circuit of the disc’s perimeter.

Training data was taken at the bottom position (6 o’clock)
on the disk, sampling an edge over 20 radial locations from
-9 mm to +10 mm and 9 angles with range -40◦ to +40◦

relative to the edge. This data was also used to test biomimetic
perception (Sec. IV-A), validating that rfix = 0 mm is a
suitable fixation point for active perception.

The exploration task was started at the central training po-
sition, at the fixation point (rfix, θfix) = (0 mm, 0◦). The task
was set to explore in a clockwise direction around the disk,
with exploration step 3 mm tangential to the perceived edge
angle. The decision threshold was set to Edec = log 2/Nθ,
giving angle decisions after 1-3 tactile contacts.

Biomimetic active touch generally gave good task perfor-
mance, following at least 2/3 of the circumference of the

Fig. 7: Exploratory tactile servoing around a circular disk
of diameter 110 mm (blue curve). The four panels show the
trajectories (red curves) for different radial and angular gains
gr and gθ in the control policy. Grey lines represent the
sensor angle and the location range. Only the combination
(gr, gθ) = (1, 0.5) gave successful task completion (panel C).

disk in all considered situations (Fig. 7). As the tactile robot
traced the edge, it rotated the sensor to maintain its original
orientation with the edge (grey normal lines). We attribute the
failure in some cases after 2/3 of a cycle (about 2 o’clock)
as due to the sensor mis-perceiving edge angle, and then
becoming ‘lost’. The most likely cause of this failure was
from small (sub-millimetre) variations in disk height relative
to the robot, so that the test data drifts away from the training
data during the task. We examined correcting for this (with
some success), but the tuning was both ad hoc and laborious.
Hence, instead, we consider a more natural (and demanding)
test of system performance is to leave these imperfections in
the experiment, and instead examine system robustness with
respect to task parameters such as the control gains.

Task performance was dependent on the gains gr and gθ
in the biomimetic active perception algorithm, which control
the proportion to move from the estimated radial displacement
and angle towards their fixation points. Decreasing the angular
gain gθ from 1 to 0.5 improved task performance (Figs 7B,D
vs Figs 7A,B), presumably because ‘bad’ sensor rotations
are easier to correct. Meanwhile, although decreasing the
location gain gr from 1 to 0.5 resulted in a smoother trajectory
(Fig. 7A) it did not correct large errors. These observations
are supported from the RMS tracking errors for Figs 7A-D:
1.1 mm, 2.3 mm, 1.0 mm and 0.7 mm. Therefore, the gains
(gr, gθ) = (1, 0.5) led to the most robust and accurate
performance with successful task completion around the entire
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Fig. 8: Exploratory tactile servoing. Other details as in Fig. 7.

edge of the disk (Fig. 7C).

C. Application to a non-uniform laminar

To probe the robustness of tactile exploration, we then
considered following the edge of a volute (spiral) laminar,
where the radius of curvature varies from 20 mm to 50 mm in
steps of 10 mm over each half-turn. We consider the volute as
representative of any non-uniform shape with radii of curvature
in this range. The task is successfully performed on exploring
a full 360◦ circuit of the perimeter.

Successful task performance was attained (Fig. 8; tracking
error 1.2 mm). This performance was with keeping gains
(gr, gθ) = (1, 0.5) that were tuned for the disk (Sec. IV-B).
The natural place to train was on the straight edge (near
(50, 110) mm on Fig. 8). No other tuning was needed, and
the performance worked robustly the first time we set up
the experiment, with multiple later runs maintaining similar
performance, following a slightly different path each run.

Fundamentally, this test probes the robustness of the percep-
tion and exploration method to edge features that differ locally
in shape from the original training data. Some generalization
capabilities have already been probed with the circular disk,
because the contact locations and angles did not lie at the
discrete points of the training data (at 1 mm and 10◦ intervals;
Fig. 4). Now also generalization over local edge curvature
has been probed. Task performance was best over the bottom
40 mm and 50 mm segments, with both angle and radial
location perceived well; angle perception suffered over the
top 20 mm and 30 mm segments, but localization was good
enough to maintain contact with the edge throughout.

D. Application to ridges

Finally, we demonstrate that the methods apply more gen-
erally than following just the edge of an object, by examining
tactile exploration along raised ridges of 5 mm width. In all
other respects, the algorithms were identical to those used on
edges, apart from that the training data was now collected over
the ridge (with the same 20 mm range).

Fig. 9: Exploratory tactile servoing around a circular ridge.

Fig. 10: Exploratory tactile servoing around a volute ridge.

Tactile exploration worked robustly on a circular ridge
(Fig. 9) over repeated runs of the experiment. A subtlety is that
there is ambiguity (perceptual aliasing) over a 180◦ rotation
of the ridge, which can cause the sensor to flip exploration
direction if it drifts too far inwards. We resolved this issue by
training the sensor over a more outwards range of the ridge;
also the tactile servoing helped because only 90◦ of training
data is needed, which excludes the opposite (180◦-rotated)
class from the angle perception.

A more demanding task was to follow a volute (spiral) ridge,
which the tactile exploration algorithm was able to complete
over 810◦ of rotation (Fig. 10). A major challenge was that
the turns of the spiral were only 15 mm apart, to be followed
by a tactile sensor with 40 mm dia. hemispherical tip. While
it was straightforward to attain robust ridge following over a
∼360◦ turn, if the sensor then drifted a few millimetres from
the ridge it would contact and then switch to a neighbouring
turn. However, with careful tuning of the training range, the
tactile exploration was able to complete this task.
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V. DISCUSSION

In this study, we demonstrated robust tactile exploration
over various 2D objects, ranging from following the edge of a
disk and volute laminar (of varying curvature), and following
along circular and spiral ridges. The methods were adapted
from an approach for biomimetic active perception that per-
ceives stimulus identity while controlling sensor location [8].
The method for active touch extends to tactile exploration by
modifying the control policy to rotate the sensor to maintain
its orientation relative to the edge (tactile servoing) while
controlling the radial location (active perception) and moving
along a tangential direction (exploration).

This finding helps clarify the relation between haptic explo-
ration [12] and active perception [15], which are distinct lead-
ing proposals on the role of action in perception. In robotics
and psychophysics, active perception is interpreted as using
motor control to aid perception [14], [15], with application
to decisions about single tactile features [8]. Likewise, haptic
exploration considers ‘the hand... uses its motor capabilities to
greatly extend its sensory functions’ [12], but relates to more
complex exploratory procedures such as contour following for
feeling shape or enclosure for volume. However, to perform
these exploratory procedures, there would need to be ongoing
perceptual decisions during the task, suggesting that active
perception is a component of haptic exploration [7]. This
interpretation motivated past robotics work in which an active
perception loop was embedded within an exploration loop [2],
[3], [13]. The present study leads to another interpretation:
active perception and haptic exploration are distinct instantia-
tions of active touch that differ only in their control policy.

Here we applied a common approach for biomimetic active
touch [8] to both a tactile feature (edge angle, Sec. IV-A)
and to haptic exploration around an object (outside edge,
Secs IV-B,C; ridge, Sec. IV-D). Task success was assessed by
whether the robot could make a complete circuit of the object.
The methods worked robustly for edges upon hand-tuning
gains in the control policy (Figs 7,8), but while successful
were not as robust for more demanding objects such as spiral
ridges (Fig. 10). In general, we expect that robust exploration
will depend upon tuning the control policy to the task, for
example with reinforcement learning over task performance.

Our intention with this work is to make progress towards
general methods for combining robust control with tactile
sensing. By applying methods on biomimetic active per-
ception [8] to exploration, the control aspects of the task
performance become more prevalent. For example, we needed
to include gains in the control policy, analogous to standard
PID feedback control. Our expectation is that progress to more
complex tasks of practical interest, such as tactile exploration
of three-dimensional objects or continual contact with an
object rather than tapping (a challenging problem because of
sensor hysteresis), will require more sophisticated control but
also benefit from maintaining the biomimetic relation with
human and animal perception.
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