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 Abstract 

The structures of muscle thin filaments reconstituted using skeletal actin and cardiac 

troponin and tropomyosin have been determined with and without bound Ca2+ using electron 

microscopy and reference-free single particle analysis.     The resulting density maps have 

been fitted with atomic models of actin, tropomyosin and troponin showing that:  (i) the 

polarity of the troponin complex is consistent with our 2009 findings, with large shape 

changes in troponin between the two states;   (ii) without Ca2+ the tropomyosin pseudo-

repeats all lie at almost equivalent positions in the ‘blocked’ position on actin (over 

subdomains 1 and 2);   (iii) in the active state the tropomyosin pseudo-repeats are all 

displaced towards subdomains 3 and 4 of actin, but the extent of displacement varies within 

the regulatory unit depending upon the axial location of the pseudo-repeats with respect to 

troponin.  Individual pseudo-repeats with Ca2+ bound to troponin can be assigned  either to 

the ‘closed’ state, a partly activated conformation, or the ‘M-state’, a fully activated 

conformation which has previously been thought to occur only when myosin heads bind.    

These results lead to a modified view of the steric blocking model of thin filament regulation 

in which cooperative activation is governed by troponin-mediated local interactions of the 

pseudo-repeats of tropomyosin with actin. 
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Contraction in the muscles of vertebrates and some invertebrates is regulated through 

the thin filaments which contain the proteins actin, tropomyosin and troponin (Brown and 

Cohen, 2005).    Troponin and tropomyosin control the interaction between myosin and actin 

so that contraction only takes place when the intracellular Ca2+ concentration is elevated.     

Elucidating the roles played by troponin and tropomyosin in this mechanism is essential for a 

full understanding of thin filament regulation and is of medical interest since mutations in 

these proteins can lead to inherited cardiomyopathies and other diseases (Tardiff, 2011).  

In the thin filament, G-actin monomers polymerize to form the F-actin filament, a  

helical polymer of actin subunits that appears as two slowly twisting strands.  Tropomyosin 

molecules are dimeric α-helical coiled-coils ~400 Å in length (Li et al., 2011). linked end-to-

end to form two helical strands following the long period helices of F-actin in the thin 

filament.     Each tropomyosin molecule spans seven actin subunits and interacts with one 

troponin complex. The structure of F-actin in complex with tropomyosin has been determined 

using cryo electron microscopy with actin at a resolution of 3.7 Å and tropomyosin at a 

resolution of 6.7 Å (von der Ecken et al., 2014). Comparison with an 8Å structure of actin-

tropomyosin decorated with myosin heads by the same group (Behrmann et al., 2012) has 

shown a myosin induced transition of tropomyosin: but for a full understanding of regulation 

the regulatory protein troponin must also be included.    

Troponin contains three subunits: TnC the Ca2+ binding switch, TnT which binds to 

tropomyosin and TnI which has an inhibitory role.  It comprises an extended tail formed by 

the N-terminal region of TnT (TnT1; residues 1-158) and a globular domain formed by the 

rest of TnT (TnT2. together with TnI and TnC. Partial crystal structures exist for the core 

domain of troponin (TnC, part of TnI and TnT; (Takeda et al., 2003:Vinogradova et al., 2005 

)). Together, these individual structures define the overall structure of the thin filament 

provided that their relative geometries and configurations are known.   A theoretical model of 
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the full thin filament has been generated from this information with structure prediction tools 

used for the missing regions (Manning et al., 2011). 

X-ray diffraction experiments suggest that muscle activation involves a movement of 

tropomyosin on actin, leading to the steric blocking model of regulation (Haselgrove and 

Huxley, 1973; Huxley, 1972; Parry and Squire, 1973).   Here  tropomyosin blocks the myosin 

binding sites on actin in relaxed muscle and Ca2+ binding to troponin shifts tropomyosin 

sideways exposing these sites so that myosin can bind.    Tropomyosin has been resolved in 

different positions in electron microscope (EM) reconstructions of thin filaments in the on 

and off states (Lehman et al., 1994; Lehman et al., 1995).  These all used helical 

reconstruction procedures in which every actin subunit is treated as being identical and the 

density of tropomyosin and troponin is averaged onto every actin subunit (Squire and Morris, 

1998).  Single particle procedures that do not assume helical symmetry are needed to 

properly recover the structure of troponin and the different regions of tropomyosin from EM 

data (Paul et al., 2004; Paul et al., 2010; Paul et al., 2009). 

Tropomyosin movement across the surface of actin revealing the myosin binding sites 

have been refined into a three state model (Lehrer and Geeves, 1998; McKillop and Geeves, 

1993) in which, in the absence of Ca2+, tropomyosin lies over the inner edge of the outer actin 

domains (1 and 2) blocking the myosin binding sites (Blocked or B state).   The binding of 

Ca2+ causes tropomyosin to move across to the outer edge of the inner actin domains (3 and 

4)  allowing restricted myosin binding (Closed or C state); the binding sites are not yet fully 

available.   Subsequent myosin binding causes further movement of tropomyosin, exposing 

all the binding sites and leading to full activity (Myosin or M-state).     Kinetic data suggested 

that tropomyosin is in equilibrium between the three states (Lehrer and Geeves, 1998; 

McKillop and Geeves, 1993).  Structurally, three regulatory states and three positions of 
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tropomyosin were recorded using helical reconstruction of EM data (Lehman et al., 1994; 

Vibert et al., 1997; Xu et al., 1999).   

The data analysed here have previously been used in a different single particle 

approach (Pirani et al., 2005) where various references calculated from partial crystal 

structures of troponin were used to align the EM images. This resulted in the recovery of a 

troponin core domain which was substantially similar to the original reference with very little 

movement between the Ca2+-treated and Ca2+-free states.    
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Three-dimensional analysis of relaxed and active thin filaments:   Two sets of EM 

images of negatively stained reconstituted thin filaments were analysed. The first set of 408 

filaments had been treated with EGTA to induce the Ca2+-free conformation and a second set 

had 138 Ca2+-treated filaments.    The filaments were prepared and imaged by Pirani et al. 

(Pirani et al., 2005) and subsequently processed for the work described here using single 

particle-based procedures (Paul et al., 2010; Squire et al., 2017) yielding final structures for 

the Ca2+-free and Ca2+-treated thin filaments (Fig. 1).  Resolution estimates using Fourier 

shell correlation (FSC) (Bottcher et al., 1997) were 28.4 Å for the Ca2+-free and 27.7 Å for 

the Ca2+-treated structures.   The two maps have been deposited in the EMDB with accession 

numbers 3578 and 3576 respectively). We can readily identify the actin subunit cleft in our 

maps which becomes visible between 25Å & 30Å consistent with these values.    In both 

Ca2+- treated and Ca2+-free states globular density attributable to troponin is well recovered.   

In the former, troponin has an open conformation with extensions or arms of density 

emerging from the central core region (Fig. 1 A and B).   In the latter (Fig. 1 C and D) 

troponin is more compact and more closely associated with actin.   In each case troponin 

density labels the two strands of the actin filament with a stagger of 27.5 ±0.5 Å, the axial 

rise between actin subunits along the F-actin genetic helix and matches our previous 

measurements (Paul et al., 2009).   This similar arrangement in reconstituted thin filaments 

and in native systems  is thus unlikely to be solely a consequence of the assembly process in 

the sarcomere (as considered previously (Paul et al., 2009)) and may arise from cooperative 

binding of the troponin-tropomyosin complexes across the two long-pitched strands of the 

actin filament.   
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Docking of actin and troponin/ tropomyosin into the observed density:  To interpret the 

maps at a molecular level an F-actin atomic model based on the 6.6 Å cryo-EM structure 

(Fujii et al., 2010) was docked into the 3D density (Fig. 2 A and D).   The model coordinates 

have been deposited: PDB:5MVA corresponds to the high Ca2+ map EMDB-3576 and 

PDB:5MVY corresponds to the low Ca2+ EMDB-3578.    Model F-actin densities were 

calculated from the docked actin backbone and subtracted from the reconstructions to 

produce difference density maps for the tropomyosin/troponin complexes in the two states 

(Fig. 2 B, E).  These reveal extended rod-like densities attributed to tropomyosin, together 

with more globular troponin densities.   The troponin/tropomyosin complex was further 

dissected by docking atomic models for the tropomyosin strands and subtracting the model 

density of the actin/tropomyosin backbones to derive the structure of the troponin molecules 

alone (Fig. 2 C and F).    

The major domain of the troponin complex  in the difference analysis changes quite 

dramatically from an L-shaped density in the active state (Fig. 3 A) to a bi-lobed mass in the 

Ca2+ -free state (Fig. 3 E), in each case retaining rather similar thin extensions closely 

associated with tropomyosin which run towards the pointed (M-line) end of the actin 

filament.  These are likely to arise from the elongated sub-domain of troponin-T (troponin T1) 

which binds to tropomyosin; this position of TnT1 is in agreement with our previous 

observations (Paul et al. 2009).   The density attributed to TnT1 spans two actin subunits, a 

length of ~110Å.  We have not recovered the expected full length of 180 Å (Flicker et al., 

1982).  

A detailed interpretation of the troponin domains in the two states was made by 

quantitative docking of the crystal structures of the troponin core into the troponin densities.     

All of the crystal structures of the troponin complex currently available are incomplete.    The 

most comprehensive structure comprises ~60% of the total representing the troponin core 
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(Takeda et al., 2003; Vinogradova et al., 2005).    The rest of the troponin complex has been 

predicted in an atomic model of the whole troponin complex (Manning et al., 2011).    To 

establish which model and orientation gave the best fit to our protein density we docked a set 

of  six models for the Ca2+ -treated state and four for the Ca2+-free state. For both the Ca2+-

treated and Ca2+-free thin filament reconstructions the best agreement was observed with a 

composite model based on the crystal structures of the core domain of skeletal troponin in the 

relevant Ca2+ binding state (1YTZ and 1YVO; (Vinogradova et al., 2005)) in which the 

missing regions of the full troponin complex were built in using the predicted model 

(Manning et al., 2011).    The composite models are oriented so that the base of the molecule 

formed from the two lobes of TnC points towards the barbed end of the thin filament, while 

the apex formed from the Tn I α-helices is oriented towards  the pointed or M-band end of the 

actin filament (Fig. 3 B-D and E-H). The crystal structures 1YTZ and 1YV0 on their own 

returned the next best fit in a similar orientation. None of the trial models accounted for all 

the density recovered in our EM maps in particular around the N-lobe of TnC. In each case 

the best fitting orientation found for the troponin molecules on the thin filament is similar to 

that previously observed by us (Paul et al., 2009). It is approximately opposite to that 

described by the Lehman group (Pirani et al., 2005; Yang et al., 2014) and in situ protein 

domain orientation experiments (Sevrieva et al., 2014).  Interatomic distances in the docked 

models of the Ca2+-free and Ca2+ -treated states  can be compared with published FRET 

distance measurements for residues in troponin I and actin (Kobayashi et al., 2001; 

Kobayashi et al., 2000; Li et al., 2001). The overall measurements agree with the reported 

FRET measurements when taking into account the probe size. The movement that we see 

between the two states is larger (13 Å) than the reported (6-8Å) for the more mobile region of 

TnI117 whereas TnI96 which sits in the IT coiled-coil arm moves very little (3.3Å) which 

agrees with the reported values (3.6Å).  
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Movement of tropomyosin:    Docking of tropomyosin strands into the difference maps of 

the thin filament highlighted the significant difference in their position relative to actin that is 

associated with the transition from the Ca2+-free to the Ca2+-treated state.   Tropomyosin 

moves across each actin subunit from the inner edge of the outer domain of actin in the Ca2+-

free state (Fig. 4A) to the outer aspect of the inner domain in the Ca2+-treated state (Fig. 4 B).  

This general movement is similar to that previously described from helical thin filament 

reconstructions  (Lehman et al., 1995; Vibert et al., 1997; Xu et al., 1999), and forms the 

basis for current understanding of the steric mechanism of regulation of the thin filament.   

However, the single particle approach used in the current study yields independent structures 

for each actin subunit and its associated tropomyosin pseudo-repeat and has revealed marked 

differences in the positions of these pseudo-repeats on different actin subunits in the Ca2+ -

treated state.   This prompted us to study the exact position of tropomyosin with respect to 

each actin subunit for both the Ca2+ -treated and Ca2+-free states.  

The exact location and movement of tropomyosin was investigated through docking 

experiments using an atomic model of tropomyosin (Orzechowski et al., 2014) in a three step 

procedure.   The best fit for the entire length of the reconstruction was calculated first.   This 

‘full length’ fit was then refined to allow more localised fitting in which each subunit along a 

strand was considered in turn and the best position was found for the segment of tropomyosin 

spanning the chosen actin subunit as well as the subunits on either side along the strand (i.e. a 

run of three actin subunits). The analysis focused on the central region of our reconstruction, 

a length comprising fourteen actin subunits, two strands of tropomyosin and two troponin 

complexes, corresponding to the functional unit of the system (Fig. 4 A and B).    To fit the 

position of tropomyosin correctly at the ends of the functional unit extra actin subunits above 

and below were also considered. Finally molecular dynamics flexible fitting software ‘mdff’ 
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(Trabuco et al., 2008) was used to check and refine the manual fit and URO results. The 

tropomyosin strands in the Ca2+-free state ( Fig. 4 A) were found to lie in an almost identical 

position with respect to their neighbouring actin subunits, showing very little variation in 

radius or azimuth and being located close to the inner edge of the actin outer subdomains (1 

and 2).  This position has previously been termed the blocked position, since the majority of 

myosin binding sites are obscured and access to the strong binding sites of myosin is 

completely blocked (Lehman et al., 1995).   This differs from a previous single particle-based 

analysis in which it was proposed that in the Ca2+ -free state of the thin filament the path of 

the tropomyosin strands is deflected by troponin (Murakami et al., 2005).  

In contrast to the rather similar tropomyosin positions for each regulatory unit in the 

Ca2+ free state, in the Ca2+-treated state, the position of tropomyosin relative to actin varies 

systematically along the thin filament (Fig. 4 B).   The individual positions of the 

tropomyosin pseudo-repeats can be divided broadly into two groups identified by their 

adjacent actin subunits.   To aid identification, the actin subunits are labelled a-g in Fig 4. 

Subunits c and d are adjacent to the troponin complex, while subunits a and b are located 

towards the barbed end of thin filament and subunits e, f and g are located towards the 

pointed end.    Tropomyosin strands adjacent to actin subunits d, e, f and g show the least 

displacement compared to the Ca2+-free state, corresponding to a mean rotation around the 

thin filament axis of 18º.  This places these tropomyosin repeats over the outer aspect of the 

inner subdomains (3 and 4) of the actin subunits (Fig. 4 B) and corresponds quite closely to 

the conformation previously described for the Ca2+-treated state of the thin filament which 

has been termed the Closed or C-state of tropomyosin (Lehman et al., 1995; Vibert et al., 

1997; Xu et al., 1999).  In comparison, tropomyosin repeats adjacent to actin subunits a, b 

and c show a significantly larger displacement compared to the Ca2+ -free state with a mean 

rotation of 28º.    Here the tropomyosin strands are located over the inner edge of the inner 
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domains of the actin subunits (Fig. 4 B) so that the myosin binding sites are now fully 

uncovered.   This conformation is close to what has been described as the “Myosin or M 

state” and has previously been associated with conditions in which the thin filament is fully 

or partially decorated with myosin heads (Behrmann et al., 2012).   It has not been described 

previously as present in an undecorated filament.  

Most previous thin filament structural analysis used either helical reconstruction 

techniques where tropomyosin and troponin density is averaged over each of the actin 

subunits (Lehman et al., 1995; Vibert et al., 1997; Xu et al., 1999) or a non-helical referenced 

based single particle-based analysis in which an initial model of the thin filament is used as 

the starting point for three-dimensional analysis (Pirani et al., 2005; Pirani et al., 2006; Yang 

et al., 2014). The reference-free approach used in the current analysis avoids potential 

reference bias and yields a significantly different and more complete density distribution for 

troponin than in the reference-based analysis (Pirani et al., 2005), as well as identifying 

differential tropomyosin conformations in distinct pseudo-repeats of the Ca2+-treated thin 

filament.  

Docking of crystal structures of the troponin core complex allowed us to confirm the 

polarity of troponin with TnT1 located towards the pointed end of the filament. Two regions 

of additional density within the thin filament reconstructions, which are not present in 

available crystal structures (Takeda et al., 2003; Vinogradova et al., 2005), were identified. 

These regions can be assigned to TnT1 and the C terminus of TnI.  Both of these regions are 

known to form important interfaces with actin and tropomyosin (Tripet et al., 1997).   TnT1, 

the N terminal of TnT, contains a major tropomyosin binding domain (residues 114 to 138) 

and is positioned adjacent to tropomyosin in our maps, thus confirming the polarity of 

troponin.  At elevated Ca2+ concentration TnT1 is docked so that it is angled across the outer 

surface of the tropomyosin coiled-coil (Fig 2C, 3B-D), while at low Ca2+ it appears more 
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closely integrated with tropomyosin, running parallel to the coiled-coil where it may 

contribute to the positioning of tropomyosin in the blocked state (Fig 2F., 3F-H).   At low 

Ca2+ concentrations the C terminus of TnI, including residues 176-184, an area homologous 

with the second actin-tropomyosin binding site, wraps across tropomyosin and appears to 

interact with the adjacent actin subunit.   Prior to activation, the troponin complex appears to 

be held in a compact state with its interactions keeping tropomyosin in the blocked position.  

We can hypothesise that as Ca2+  binds to the N-terminal lobe of TnC, the central helix 

linking the two TnC lobes becomes ordered and the tropomyosin strand is effectively pushed 

across the face of the actin subunit (from the outer domain to the inner domain).  The second 

actin binding site of TnI is thereby released and the C-terminus of TnI recoils away from 

actin.     

Our observations suggest that the changes in the troponin complex associated with 

Ca2+ binding lead to differential movements of the tropomyosin strands depending upon their 

precise location with respect to the troponin complex.    In addition the seven repeats within 

the tropomyosin molecule are themselves only pseudo-repeats which may cause significant 

local differences in their actin-binding properties.    The resulting positions of the 

tropomyosin strands at elevated Ca2+ range from the closed state for the repeats adjacent to 

actin subunits d, e, f and g on the pointed side of the troponin complex, to the apparently fully 

activated M-state for the repeats adjacent to actin subunits a, b and c on the barbed side of the 

troponin complex (Figure 5).   Although the tropomyosin strands adjacent to actin subunit c 

where the troponin core is located appear to correspond to the fully activated M-state, the 

troponin complex itself can be seen to overlap much of the myosin binding surface of actin 

suggesting that these subunits would be effectively closed or blocked.   The coexistence of 

structurally defined closed and M-states in the Ca2+ -treated thin filament has to our 
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knowledge not previously been suggested and has significant implications for the mechanism 

of thin filament regulation 

 

A structural basis for regulation: The mechanism by which the thin filament is 

currently thought to be regulated involves three states which differ in the position of 

tropomyosin: the blocked state associated with the Ca2+-free conformation, the closed state 

associated with the Ca2+-bound conformation and the fully active M-state which is induced 

by myosin binding (Lehman et al., 1995; McKillop and Geeves, 1993; Xu et al., 1999). It is 

assumed in this type of mechanism that individual actin subunits within a regulatory unit are 

in equivalent states, with dynamic variations in conformation of the whole regulatory unit 

(Pirani et al., 2005). Here we suggest, that the Ca2+ -treated state of the thin filament is 

characterised by the coexistence of actin subunits with closed and M-state tropomyosin 

conformations in a distribution governed by their spatial relationship to the troponin complex 

(Figure 5). The coexistence of closed and M-state tropomyosin conformations suggests a  

mechanism for the cooperative transition from the closed to the M state involving the initial 

binding of myosin to specific target actin subunits (such as a and b), then inducing activation 

of other parts of the same regulatory unit.   Strong myosin binding to the initial target 

subunits may favour transition to the M-state in adjacent actin subunits and thereby the 

progressive transition of the thin filament into a fully activated state.  
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Figure Legends 

Figure 1:  Comparison of data from Ca
2+

-free and Ca
2+

-treated filaments. 

(A and B) Data from Ca2+ -treated filaments, (C and D) data from Ca2+-free filaments.  (A 

and C) The five columns represent different viewing angles of the filaments described by the 

Euler angles α = 0°, β = 90° throughout and then with the angles γ shown below each figure.   

Rows Ai and Ci are class averages, Aii and Cii are reprojections and Aiii and Ciii are surface 

views of the 3D reconstruction displayed at the corresponding angles. The cross-correlation 

coefficient between the class averages and the corresponding reprojections are given at the 

top of each column for the Ca2+ -treated state (A) and the corresponding cross-correlations 

between the inverted class average and the reprojection are shown underneath in brackets.    

Similar cross-correlations are shown in C for the Ca2+-free state (C).    (B and D) The surface 

rendered 3D maps of the Ca2+ -treated filament (B) and the Ca2+ -free filament (D).     Two 

viewing angles of the reconstructions are shown with a 90˚ rotation about the filament axis 

between the two. 

 

Figure 2: Difference density analysis 

(A-C) Data from Ca2+ -treated filaments, (D-F) data from Ca2+ -free filaments.  (A and D) 

Wire mesh representation of the single particle based reconstructions of the thin filament in 

the two states.    An atomic F-actin model is docked into the reconstruction and each subunit 

is colour coded.    The barbed end (Z-band end) of the actin filament is at the bottom of the 

figure. (B and E) Difference density maps calculated by subtracting the docked F- actin 

model (grey) from the single particle reconstructions.  This leaves the density attributable to 

the regulatory proteins troponin and tropomyosin (both orange).    (C and F) Difference 

density maps calculated by subtracting docked F-actin (grey) and tropomyosin (orange) 
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models from the single particle reconstructions leaving density attributable only to troponin 

(blue). 

 

Figure 3: Fitting the troponin density.   

(A-D) Data from Ca2+ -treated filaments, (E-H) data from Ca2+ -free filaments. (A and E) The 

density attributable to troponin is shown (blue) in the Ca2+ -treated state (A) and Ca2+ -free 

state (E).   (B, C and F, G) Space filling (B and F) and ribbon diagrams (C  and G) of models 

of the troponin complex based on the crystal structures of the core domains: 1YVO for the 

Ca2+ -free state and 1YVTZ for the Ca2+ -treated state (Vinogradova et al., 2005) together 

with the atomistic model of the whole complex (Manning et al., 2011) that returned the best 

fit docked into the electron density envelopes produced by the difference analysis. The three 

troponin components are displayed in different colours:  TnC, blue; TnT green; TnI pink.    

(C and G) The location of the C-terminal region of TnI is highlighted by a star, TnT1 is 

indicated by a triangle and the ordered central helix of TnC is arrowed in C.    (D and H)      

Maps of the Ca2+ -treated (D) and Ca2+ -free (H) filaments with all the components docked 

into the density (tropomyosin shown in orange). 

 

Figure 4:Figure 4:Figure 4:Figure 4:    Visualisation of the tropomyosin domain movements and myosin binding.Visualisation of the tropomyosin domain movements and myosin binding.Visualisation of the tropomyosin domain movements and myosin binding.Visualisation of the tropomyosin domain movements and myosin binding.    

(A) Structures of the Ca2+ -free state and (B) structures of the Ca2+ -treated thin filament 

assembly.    (A and B) show the central region of the Ca2+ -free (A) and the Ca2+ -treated (B) 

reconstructions over a length of 14 actin subunits, two strands of tropomyosin (orange) and 

two troponin complexes. The core domains of the COMPHI model are in magenta.     

Subunits a to g of one strand of actin are colour coded and the second strand is grey.  In the 

Ca2+-free state (A) the position of tropomyosin is the same on every subunit and lies in the B 

or blocked position where it would inhibit myosin binding.  The position of tropomyosin is 
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different on different subunits of the actin filament in the Ca2+ -treated state (B), where the 

average positions are illustrated for actin subunits d to g (closed state) and a to c (M-state).   

A & B (right inserts) show face on views of the actin subunits, with weak (blue) and strong 

(red) actin binding sites highlighted for the three distinct positions of tropomyosin.   Subunits 

a, b and c show tropomyosin in the ‘‘M or Myosin state’’ , subunits d, e, f, g show 

tropomyosin in a position more closely aligned to the ‘‘C or closed’’ state.    In the Ca2+ -

treated thin filament a myosin S1 head (green) can access all weak and potentially some 

strong binding sites on subunits e, f and g  and presumably all available binding sites on 

subunits a and b .    An equivalent myosin head would be blocked on every subunit in the 

Ca2+ -free state.  

 

Figure 5. Figure 5. Figure 5. Figure 5.     A novel mechanism of regulation.A novel mechanism of regulation.A novel mechanism of regulation.A novel mechanism of regulation.            Schematic diagrams of the thin filament 

assembly for simplicity shown as a linear array (i.e. not helical).  Protein components colour 

coded: (yellow), tropomyosin (blue) and troponin (TnC, speckled blue; TnI, red; TnT green).   

When the thin filament changes from the Ca
2+

 free state (aaaa) to the Ca
2+

 bound state (bbbb) the 

tropomyosin strands on actins g, a and b move further than those on actins c-f.     Actins g, a 

and b may be exposed enough for some myosin heads to bind (dashed outline).     Bound 

heads going over to strong states may then activate the whole filament (cccc).    The body of 

troponin may move out of the way (dashed arrows) to permit binding of further heads.     (aaaa 

and bbbb)  also illustrate a potential mechanism whereby the distal arm of TnT1 acting on the 

tropomyosin overlap region may swing to expose the binding sites on actins g, a and b when 

TnC binds Ca 
2+

.  
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