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Abstract—In this paper, we have developed a disturbance
observer (DOB) based on robust control method for a class of
nonlinear robot manipulators with time-varying uncertainty. To
facilitate digital implementation of the controller, the robot sys-
tem is formulated in discrete time. The DOB controller is design
to compensate for uncertainty and disturbance by bounding both
all states and observed uncertain function in a control region.
The robust stability of closed-loop robot system can be well
guaranteed by applying Schur complement theory and Lyapunov
analysis, such that parameters of the DOB controller are derived
using linear matrix inequalities (LMIs) theory. Simulation studies
have been performed to test and verify the proposed control
scheme, which results in supreme robust control and satisfied
trajectory tracking performance for robot manipulators with
time-varying uncertainty.

I. INTRODUCTION

With advances of the technologies, nonlinear multiple-

input multiple-output (MIMO) robot manipulators have been

widely used in our modern life and industry. In practice,

most robot manipulators are usually subject to unmodelled

dynamics and various uncertainties [2]–[4], and many research

works mainly focus on controller design to achieve satisfied

control performance. In the recent decades, many control

schemes are mainly designed via DOB with saturation states

and/or external disturbances. For example, a robust adaptive

controller is designed based on input saturation and observed

external disturbance for uncertain nonlinear system in [20]. In

[7], a state feedback controller is presented with input satu-

ration and disturbance. In [8], a decentralized adaptive robust

controller is proposed to realize trajectory tracking of robot

manipulators. DOB methods are introduced to compensate

for disturbances in these studies, and the technologies have

increasingly matured and been used for robot manipulators in

practice. However, for nonlinear, time-varying, uncertain robot

manipulators, few results are reported and they are mainly

designed in continuous time domain. For example, in [17],
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robotic dynamic model is divided into known-model terms

and un-modeled dynamics to compensate for uncertainty, and

the controller is designed via a known system term, a feedback

term and an adaptive term. In [9], neural network control

method is introduced, which is comprised by a self-organizing

neural-fuzzy network identifier, an uncertainty observer and

a supervisory controller, furthermore, a sliding-mode con-

trol and an adaptive bound-estimation scheme are introduced

to achieve satisfied control performances. In [16], a fuzzy

adaptive output feedback control is proposed based on any

observer to compensate for nonlinear uncertain system, but

control system is a class of single-input-single-output (SISO).

These approaches are able to guarantee stability of closed-

loop robot systems and obtain satisfied control performances.

Moreover, the digital implementation of robot controller is

becoming increasingly popular and powerful, recent research

works for robot manipulators with uncertainty gradually focus

on discrete-time control.

Discrete-time robot manipulator models and discrete-time

control methods compensating for nonliear uncertainty are

used in [5], [6], and these on-line control approaches are

convenient to implement using discrete-time robot models. In

[15], a discrete-time adaptive controller is designed for robot

manipulators with unknown fixed or time-varying uncertain

external payload to obtain a high quality trajectory tracking

performance. These approaches perform well to guarantee

robust, and many research results mainly focus on stability

of nonlinear robot systems in discrete time. However, these

schemes often assume that the uncertainty of robot manipula-

tor is bounded in a fixed range, which limits their applications

in practice.

In this paper, we develop a novel discrete-time DOB based on

all system states and uncertain estimation of robot manipula-

tors to compensate for these effect. Stability of the closed-loop

system is able to be well guaranteed, and supreme trajectory

tracking control performance is able to be achieved.

Throughout the paper, the following notations are employed.

• ‖·‖ denotes the Euclidean norm of a vector or an induced



norm of matrix.

• [ ]T represents the transpose of a vector or a matrix.

• [ ]−1 represents the inverse of a reversible matrix.

• [ ]+ represents the pseudo inverse of a singular matrix or

a non-square matrix.

• 0m stands for a m-dimension zero vector.

• In×n stands for a n-dimension unit matrix.

• 0a×b stands for a a× b-dimension zero matrix.

II. PROBLEM FORMULATION

A. Robot Manipulator Model

In the paper, the whole system studied includes an n-degrees

of freedom (DOF) rigid class of robot manipulators, which

are governed by the following dynamic model described in

continuous-time:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − τd (1)

where q ∈ R
n is the joint angle, q̇ ∈ �n is the joint

angle velocity, q̈ ∈ �n denotes the joint angle acceleration,

M(q) ∈ �n×n is the symmetric positive definite inertia

matrix, C(q, q̇) ∈ �n×n is the Coriolis-Centrifugal torque

matrix, G(q) ∈ �n denotes the gravity torque vector, τ ∈ �n

is the vector of control input torque, τd(k) ∈ �n is the external

disturbance torque vector.

According to [2], the system model (1) has the following

properties hold:

Property 1: The symmetric and positive definite inertia

matrix M(q) is uniformly bounded. There are constants

m1 > 0,m2 > 0, and the matrix M(q) satisfies the following

inequality

m1 ≤ ||M(q)|| ≤ m2 (2)

Property 2: The matrix C(q, q̇) and the vector G(q)
are bounded by ||C(q, q̇)|| ≤ ρc||q̇||, and ||G(q)|| ≤ ρg,

respectively, where ρc and ρg are positive constants.

B. Robotic Discretization

The dynamic model represents a rigid class of robot manip-

ulator in (1). Let us define q̄ = [qT , q̇T ]T ∈ R
2n and then the

corresponding dynamics can be written as [15]

˙̄q = Φ(q, q̇)q̄ + Γ(q) (τ + τd −G(q)) (3)

with

Φ(q, q̇) =

[
0n×n In×n

0n×n −M−1(q)C(q, q̇)

]
∈ R

2n×2n

Γ(q) =

[
0n×n

M−1(q)

]
∈ R

2n×n

The state equation can be discretized using the discretization

theory with a small sampling time T , the sampled joint

angle is described as q(k) = q(tk), the sampled joint angle

velocity is described as q̇(k) = q̇(tk), the control torque is

described as τ(k) = τ(tk) and the external disturbance torque

is written as τd(k) = τd(tk) at the sampling time instant

tk = kT , respectively. Then, the equivalent dynamics form

can be obtained as

q̄(k + 1) = L(k)q̄(k) +H(k) (τ(k) + τd(k)−G(k)) (4)

where q̄(k) = [qT (k), q̇T (k)]T ∈ R
2n, and G(k) = G(q(k))

is the discretized gravity torque vector. L(k) ∈ R
2n×2n and

H(k) ∈ R
2n×n are counter-part discrete-time matrices, which

correspond to the continuous-time matrices Φ(q, q̇) and Γ(q)
in (3), and the matrices L(k), H(k) can be calculated as

following

L(k) = eΦ(q(k),q̇(k))T , H(k) =

∫ kT

(k−1)T

eΦ(q,q̇)tΓ(q)dt (5)

It is noted that we only can get the sampled values of

q(k) and q̇(k) at sampling time tk = kT , and the matrix

Φ(k) = Φ(q(k), q̇(k)) is determined at each sampling time.

Consider uncertainty and unknown external disturbance of

robot manipulators in (4) and (5), the counter-part matrices

L(k), H(k) and gravity torque vector G(k) based on robot

manipulator dynamics in discrete time can be constructed as

L(k) = L0 +ΔL(k)

H(k) = H0 +ΔH(k)

G(k) = G0 +ΔG(k)

(6)

where L0 ∈ R
2n×2n, H0 ∈ R

2n×n, G0 ∈ R
n are known

dynamics matrices, and ΔL(k) ∈ R
2n×2n,ΔH(k) ∈

R
2n×n,ΔG(k) ∈ R

n are unknown terms of system dynamic

parameters L(k), H(k), G(k), respectively.

The assumption is employed as follows

Assumption 1: Assume the known matrix H0 has linearly

independent columns, and thus the column rank of matrix H0

satisfies rank(H0) = n, then, its left inverse H+
0 ∈ R

n×2n

exists, and we have H+
0 H0 = In×n.

The aim of this paper is to obtain satisfied trajectory tracking

performance under uncertain effect for robot manipulators,

that is limk→∞q(k) = qd(k), qd(k) ∈ R
n is a desired ideal

trajectory. Define a trajectory tracking error vector as

ξ(k) = q̄(k)− q̄d(k) (7)

where ξ(k) ∈ R
2n, and q̄d(k) = [qTd (k), q̇

T
d (k)]

T ∈ R
2n.

Substitute (7) and (6) into (4), we have

ξ(k + 1) = (L0 +ΔL(k))ξ(k) + (H0 +ΔH(k))τ(k)

− (H0 +ΔH(k))(G0 +ΔG(k))

+ (H0 +ΔH(k))τd(k)

+ (L0 +ΔL(k))q̄d(k)− q̄d(k + 1)

(8)

Compounding these uncertain terms and external disturbance

torque τd(k) in (8), we define an unknown nonlinear function

F (k) ∈ R
2n as

F (k) = F0f(k)

= (H0 +ΔH(k)) τd(k) + ΔH(k)τ(k)

−ΔH(k)G0 − (H0 +ΔH(k))ΔG(k)

+ ΔL(k)q̄d(k)

(9)



where F0 ∈ R
2n×n is a weight matrix, and f(k) =

f(q(k), q̇(k), qd(k), q̇d(k), τ(k), k) ∈ R
n is also an unknown

function corresponding with F (k) and is assumed as bounded.

According to Assumption 1, we further define H0r(k) =
L0q̄d(k) − q̄d(k + 1) with an auxiliary vector r(k) =
H+

0 (L0q̄d(k) − q̄d(k + 1)) ∈ R
n. Then, a standard actual

discrete-time state form of the system (8) can be written as

ξ(k + 1) = (L0 +ΔL(k))ξ(k) +H0τ(k)

−H0G0 +H0r(k) + F0f(k)
(10)

The system uncertain and unknown term ΔL(k) in (10) is

assumed to be of the following form [10]

ΔL(k) = MAΛ(k)NA (11)

where MA ∈ R
2n×a and NA ∈ R

b×2n are two known

matrices, and Λ(k) ∈ R
a×b is an unknown time-varying

matrix, which satisfies

Λ(k)TΛ(k) ≤ I, ∀k. (12)

Note that ΔL(k) is admissible if both (11) and (12) are

satisfied.

Remark 1: It is noted that the structure of uncertain term

in (11) has been widely using for research of robust control,

and has been applied to resolve robust observer problems for

both discrete-time systems and continuous-time systems. In

many practical systems, it can be viewed as an appropriate

presentation [11].

III. DESIGN DOB FOR ROBOT SYSTEM WITH

UNCERTAINTY

In this section, the DOB with saturation is designed to

compensate for the effect of f(k) with uncertainty, disturbance

and discretization error for robot manipulators.

The unknown nonlinear function vector f(k) defined in (9)

and used in (10) can further be assumed by the following

exosystem:

w(k + 1) = Ww(k)

f(k) = Uw(k)
(13)

where w(k) ∈ R
n is the observer design vector for f(k), and

W ∈ R
n×n and U ∈ R

n×n are auxiliary matrices.

To solve uncertain effect for robot control, the saturation

control method is applied, and the following assumption is

considered as

Assumption 2: Assume sat(φ(k)) is a saturated nonlinear

function, which is defined as

sat(φ(k)) = [sat(φ1(k)), · · · , sat(φn(k))]
T , i = 1, · · · , n

(14)

In this paper, we design the following bounded controller as

τs(k) = sat(K1ξ(k) +K2f̂(k)) (15)

where K1 ∈ R
n×2n,K2 ∈ R

n×n are gain matrices, and f̂(k)
is the estimation of f(k).

Furthermore, the system control input term τ(k) in (10) is

designed as

τ(k) = H+
0 (H0τs(k) +H0G0 −H0r(k)) (16)

where H+
0 is the left inverse of H0 satisfying H+

0 H0 = In×n

according to Assumption 1.

For designing the DOB with saturation, we use the following

these Lemmas and Definition as

Lemma 1: [13] Assume that D = {D1, D2, · · · , D2n} is

the set of n × n diagonal matrices with diagonal elements

being either 1 or 0, if Dl ∈ D, we obtain that D−
l = In −Dl

with l = 1, 2, · · · , 2n.

Lemma 2: [14] Assume that control input τs(k) ∈ R
n and

v(k) = [v1, · · · , vn]T ∈ R
n, if |vi| ≤ τimax, the saturated

input sat(τs(k)) can be represented as

sat(τs(k)) =
2n∑
l=1

βl

(
Dlτs(k) +D−

l v(k)
)

where i = 1, · · · , n, 0 < βl < 1,
∑2n

l=1 βi = 1.

Definition 1: [12] The control input τs(k) can be saturated

in a τimax linear region, which is defined as

℘(V1, V2) = (ξ(k), f̂(k)) : ||Vi,1ξ(k) + Vi,2f̂(k)|| ≤ τimax

(17)

where ℘(V1, V2) ∈ R
3n, V1 = [V1,1, · · · , V2n,1]

T ∈ R
n×2n

with Vi,1 ∈ R
1×2n, V2 = [V1,2, · · · , Vn,2]

T ∈ R
n×n with

Vi,2 ∈ R
1×n, and i = 1, 2, · · ·n.

According to Lemmas 1 and 2, and Definition 1, we can

assume vi = Vi,1ξ(k)+Vi,2f̂(k), which satisfies |vi| ≤ τimax,

then, the control input τ(k) in (16) can be saturated in τimax

and be represented as

τs(k) = sat(K1ξ(k) +K2f̂(k))

=

2n∑
l=1

βlDl

(
K1ξ(k) +K2f̂(k)

)

+

2n∑
l=1

βlD
−
l

(
V1ξ(k) + V2f̂(k)

)
(18)

In equation (18), the estimation value f̂(k) can be obtained

by designing the following observer⎧⎪⎨
⎪⎩

ŵ(k) = g(k)−K3ξ(k)

g(k + 1) = (W +K3F0U) ŵ(k) +K3(L0ξ(k) +H0τ(k)

−H0G0 +H0r(k))
(19)

where w(k) is defined in (13), g(k) ∈ R
n is an auxiliary

vector in the observer, K3 ∈ R
n×2n is design as feedback

gain matrix.

Considering (13), (10) and (19), the estimation error f̃(k) =
f̂(k)− f(k) can be obtained as

w̃(k + 1) = ŵ(k + 1)− w(k + 1)

= (W +K3F0U)w̃(k)−K3ΔL(k)ξ(k)
(20)



Substituting (18) and (16) into (10), the closed loop system is

formulated by

ξ(k+1) =

2n∑
l=1

βl

{
(L0 +ΔL(k) +R)ξ(k) + L̄w̃(k) + H̄w(k)

}
(21)

where R = H0(DlK1 +D−
l V1) ∈ R

2n×2n, L̄ = H0(DlK2 +
D−

l V2)U and H̄ = (H0DlK2 +H0D
−
l V2 + F0)U ∈ R

2n×n.

The system (21) and the uncertain function error (20) can be

combined and formulated as

ξ̄(k + 1) =

2n∑
l=1

βl

{
As(k)ξ̄(k) +Hsw(k)

}
(22)

with

ξ̄(k) =

[
ξ(k)
w̃(k)

]
, Hs =

[
H̄
0

]

As(k) =

[
L0 +ΔL(k) +R L̄

−K3ΔL(k) W +K3F0U

] (23)

The observer (19) is designed to compensate for the unknown

uncertain function f(k). Given all initial values, the system

state ξ(k + 1) and unknown function estimation error w̃(k)
can be computed and analysed based on (22).

Stability of robot system and control performance can be

analyzed by the following proof.

IV. CONTROLLER REALIZATION AND STABLE ANALYSING

The design parameter matrices K1,K2,K3, V1, V2 of the

observer are designed to guarantee the closed control system

(22) asymptotically stable. These parameters are able to be

obtained by applying the following Schur complement theorem

and stability method as
Lemma 3: [19] Given the symmetric constant matrices

S11, S22 and constant matrix S12, then, S22 < 0 and S11 −
S12S

−1
22 ST

12 < 0 hold if and only if[
S11 S12

ST
12 S22

]
< 0 (24)

Lemma 4: [18] Assume Y,A and B are real matrices

with approximate dimensions, Y is a symmetric matrix, and

XTX ≤ I, then Y+AXB+BTXTAT < 0 holds if and only

if there exists a scalar α > 0 such that

Y + αAAT + α−1BTB < 0 (25)

Definite the Lyapunov function as

V (k) = ξ̄T (k)P ξ̄(k) (26)

where P ∈ R
3n×3n is a symmetric positive defined matrix,

which can guarantee the closed system is stable. Then, we

assume that the matrix P exists, and is defined as

P (k) =

[
P1 0
0 P2

]
=

[
Q−1

1 0
0 P2

]
> 0 (27)

with P1 = Q−1
1 ∈ R

2n×2n > 0 and P2 ∈ R
n×n > 0.

Then, ΔV (k) = V (k + 1)− V (k) is further analyzed that

ΔV (k) ≤ max
l∈[1,2n]

[
ξ̄(k)
w(k)

]T
S1

[
ξ̄(k)
w(k)

]
(28)

where S1 is a matrix, which represents as

S1 =

[
AT

s PAs − P AT
s PHs

HT
s PAs HT

s PHs

]
(29)

It is obvious that ΔV < 0 in (28) holds if S1 < 0.

Apply the Schur complement theory in (29), a new matrix

S2 < 0 can be obtained from matrix S1 < 0, and there has

S2 < 0 ⇔ S1 < 0, such that the matrix S2 can be derived as

S2 =

⎡
⎣ −P ∗ ∗

0 0 ∗
As Hs −P−1

⎤
⎦ < 0 (30)

Thus, it is shown that ΔV < 0 holds if and only if S2 < 0
for positive symmetric defined matrix P .

Substituting (27), (22) and (11) into (30), we have

S3 =

⎡
⎢⎢⎢⎢⎣

−P1 ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗
0 0 0 ∗ ∗

L0 +R L̄ H̄ −P−1
1 ∗

0 Z 0 0 −P−1
2

⎤
⎥⎥⎥⎥⎦

+ EΛ(k)Υ + ΥTΛT (k)ET < 0

(31)

where Z = W +K3F0U , and matrices E,Υ are defined as

E =

⎡
⎢⎢⎢⎢⎣

0
0
0

MA

−K3MA

⎤
⎥⎥⎥⎥⎦ ΥT =

⎡
⎢⎢⎢⎢⎣

NT
A

0
0
0
0

⎤
⎥⎥⎥⎥⎦

Applying Lemmas 3 and 4, we see that the LIM (31) can be

equivalently transformed as a new matrix S4. It is shown that

the S3 < 0 in (31) holds if and only if the following new

matrix S4 < 0, such that

S4 =

⎡
⎣ π11 ∗ ∗

π21 π22 ∗
π31 π32 π33

⎤
⎦ < 0 (32)

with

π11 =

⎡
⎣ −P1 ∗ ∗

0 −P2 ∗
0 0 0

⎤
⎦ π21 =

[
L0 +R L̄ H̄

0 Z 0

]

π22 =

[ −P−1
1 ∗

0 −P−1
2

]
π31 =

[
0 0 0
NA 0 0

]

π32 =

[
MT

A −MT
AKT

3

0 0

]
π33 =

[ −α−1I ∗
0 −αI

]

where α > 0 is a given real constant.

Furthermore, we can define auxiliary matrix

Ω1 = diag
{
P−1
1 , In, In, I2n, In, Ia, Ib

}
Ω2 = diag {I2n, In, In, I2n, P2, Ia, Ib}

where subscript a and b describe column’s dimension of matrix

MA and row’s dimension of matrix NA, respectively.

Thus, a new matrix S5 = ΩT
2 (Ω

T
1 S4Ω1)Ω2 can be obtained as

S5 =

⎡
⎣ Π11 ∗ ∗

Π21 Π22 ∗
Π31 Π32 Π33

⎤
⎦ < 0 (33)



with

Π11 =

⎡
⎣ −Q1 ∗ ∗

0 −P2 ∗
0 0 0

⎤
⎦

Π21 =

[
O1 L̄ H̄
0 O2 0

]
, Π22 =

[ −Q1 ∗
0 −P2

]

Π31 =

[
0 0 0

NAQ1 0 0

]
, Π32 =

[
MT

A −MT
AXT

3

0 0

]

Π33 = π33

where O1 = L0Q1 + H0DlX1 + H0D
−
l X2, O2 = P2W +

X3F0U .

It is shown that S5 < 0 ⇔ S4 < 0, such that we have

ΔV (k) < 0 if and only if S5 < 0, which implies that

q(k) → qd(k) and w̃(k) → 0 as k → ∞. Thus, the following

Theorem can be described as

Theorem 1: For the given parameter α > 0, giving auxiliary

matrices U,W,MA, NA, if there exists symmetric positive-

defined matrices P1 = Q−1
1 > 0, P2 > 0, and if matrices

X1, X2, X3,K1,K2,K3, V1, V2 satisfy S5 < 0, then, the

closed-loop system in (22) is asymptotically stable based on

the DOB controller, the robot system with uncertainty has

satisfied trajectory tracking performance under the following

parameter designed as K1 = X1Q
−1
1 , V1 = X2Q

−1
1 ,K3 =

P−1
2 X3.

The proof is completed.

V. SIMULATION STUDIES

To verify the trajectory tracking control performance of the

above developed robust controller with DOB, a testing exam-

ple, 2-DOF robot manipulator with uncertainty and nonlinear,

external disturbance, is put forword in this section.

A. Robot Manipulator Dynamics Model

The parameters of the robot manipulator are given as

follows [15]: the mass are m1 = m2 = 1.0kg, the length

are l1 = l2 = 0.2m, the inertia are I1 = I2 = 0.003kgm2, the

distance are lc1 = lc2 = 0.1m.

The dynamics of a robot manipulator with G(q) = [G1, G2]
T

is given as

M(q) =

[
M11 M12

M21 M22

]
, C(q, q̇) =

[
C11 C12

C21 C22

]
(34)

where

M11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2cos(q2)) + I1 + I2

M12 = M21 = m2(l
2
c2 + l1lc2cos(q2) + I2

M22 = m2l
2
c2 + I2

C11 = −m2l1lc2sin(q2)q̇2

C12 = −m2l1lc2sin(q2)(q̇1 + q̇2)

C21 = m2l1lc2sin(q2)q̇1, C22 = 0

G1 = m1lc1gcos(q1) +m2g(lc2cos(q1 + q2) + l1cos(q1))

G2 = m2lc2gcos(q1 + q2)

I1 =
1

3
m1l

2
c1, I2 =

1

3
m2l

2
c2

Then, consider the robot manipulator with uncertainty and

disturbance, the known dynamic parameters are assumed as:

L0 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , H0 = F0 =

⎡
⎢⎢⎣

0.1 0.2
0.2 −0.3
−0.1 1
1 0.1

⎤
⎥⎥⎦

G0 =

[
0.0001
0.0001

]
,MA =

⎡
⎢⎢⎣

0.1
0.2
0.3
0.4

⎤
⎥⎥⎦ , NA = [−0.1, 0.3, 0.4, 1]

The matrices of exogenous system in (13) are chosen as:

U =

[
1 0
0 1

]
,W =

[
0.001 0.0001

−0.0002 0.0003

]

The initial state values of the robot system are assumed as

q̄(0) = [0, 0, 0, 0]T , τ(0) = [0, 0]T , w(0) = [0, 0]T , g(0) =
[0, 0]T . The linear regions of control input τ(k) are chosen

as τ1max = 100 and τ2max = 60. The constant α is given as

α = 5.

Based on Theorem 1, the following parameters can be obtained

by using LMIs theory as:

K1 =

[
50 −6 −5.5 −0.5
−5 −20 −2 −1

]

K2 =

[ −5.5 −0.5
−2 −1

]

K3 =

[
0.1 0.2 0.3 0.4
−0.1 0.2 0.1 0.3

]

V1 =

[
0.0853 −0.2924 −0.0794 −0.9348
0.0355 −0.0120 −0.8200 −0.1431

]

V2 =

[
0.5 0
0 0.5

]

and the positive symmetric defined matrix Q1, P2 are derived

as:

Q1 = P−1
1 = 1.0e+ 08×⎡

⎢⎢⎣
1.4221 0.1276 0.2542 0.0023
0.1276 1.1777 −0.4382 −0.1653
0.2542 −0.4382 1.3370 −0.3779
0.0023 −0.1653 −0.3779 0.2010

⎤
⎥⎥⎦

P2 = 1.0e+ 03×
[

3.3441 −5.6150
−5.5181 9.2712

]

B. Test Results

The external force torque τd and the desired trajectory qd
are taken as below

τd =

[
0.05cos(0.01t)cos(q1)
0.05cos(0.01t)cos(q2)

]

qd =

[
1.5 + 0.5(sin(0.3t) + sin(0.2t))
1.5 + 0.5(cos(0.4t) + sin(0.3t))

]

We construct the observer to compensate for uncertainty and

disturbance of robotic manipulators by saturating system state

ξ̄(k) and estimation of uncertain function f̂(k). The following

simulation results are presented with the controller sampling
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Fig. 1. Trajectory tracking curves q1 and q2

time(second)
0 5 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 in
pu

t τ
1

-100

-50

0

50

100

time(second)
0 5 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 in
pu

t τ
2

-50

0

50

100

Fig. 2. Control input curves τ1 and τ2

time(second)
0 5 10 15 20 25 30 35 40 45 50

T
ra

ck
in

g 
er

ro
r 

of
 q

d1

-2

-1.5

-1

-0.5

0

0.5 Tracking error e
2

time(second)
0 5 10 15 20 25 30 35 40 45 50

T
ra

ck
in

g 
er

ro
r 

of
 q

d2

-3

-2

-1

0

1
Tracking error e

1

Fig. 3. Position tracking error curves

interval T = 0.01s in a very short period of time.

To show the effectiveness, using above design parameters

K1,K2,K3, V1, V2, the trajectory tracking control results of

robot manipulator with uncertainty are shown in Figs.1-3.

Fig.1 shows trajectory tracking curves of q1 joint position and

q2 joint position, Fig.2 shows control input signals τ1 and

τ2, and Fig.3 shows position tracking error of q1 and q2 for

desired trajectory qd1 and qd2. Analyzing all above simulation

results, the joints have an initial errors, which are away from

the desired trajectories for less than 0.02s, but the proposed

control regulates the system trajectory quickly to achieve the

desired trajectory and guarantees overall control stability. The

whole control process is smooth, stable and accurate.

VI. CONCLUSION

In this paper, a novel controller with DOB has been studied

for discrete-time nonlinear MIMO robot manipulators with un-

certainty and disturbance. The discrete-time DOB is proposed

based on saturation for all system states and all uncertain

signs including disturbance to compensate for these uncertain

influences, the method not only is able to guarantee the system

is Lyapunov stability, but also is able to achieve the satisfied

trajectory tracking performance.
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