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Objectives: Understanding spoken language is an audiovisual event that depends critically on the ability
to discriminate and identify phonemes yet we have little evidence about the role of early auditory
experience and visual speech on the development of these fundamental perceptual skills. Objectives of
this research were to determine 1) how visual speech influences phoneme discrimination and identi-
fication; 2) whether visual speech influences these two processes in a like manner, such that discrimi-
nation predicts identification; and 3) how the degree of hearing loss affects this relationship. Such
evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss
on language development.

Methods: Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls,
M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were
consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory
speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz)
coupled to non-intact onset/rhyme in the auditory track (/—B/aa or/—B/az). The items started with an
easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face)
vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs
(e.g., Baa:/—B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as
intact and would therefore generate more same—as opposed to different—responses in the audiovisual
than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/
—BJ/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and
would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory
mode.

Results: Performance in the audiovisual mode showed more same responses for the intact vs. non-intact
different pairs (e.g., Baa:/—B/aa) and more intact onset responses for nonword repetition (Baz for/—B/az).
Thus visual speech altered both discrimination and identification in the CHL—to a large extent for the/B/
onsets but only minimally for the/G/onsets. The CHL identified the stimuli similarly to the CNH but did
not discriminate the stimuli similarly. A bias-free measure of the children's discrimination skills (i.e.,
d’ analysis) revealed that the CHL had greater difficulty discriminating intact from non-intact speech in
both modes. As the degree of HL worsened, the ability to discriminate the intact vs. non-intact onsets in
the auditory mode worsened. Discrimination ability in CHL significantly predicted their identification of
the onsets—even after variation due to the other variables was controlled.

Conclusions: These results clearly established that visual speech can fill in non-intact auditory speech,
and this effect, in turn, made the non-intact onsets more difficult to discriminate from intact speech and
more likely to be perceived as intact. Such results 1) demonstrate the value of visual speech at multiple
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levels of linguistic processing and 2) support intervention programs that view visual speech as a
powerful asset for developing spoken language in CHL.
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spoken conversations—a daily challenge for children with pre-
lingual sensorineural hearing loss (CHL)—are audiovisual events
that critically depend on the ability to discriminate and identify
phonemes yet we have little evidence about the role of early
auditory experience and visual speech on the development of these
two fundamental skills underlying accurate speech perception. To
address this gap in the literature, the objectives of this research
were to determine 1) how visual speech influences phoneme
discrimination and identification, 2) whether visual speech in-
fluences these two processes in a like manner, such that discrimi-
nation predicts identification, and 3) how the degree of hearing loss
affects this relationship. A proposed link between audiovisual
speech and the development of phoneme discrimination and
identification is widely accepted, especially in CHL [1], but it is
patently understudied in CHL with mild to severe losses who are
hearing aid users with access to many of the cues of speech.
Nonetheless, the existence of such a link is supported by the studies
below. In these studies, the tasks typically required CHL and chil-
dren with normal hearing (CNH) to: 1) detect the difference, if any,
between the speech sounds of successive utterances and respond
same or different (discrimination) or 2) abstract/identify the speech
sounds of an utterance and respond by repeating the utterance or
pointing to a picture (identification). These two paradigms tap
different levels of linguistic processing [see [2]].

1.1. Effect of visual speech on phoneme discrimination

111. CNH

Visual speech improves phoneme discrimination by infants with
NH [3]. CNH also perform better for audiovisual than auditory input
for 1) feature contrast discrimination [4], 2) vowel phoneme
monitoring [5], and 3) phoneme discrimination for visually distinct
(‘ba’ vs. ‘ga’) contrasts [[6]; but see [7, 8] for exceptions]. Some data
also suggest that CNH who show greater sensitivity to visual speech
show better perceptual tuning to the phoneme contrasts of the
native language relative to non-native contrasts [9,10].

112. CHL

With regard to CHL with mild to severe losses who are hearing
aid users, the research on phoneme discrimination is meager, and
the results are mixed. One study [11]—on a task assessing repeti-
tion of phonetic feature contrasts (daa vs. baa)—reported that
performance in CHL did not differ in the audiovisual vs. auditory
modes so CHL showed no benefit of visual speech. Another study
[12], however, revealed the importance of visual speech for
phonological knowledge. This research initially assessed phoneme
discrimination in CHL (as supplementary data for a picture-word
study) in order to divide the children into two groups depending
on whether they Could or Could-Not discriminate the phonemes
above chance. The groups were tested on phonological tasks in the
audiovisual vs. auditory modes. The Could-Not-Discriminate CHL
performed significantly better in the audiovisual than auditory
mode (onset: 97% vs. 80%; rhyme: 93% vs. 77%). The Could-
Discriminate CHL performed near ceiling for both modes, and so
the effect of visual speech in these children could not be evaluated.

1.2. Effect of visual speech on phoneme or nonword identification

1.2.1. CNH

In general, the influence of visual speech on identification seems
to increase with age. Identification by children from roughly 5—11-
yrs-old does not show adult-like benefit from visual speech
whereas identification by preteens—teenagers does [9,10,13—17]. A
notable complication to this story is created, however, by other
studies reporting that visual speech significantly benefits identi-
fication—for at least some conditions—in 3—5-yr-olds [6], 8-yr-
olds [18,19], and all ages between 4 and 14-yr-olds [20].

12.2. CHL

Due to the limited number of studies of phoneme/nonword
identification in CHL with mild to severe losses who are hearing aid
users, this section also includes studies of word identification. It
should be acknowledged, however, that identifying, discriminating,
and detecting phonemes in words can reflect lexical-semantic in-
fluences [5,21,22]. In general, audiovisual speech perception in CHL
exceeds perception for either modality alone—although large in-
dividual variability characterizes these results (e.g., [23—26]. In our
series of studies—although many CHL performed at ceiling because
their losses were mild to moderate—identification of speech
stimuli was always numerically better in the audiovisual than in the
auditory mode (i.e., about 95% vs. 85%) [see, e.g., [27, 28]]. Finally, in
early development, experience with auditory speech (i.e., degree of
HL) also appears to alter recognition of the correspondences be-
tween auditory and visual speech. For example, infants/toddlers
with NH or mild-moderate HL—when hearing a word while
watching side-by-side images of two talkers, one mouthing the
heard word and one mouthing a different word—looked longer at
the matching visual speech input whereas infants/toddlers with
severe-to-profound HL did not [29].

1.3. Effect of visual speech on relation between discrimination and
identification

13.1. CNH

Current, but scant, evidence indicates that: 1) Visual speech
(salient contrasts) improved both phoneme discrimination and
identification [6], and 2) Visual speech 2a) produced adult-like
benefit at an earlier age for word discrimination than word
recognition as measured in an AX paradigm, and 2b) benefited
word recognition as measured in an AX paradigm more than word
discrimination in adults but not in young children [30]. If we sup-
plement this limited information with the auditory only evidence,
the findings are mixed [31—35]. Finally, research with infants with
NH indicates that auditory phoneme discrimination at 6-mos pre-
dicted word identification at later ages [36].

13.2. CHL

To the best of our knowledge, previous research has not
addressed the relationship between discrimination and identi-
fication—and the influence of visual speech on such—in CHL with
mild to severe losses who are hearing aid users. This is an important
gap because previous studies mostly studied CHL with severe to
profound hearing loss and/or focused on either discrimination or
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identification. An example of a particularly relevant auditory only
study—that assessed the discrimination of phonetic feature con-
trasts for pairs of stimuli (the French words “bouche—mouche”)
and the identification of each of these same stimuli presented
individually (“bouche” or “mouche”)—reports that CHL who use
cochlear implants had poorer discrimination and identification
than CNH, and that both groups showed slightly better discrimi-
nation than identification [37].

Theoretical support for the importance of studying the rela-
tionship between discrimination and identification is provided by
our early speech perception/production models, which posit that
discrimination (perceptual representational level) develops before
identification (cognitive/linguistic level) [38,39]—a proposal
consistent with the idea that discrimination and identification
reflect different levels of speech representation [2]. Support for the
importance of visual speech to this relationship is the compelling
evidence that visual speech plays a major role in helping children
learn to discriminate and identify phonemes [e.g., [40—43]]. Further
cogent evidence in this regard is the finding that—in individuals
with early-onset blindness—phonology and early expressive lan-
guage skills are delayed and/or different (e.g., [44—46]).

14. Predictions and overview

14.1. CNH and CHL

Overall, the above results in the literature generally predict: 1)
that CNH will discriminate phonemes better audiovisually than
auditory only—whereas mixed evidence indicates that CHL may or
may not, and 2) that CHL will identify words better audiovisually
than auditory only—whereas mixed evidence indicates that CNH
may or may not. With regard to our new stimuli with non-intact
auditory onsets—a primary focus of this research—these experi-
mental stimuli are detailed in the “Methods” section along with
predicted findings. As will be seen, we predict that visual speech
will restore or fill in the non-intact auditory onsets and that this
effect, in turn, will make the non-intact onsets more difficult to
discriminate from intact speech and more likely to be perceived as
intact in the audiovisual mode (see 20). With regard to the relation
between discrimination and identification, limited results in the
literature—to the extent that word discrimination and recognition
in an AX paradigm transfer to our research—suggest that CNH will
discriminate and identify phonemes better audiovisually than
auditory only. Results in the auditory study with CHL who used
cochlear implants and CNH suggest that the current participants
will discriminate speech better than they identify it [37]. Finally,
this research will, for the first time, indicate if children's audiovi-
sual phoneme discrimination predicts their audiovisual nonword
identification. The aforementioned models of the development of
speech perception/production—which propose that discrimination
develops before identification—suggest that children's proficiency
in discriminating phonemes may be related to their capability in
identifying phonemes [38,39]. And, again, we are studying non-
words in order to assess both discrimination (Baa-Baa) and iden-
tification (Baz) at the phonological level of linguistic
representation, thus eliminating or at least minimizing lexical-
semantic influences on performance [5,21,22].

2. Method
2.1. Participants

Participants were 58 CHL with early-onset sensorineural loss
(53% girls) and 58 CNH (53% girls). The CNH group—with a mean

and distribution of ages akin to that in the CHL group—was formed
from a pool of 132 typically developing children from associated

projects [see 20, 47]. Sixty-four percent of the current CNH
participated in our previous study assessing identification results
for words vs. nonwords (20). Ages (yr;mo) ranged from 4;3 to 14;9
(M =9;4,SD = 2;11) in the CHL and 4;3 to 14;5 (M = 9;4, SD = 2;10)
in the CNH. The racial distributions were 73% Whites, 22% Blacks,
and 5% Asian in CHL and 82% Whites, 5% Blacks, 10% Asian, and 3%
Multiracial in CNH, with 12% of CNH reporting Hispanic ethnicity.
All participants met the following criteria: 1) English as a native
language, 2) ability to communicate successfully aurally/orally, and
3) no diagnosed or suspected disabilities other than HI and its
accompanying speech and language problems.

2.1.1. Audiological characteristics

Hearing sensitivity in the CNH at hearing levels (HLs) of 500,
1000, and 2000 Hz (pure-tone average, PTA) [48] averaged 2.50 dB
HL (SD = 4.61, right ear) and 3.39 dB HL (SD = 5.34, left ear). The
PTAs in the CHL averaged 45.20 dB HL (better ear) and 55.95 dB HL
(poorer ear). The PTAs on the better/poorer ears respectively were
distributed as follows: < 20 dB (10%/3%), 21 to 40 dB (29%/24%), 41
to 60 dB (37%/36%), 61 to 80 dB (21%/22%), 81 to 100 dB (3%/10%),
and greater than 100 dB (0%/5%). The children with PTAs of <20 dB
had losses in restricted frequency regions (e.g., falling audiometric
contours). Hearing aids were used by 90% of these children. Par-
ticipants who wore amplification were tested while wearing their
devices. The estimated age at which the children who wore
amplification received their first aid averaged 2.55 yrs (SD = 1.84);
the estimated duration of device use averaged 8.84 yrs (SD = 2.77).
Forty-four children were mainstreamed in a public school setting
and 14 children were enrolled in an aural/oral school for CHL.

2.2. Comparison of groups

2.2.1. Materials

Vocabulary skills were estimated with the Peabody Picture
Vocabulary Test-III [49] and the Expressive One-Word Picture Vo-
cabulary Test [50]. Phonological awareness was estimated with
subtests of the Pre-Reading Inventory of Phonological Awareness
[51] measuring children's ability to isolate onset phonemes,
recognize alliterative onset phonemes, and segment the phonemes
within a word. Articulation proficiency was estimated with the
Goldman Fristoe Test of Articulation [52]. Visual perception was
estimated by the Beery-Buktenica Developmental Test of Visual
Perception [53]. Spoken word recognition at 70 dB SPL was esti-
mated with the Word Intelligibility by Picture Identification (WIPI)
Test (auditory mode) [54] and the Children's Audiovisual
Enhancement Test (CAVET; auditory, audiovisual, and visual only
(lipreading) modes) [55].

2.2.2. Findings

Table 1 compares performance on the set of verbal and
nonverbal measures in the groups. We carried out multiple t-tests
on a subset of these measures (vocabulary, phonological awareness,
visual perception, and lipreading) with the problem of multiple
comparisons controlled with the False Discovery Rate (FDR) pro-
cedure [56]. We did not include articulatory proficiency and audi-
tory word recognition because more than half of the children in
each group made few errors: respectively <1 error in 53% (CHL) and
90% (CNH) and >90% correct in 65% (CHL) and 100% (CNH). Not
surprisingly, average results for articulatory proficiency and audi-
tory word recognition were numerically poorer in CHL than
CNH—a result consistent with long term previous findings [e.g., 12].
Results of the t-tests indicated that the CNH had significantly better
vocabulary skills, phonological awareness, and visual perception.
The difference between groups in verbal skills is expected but
reasons for the difference in visual perception are
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Table 1
Average (standard deviation in parentheses) performance on a set of verbal and
nonverbal measures in the CHL vs CNH.

Groups
Measures CHL N =58 CNH N =58
Verbal Skills
Vocabulary (standard score)
Receptive* 94.85 (16.65) 121.22 (11.47)

Expressive*

Phonological Awareness (%)*
Articulation Proficiency (# errors)
Nonverbal Skills

Visual Perception (standard score)*
Word Recognition (%)

Auditory

Audiovisual
Lipreading Onsets™

87.02 (13.78)
69.38 (23.05)
4,05 (6.79)

120.40 (11.43)
77.73 (10.43)
0.62 (1.58)
100.57 (16.58) 113.71 (14.07)
88.03 (10.82) 99.59 (1.53)

94.91 (10.78) -
69.22 (21.82) 66.02 (17.24)

Note: * Indicates performance in CNH vs CHL differed significantly (adjusted
p < 0.05).

Tests included in the statistical analyses were vocabulary, phonological awareness,
visual perception, and lipreading (see text).

—Audiovisual mode for word recognition was not administered in CNH due to
ceiling performance in auditory mode.

# Lipreading was quantified by the percentage of word-onsets repeated correctly in
visual only mode, with visemes (e.g., pat for bat) scored as correct. We focused on
lipreading onsets because we are assessing the discrimination of onsets. The per-
centage of words repeated correctly in the visual only mode (lipread) averaged
15.71% in CNH and 25.60% in CHL.

unclear—although poorer visual perception in CHL has been
observed previously [57]. Please note, however, that visual
perception in both of the current groups (CHL and CNH) was within
the average normal range, and lipreading the onsets did not differ
between groups.

2.3. Materials and instrumentation: stimuli

2.3.1. Recording

The stimuli were recorded (Quicktime movie files) by an 11-yr-
old boy actor with clearly intelligible speech without pubertal
characteristics. His full facial image and upper chest were recorded.
The color video signal was digitized at 30 frames/s with 24-bit
resolution at a 720 x 480 pixel size. The auditory signal was digi-
tized at a 48 kHz sampling rate with 16-bit amplitude resolution.
The utterances were adjusted to equivalent A-weighted root mean
square sound levels (see 20, 47 for details). The set of items con-
sisted of experimental items—4 vowels (/i/,/&/,/a/,/o/or[ee/,/aa/
,Juh/,/oh/); 8 consonant-vowel (CV) syllables (the onsets/B/or/G/
coupled with each vowel, e.g., Baa, Gaa); and 8 nonwords (the
onsets/B/or/G/coupled with each vowel and a final consonant, e.g.,
Baz, Gak)—and 14 filler items (vowel-onsets or not/B/or/G/onsets
coupled with varying offsets, e.g., Cheeg, Doss, Tavel, Eeble, Osh-
uck). Note that the experimental items reflected an easy-to-
speechread onset/B/and a difficult-to-speechread onset/G/, a
design that allowed us to assess the effects of speechreadability
[58].

2.3.2. Low fidelity (non-intact) auditory onsets

We edited the auditory track of the/B/and/G/experimental items
by locating the onsets visually and auditorily with Adobe Premiere
Pro and Soundbooth (Adobe Systems Inc., San Jose, CA) and loud-
speakers. We excised the waveforms in 1 ms steps from the iden-
tified auditory onsets to the point in the later waveforms for which
at least 4 of 5 trained adult listeners heard the vowel—not the
consonant—as the onset in the auditory mode. Splice points were
always at zero axis crossings. Using this perceptual criterion, we
excised on average from the/B/and/G/onsets respectively 51 ms and

63 ms for the CV syllables and 63 ms and 72 ms for the nonwords.
The visual track of the utterances was also edited to form audio-
visual (dynamic face) vs auditory (static face) modes of presenta-
tion (see also 20, 47). The video track was routed to a high-
resolution computer monitor and the auditory track was routed
through a speech audiometer to a loudspeaker.

2.3.3. Audiovisual vs auditory modes

The audiovisual stimuli consisted of a brief period of the talker's
still neutral face and upper chest followed by an audiovisual pre-
sentation of either the to-be-discriminated pair of CV syllables or
the to-be-repeated nonword followed by the talker's still neutral
face and upper chest. The auditory mode consisted of exactly the
same auditory track but the visual track contained the talker's still
neutral face and upper chest for the entire trial. As an example of a
nonword stimulus, the audiovisual mode consisted of 1) an intact
consonant/rhyme (e.g., Baz) in the visual track coupled to 2) a non-
intact onset/rhyme (e.g.,/—B/az) in the auditory track. The auditory
mode consisted of 1) a static face in the visual track coupled to 2)
the same non-intact auditory track (/—B/az).

Our question was whether the intact visual speech would
restore or fill in the non-intact auditory onset. If yes, then perfor-
mance for the same auditory stimulus would differ depending upon
the mode (for example, perceiving/Baz/in the audiovisual mode
but/az/in the auditory mode). We should also note that the auditory
mode controls for any influence on performance due to any
remaining coarticulatory cues in the stimulus and for any strategic
effects that might be characterizing the children's performance.
With these influences on performance controlled, we can identify
whether the addition of visual speech affected performance on our
tasks.

To preview the experimental paradigms presented below, for
the discrimination task, we asked children to judge whether two CV
syllables were the same (e.g., Baa:Baa) or different (e.g., Baa:Gaa).
The items of particular interest, however, were different pairs that
consisted of one intact vs. one non-intact onset (e.g., Baa:/—B/aa).
For the identification task, we asked children to repeat what they
perceived for nonwords with intact (Baz) or non-intact (—B/az)
onsets. We predicted that visual speech would restore or fill in the
non-intact auditory onsets, and thus the non-intact onsets would
be perceived as intact in the presence of visual speech. This would
generate more same—as opposed to different—responses in the
audiovisual than auditory mode for the discrimination task and
more Baz—as opposed to az—responses in the audiovisual than
auditory mode for the identification task.

2.34. Set of items: discrimination

The pairs of items—presented in the audiovisual and auditory
modes—consisted of CV syllables with intact/B/and/G/onsets (e.g.,
Boh), CV syllables with non-intact/B/and/G/onsets (e.g.,/—B/oh),
and intact vowel syllables (e.g., oh). Each trial presented two CV or
two vowel syllables, which were the same (e.g., aa:aa, Baa:Baa, or/
—B/aa:/—B/aa) or different (e.g., aa:ee, Baa:Gaa, or Baa:/—B/aa). The
two syllables were separated by a silent interval of 1400 ms. Pilot
studies indicated that the administration of all possible pairs from
this set of items was ill-advised because the children expressed an
unshakable dislike of this task, an effect consistent with previous
experiences, see [e.g., [59]]. Thus we shortened the task and
administered only a subset of items to each child.

We formed four lists representing four subsets of the items (the
lists were presented forwards and backwards to yield eight varia-
tions) [see [60] for our principled approach for randomly omitting
items and one illustrative subset]. Each list (N = 70, 35 items in each
mode) contained the following items in each mode:
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4 INTACT-SAME CV pairs (Boh:Boh, Gee:Gee),

4 INTACT-DIFFERENT CV pairs (Baa:Gaa, Guh:Buh),

3 INTACT-SAME VOWEL pairs (oh:oh, uh:uh),

6 INTACT-DIFFERENT VOWEL pairs (aa:ee, ee:oh),

6 NON-INTACT-SAME CV pairs (/-B/oh:/-B/oh,/-G/uh:/-G[uh),
and —the pairs of particular interest—

12 CV pairs DIFFERING IN INTACTNESS (/-B/oh:Boh, Guh:/-G/
uh).

For the last condition, some CV pairs, selected randomly, were
presented twice. The a priori probabilities of a list were 41% same —
59% different for the intact items and 33% same — 67% different for
the non-intact items. Note, however, that the probabilities for the
non-intact items (based on physical characteristics) are not precise
because the perceptions of listeners vary—but, nevertheless, with a
general tendency to perceive: 1) a vowel-onset in the auditory
mode and a consonant onset in the audiovisual mode for the/B/
onsets and 2) a vowel-onset in both modes for the/G/onsets [20].

The items of a list were randomly intermixed under the con-
straints that 1) no item could repeat; 2) the intact and non-intact
versions of the same item must be separated by at least two
intervening items; 3) the mode must alternate after three repeti-
tions; and 4) the modes (audiovisual, auditory), the judgments
(same, different), the types of pairs (intact, non-intact, intact:non-
intact), and the types of items (intact vowel, intact/B/and/G/, non-
intact/B/and/G/) must be dispersed uniformly throughout the
lists. The presentation of individual items was counterbalanced
such that 50% of the items occurred first in the auditory mode and
50% occurred first in the audiovisual mode. The response board
contained two keys designated same/alike and different/not alike
by 1) two copies of the same shape in the same color and 2) two
different shapes in different colors. The side corresponding to each
response was counterbalanced across participants.

2.3.5. Set of items: identification

The items consisted of experimental items—S8 intact and 8 non-
intact nonwords with/B/and/G/onsets (e.g., Beece or/—B/eece; Geen
or/—G/een)—and 14 filler items (nonwords with vowel onsets, e.g.,
Apper, Onyit, or not/B/or/G/consonant onsets, e.g., Hork, Tyfer). All
of these items were presented in the audiovisual and auditory
modes with each experimental item presented twice in each mode.
Thus, listeners heard trials randomly alternating between intact
and non-intact onsets, audiovisual and auditory modes, and test
and filler items. The entire set of experimental and filler items were
randomly intermixed and formed into four lists (presented for-
wards and backwards for eight variations). Each list consisted of 64
experimental items and 48 filler items, yielding 57% test trials. Each
list varied randomly with the constraints that (a) no onset could
repeat, (b) the intact and non-intact versions of the same item
could not occur without at least two intervening items, (c) a non-
intact onset must be followed by an intact onset, (d) the mode
must alternate after three repetitions, and (e) all types of onsets
(intact/B/and/G/, non-intact/B/and/G/, vowels, and not/B/or/G/)
needed to be dispersed uniformly throughout the lists.

2.4. Procedure

2.4.1. General

Testing was carried out within a sound-treated booth. The tester
sat at a computer workstation, and the children, with a co-tester
alongside, sat at a distance of 71 cm directly in front of an adjust-
able height table containing the computer monitor and loud-
speaker. Their view of the talker's face subtended a visual angle of
7.17° vertically (eyebrow to chin) and 10.71° horizontally (eye
level). The stimuli were presented at an intensity level of

approximately 70 dB SPL. These data were gathered as part of a
larger experimental protocol administered over three testing ses-
sions of about 1 h each [20,28,47]. The interval between sessions
averaged 12 days in each group.

2.4.2. Discrimination

The children were instructed as follows:

A boy is going to say two sounds and sometimes they will be the
same/alike (demonstrate: aa-aa or Bee-Bee) and sometimes they
will be different/not alike (demonstrate: aa:ee or Guh:Buh). And
sometimes the boy's mouth will move and sometimes it will not
move. Your job is to push this button if the sounds are the same/
alike (demonstrate: oh-oh; Baa-Baa) and push this button if the
sounds are different/not alike (ee:aa; Buh:Guh).

Each child completed one list, with one-half of items presented
in the second testing session and one-half in the third session. Each
half list began with practice items. The children voted same/alike or
different/not alike by pushing the correct button in a two-
alternative forced-choice paradigm.

2.4.3. Identification

For the identification task, we asked children to repeat exactly
what the talker said. The children's utterances were transcribed
independently by the tester and co-tester and also digitally recor-
ded. For the utterances with non-intact onsets, the transcribers
disagreed on 2.28% of responses. For these responses, another
trained listener independently transcribed the recorded utterances.
Her transcription, which always agreed with one of the other
transcribers, was recorded as the response. The criteria for scoring
responses to the non-intact onsets (illustrated for/—B/az) were as
follows:

1. Correct vowel onsets (“az”) scored as an auditory-based
response for both modes.

2. Correct consonant onsets (“Baz”) scored as a visual-based
response for the audiovisual mode and as a coarticulatory
response for the auditory mode.

3. Incorrect vowel or consonant onsets (“Faz”) scored as errors.

Each child completed one list, subdivided into 4 sections. For
one-half of children, 3 sections of a list were completed (in sepa-
rated listening conditions) in the first testing session with the 4th
section completed in the second testing session. For the other one-
half of children, 1 section of a list was completed in the second
testing session with the remaining 3 sections completed (in sepa-
rated listening conditions) in the third testing session [see 20 for
details). A variable number of practice items preceded each section.

Finally, with regard to comparing discrimination of the CV syl-
lable onsets vs. identification of the nonword onsets, we should
note that a pilot study with young adults indicated that identifi-
cation of the onsets of CV syllables vs. nonwords did not differ. This
research protocol was approved by the Institutional Review Boards
of University of Texas at Dallas and Washington University St. Louis.

3. Results
3.1. Discrimination and identification of the intact onsets

3.1.1. Discrimination

The CNH discriminated the intact different pairs (Baa:Gaa,
ee:aa) at 100% accuracy for both modes. The CHL discriminated the
intact different pairs in the auditory and audiovisual modes
respectively, on average, at 91%—92% accuracy for the vowels and
84%—88% accuracy for the consonants.
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3.1.2. Identification

The children repeated the intact nonword onsets (Baz, Gak) in
the auditory and audiovisual modes, on average, at 100%—100%
(CNH) and 85%—92% (CHL). All of the CHL could articulate the/B/
and/G/onsets correctly, and errors were primarily due to lexicali-
zation of the nonwords, e.g., “back” for Gak. The children repeated
the intact offsets (i.e., the remainder of the utterance) in the audi-
tory and audiovisual modes respectively, on average, at 100%—100%
(CNH) and 68%—71% (CHL). Below we analyze performance for the
non-intact onsets.

3.2. Discrimination vs. identification of the non-intact onsets

In the discrimination task, we wished to determine whether
visual speech made it harder to discriminate non-intact from intact
speech (e.g., Baa:/—B/aa perceived as Baa:Baa). Thus we focused on
the intact vs non-intact different pairs (e.g., Baa:/—B/aa) and
determined the percentage of same responses to the pairs differing
in intactness. In the identification task, we wished to determine
whether visual speech made it more likely to perceive the non-
intact onsets as intact (e.g./—B/az perceived as Baz). Thus we
focused on the nonwords with non-intact/B/and/G/onsets and
determined the percentage of correct onset responses for the non-
intact nonwords. The goals of the data analyses were to determine
1) how hearing loss affects children's discrimination and identifi-
cation, 2) how visual speech may offset any such effects, and 3)
whether discrimination predicts identification. The Bonferroni
correction controlled the familywise alpha in all analyses [61].

3.2.1. Results in total group

Table 2 compares the groups’—CHL (2A) and CNH (2B)—average
ability to discriminate vs. identify the stimuli for the/B/and/G/on-
sets in the auditory and audiovisual modes. The arrows and boxes
will be explained momentarily. The data were analyzed with a
repeated-measures mixed design analysis of variance (ANOVA)
with one between-participant factor (Group: CHL vs. CNH) and
three within-participant factors (Task: discrimination vs.

Table 2

Table 3

Results of repeated-measures mixed design analysis of variance (ANOVA) for data in
the two groups (Table 2). The between-participant factor was Group (CHL vs. CNH)
and the within-participant factors were Task: identification vs. discrimination,
Mode: auditory vs. audiovisual, and Onset: /B/vs/G/). The dependent variable was
the discrimination and identification responses (% same or % correct).

A. Significant Statistical Outcomes (ANOVA)

Factors Mean Square Error ~ Fvalue p value Partial n?
Mode 483.18 296.86  <0.0001 0.723
Onset 515.89 198.82 <0.0001 0.636
Task 804.96 45.33 <0.0001 0.285
Task x Group 804.96 25.80 <0.0001 0.185
Onset x Mode 404.71 156.55 <0.0001 0.579
Onset x Mode x Task  232.90 20.77 <0.0001 0.154
Note: df's = 1, 114 for all effects.
B. F contrast analysis
/BJonset /G/onset
A F p partial n2 A F p partial n2
Task: Discrimination — Identification Contrast
CHL
Auditory 26.6 88.0 <0.001 0.44 26.6 87.9 <0.001 0.44
Audiovisual 76 72 ns 0.06 27.3 92.7 <0.001 045
CNH
Auditory 50 32 ns 0.03 31 24 ns 0.02
Audiovisual -53 35 ns 0.03 9.5 11.3 0.001 0.09

Mode: Audiovisual — Auditory Contrast

CHL
Discrimination 27.6 94.8 <0.001 0.45 9.9 12.2 <0.001 0.10
Identification 46.6 270.4 <0.001 0.70 9.2 10.5 0.002 0.09
CNH
Discrimination 40.5 204.3 <0.001 0.64 104 13.3 <0.001 0.11
Identification 50.9 322.1 <0.001 0.74 39 19 ns 0.02

Note: ns = not significant (i.e., adjusted p value > 0.05). Significant results are bol-
ded.
The mean square error for the contrasts was 232.90.

identification; Mode: auditory vs. audiovisual; Onset:/B/vs/G/).
Results (see Table 3A) revealed a significant difference between 1)

Mean results (standard errors in parentheses) for the discrimination vs. identification of the stimuli in the auditory and audiovisual modes for the CHL (2A) and CNH (2B).
Discrimination was quantified by percentage of same responses for the pairs differing in intactness (i.e., Baa:/—B/aa perceived as Baa:Baa). Identification was quantified by the
percentage of correct onset responses for the non-intact onsets (i.e.,/—B/az perceived as Baz).

A. CHL (N = 58)
Onset
/8/ /G/
Mode Mode
Task Audiovisual Auditory Audiovisual Auditory
Discrimination (% Same Responses) | 77.16 (2.61) | > 49.57(3.10) 48.06(3.21) > 38.15(3.05)
v v v
Identification (% Correct Onsets) 69.58 (2.80) | > 22.98(3.16) 20.78 (2.90) > 11.58(2.75)
B. CNH (N = 58)
Onset
/8/ /G/
Mode Mode
Task Audiovisual Auditory Audiovisual Auditory
Discrimination (% Same Responses) | 66.67 (3.75) | > | 26.16 (3.07) 37.93(3.59) > | 27.58(3.24)
v
Identification (% Correct Onsets) 71.98(3.82) | > | 21.12(3.56) 28.41 (3.09) 24.51 (3.16)

Note: The boxes integrate these results with findings of the F contrast analyses. Please see text.
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the auditory vs. audiovisual Modes, 2) the easy-vs. hard-to-
speechread Onsets, and 3) the discrimination vs. identification
Tasks. The finding of a significant difference between the Modes is
particularly noteworthy because it indicates that visual speech
significantly influenced both discrimination and identification in
these children. A simple interpretation of these overall effects,
however, is complicated by significant interactions as seen in
Table 3A. To probe these interactions, we carried out an F contrast
analysis for each onset in each group [62]. The contrasts analyzed
the difference between the: 1) Discrimination — Identification
Tasks and 2) Audiovisual — Auditory Modes. Table 3B presents the F
contrast results, along with the absolute differences between the
two means (shown in Table 2) that formed each contrast. The boxes
and arrows in Table 2 graphically integrate these findings and the
data. When the two means forming a Task or Mode Contrast did not
differ, they are boxed together. When the two means forming a
Contrast did differ, a greater than sign (>) indicates which mean
was significantly better.

3.2.2. F contrast: discrimination — identification task

3.2.2.1. /B/onset. The F contrasts (column effects, Table 2) indicate
that the Tasks differed only for the auditory mode in the CHL;
otherwise discrimination vs. identification did not differ (boxed
together). The significant F contrast occurred because the CHL had
difficulty discriminating the intact vs. non-intact onsets in the
auditory mode. Thus, these CHL voted same disproportionately on
the Discrimination Task, and this behavior yielded a significant
difference between Tasks.

3.2.2.2. /G/onset. The F contrasts indicate that the Tasks differed for
both modes in the CHL and for the audiovisual mode in the CNH.
The significant F contrast occurred because both the CHL and CNH
had disproportionate difficulty discriminating the intact vs. non-
intact onsets—this time in both modes for the CHL and in the au-
diovisual mode for the CNH. Results in the CNH indicate that visual
speech—minimally, but significantly—affected discrimination
more than identification for this hard-to-speechread onset.

3.2.3. F contrast: audiovisual — auditory mode

3.2.3.1. /B/onset. The F contrasts (row effects, Table 2) indicate that
visual speech significantly altered both discrimination and identi-
fication in the CHL and CNH, by 28%—51% (Table 3B).

3.2.3.2. /G/onset. The F contrasts indicate that visual speech
significantly but minimally (<10%, Table 3B) affected both
discrimination and identification in the CHL, but only discrimina-
tion in the CNH.

The above bundle of effects produced the interactions seen in
Table 3A. One particular interaction worthy of further note is the
Task x Group effect, which was the only significant difference be-
tween the Groups. We can examine this difference by imaging the
results of Table 2 collapsed across the modes and the onsets. Such
results reveal that whereas the Groups identified the stimuli
similarly (CHL: 31%; CNH: 36%), they did not discriminate the
stimuli similarly (CHL: 53%; CNH: 39%). Stated differently, the CHL
performed differently on these two Tasks (Discrimination: 53%;
Identification: 31%) whereas the CNH performed similarly on these
two Tasks (Discrimination: 39%; Identification: 36%). Again, the CHL
had difficulty discriminating the intact vs. non-intact onsets, and
thus these children voted same disproportionately whereas they
did not disproportionately identify the non-intact onsets as intact.

Below we address the question of whether the results in Table 2
reflect 1) how well the children discriminated the pairs vs. 2) a
response bias because the children responded same most of the
time to both the different (e.g., Baa:/—B/aa) and same (e.g.,/—B/aa:/

—B/aa) pairs. Prior to proceeding, we should note that—when re-
sults were collapsed across all items—the children did not exhibit a
response bias: They pushed the same and different buttons
respectively 49% and 51% (CNH) and 55% and 45% (CHL) of the time.
Due to the minimal effects of visual speech on the/G/onset, all
further analyses were limited to the/B/onset.

3.3. D' analysis: discrimination task

The d’ analysis determined the percentage of different responses
a) to the different pairs (called hits) vs. b) to the same pairs (called
false alarms) [63]. Table 4 details these percentages, along with the
complementary percentages for the same responses (B onsets), in
the CHL (4A) and the CNH (4B). We quantified the children's
excellence in discrimination or sensitivity by the difference be-
tween the proportion of hits (H) and false alarms (FA)—trans-
formed into Z-scores. These results showed two relevant findings.
First—and critically important for our purposes—the presence of
visual speech notably reduced the children's (both CHL and CNH)
ability to discriminate the intact from non-intact speech. Second,
for both modes, the CHL showed poorer discriminability than the
CNH. This latter result confirms, with a bias-free measure, that the
CHL had greater difficulty discriminating the intact from non-intact
speech. As we turn to an examination of the effects of degree of HL
on performance, the previous data predict that the discrimination
task will be more sensitive to the effects of HL than the identifi-
cation task.

3.4. Effects of degree of HL

To address whether the degree of HL—defined by the average
hearing levels at 500, 1000, 2000, and 4000 Hz (PTA) on both
ears—could account for the variability of performance in the
auditory and audiovisual modes, we conducted a multiple regres-
sion analysis in the CHL with degree of HL as the predictor variable
and discrimination/identification performance in the two modes as
the criterion variables. Table 5 summarizes these findings. Results
indicated that the degree of HL had a significant effect on overall
performance (ALL variables considered simultaneously). However,
the slope coefficients indicated that only the ability to discriminate
the intact vs. non-intact onsets in the auditory mode worsened as
the degree of HL worsened.

Table 4
The percentage of different and same responses to the different and same pairs of
the Discrimination task (B onsets) formatted for d analysis: CHL (4A) and CNH (4B).

Targets Mode

Response (%) Response (%)

Audiovisual Auditory
Different (%) Same (%) Different (%) Same (%)
A. CHL (N = 58)
Different (Baa:/—BJaa) 22.84 (H) 77.16 50.43 (H) 49,57

Same (/—Bjaa:/~Bfaa) 1031 (FA)  89.69 9.90 (FA) 90.10

Difference 12.53 40.53
d 0.51 1.09
B. CNH (N = 58)
Different (Baa:/—B/aa) 33.33 (H) 66.67 73.84 (H) 26.16
Same (/—B/aa:/—B/aa)  0.00 (FA) 100.00 0.00 (FA) 100.00
Difference 33.33 73.84
d 2.16 323

Note. (H) = Hits; FA = False Alarms. To address the value of 0 (zero) FA in the CNH,
we applied the log-linear rule to all response percentages before conversion into z
scores in both the CNH and CHL [68].



134 S. Jerger et al. / International Journal of Pediatric Otorhinolaryngology 94 (2017) 127—137

Table 5

Multiple regression analysis in CHL with degree of HL as the predictor variable and
discrimination/identification performance in the two modes as the criterion vari-
ables. Results show multiple correlation coefficient and omnibus F for all variables
considered simultaneously followed by the slope coefficients and the partial F sta-
tistics evaluating the variation in Discrimination/Identification in each mode
uniquely accounted for by degree of HL (after removing the influence of the other
variables).

Variables /B/onset
Multiple R Omnibus F p
ALL 0.405 2.60 0.046
Slope Coefficient Partial F p
Discrimination: Auditory 0.330 8.39 0.005
Audiovisual 0.041 0.07 0.790
Identification: Auditory 0.091 0.69 0.408
Audiovisual -0.026 0.032 0.844

Note. Significant results are bolded.
MSE = 356.13, df's = 4,53 for omnibus F and 1,53 for partial F.

To illustrate these findings, the CHL were separated into two
groups on the basis of a median split. The PTA score averaged
35.45 dB HL (SD = 10.15; range: 5—49 dB HL) in the Better CHL
Group and 68.30 dB HL (SD = 12.03; range: 51—98 dB HL) in the
Poorer CHL Group. The average age (yr;mo) was 8;8 in the Better
Group and 9;11 in the Poorer Group. Fig. 1 portrays average
discrimination and identification in the Better vs. Poorer Groups in
the audiovisual and auditory modes. The sticks alongside the bars
detail average performance in the CNH (Table 2). Fig. 1 clearly il-
luminates the findings of the regression analysis, namely that the
degree of HL only affected the discrimination task in the auditory
mode.

In the section below, we queried whether the children's
discrimination of the intact vs. non-intact onsets predicted their
identification of the onsets. Supporting evidence in infants is that
their ability to discriminate auditory stimuli predicts their later
ability to identify words [36]. Clearly a simple developmental
model of speech perception would suggest that children must
detect and discriminate stimuli before they can identify and label
each one individually [e.g., [64, 65]]. Again, due to the minimal
effects of visual speech on the/G/onset, results below are limited to
the/B/onset.

3.5. Does discrimination predict identification?

To evaluate whether the children's ability to discriminate

speech predicts their ability to identify speech, we carried out
regression analyses separately in the CHL and CNH groups. The
predictor variable was each child's audiovisual discrimination; the
criterion variables were audiovisual identification of the onsets and
also auditory word identification as quantified by standardized
tests (average performance on the Word Intelligibility by Picture
Identification Test [54] and the Children's Audio-Visual Enhance-
ment Test in the auditory mode [55]. We included standardized
measures of auditory word identification due to the aforemen-
tioned findings in infants and also in an attempt to broaden the
clinical implications of our findings. Degree of HL was included as a
control variable. We included auditory word identification and
degree of hearing sensitivity in the CNH to maintain a consistent
regression model. However, there was no variability to analyze for
these two measures in the CNH.

We computed the part (a.k.a. semi-partial) r and partial F sta-
tistics to determine whether discrimination predicted a significant
proportion of the variation in identification (onsets or words) after
the variability due to the degree of HL and the remaining variables
was partialled out [66]. These statistics are presented in Table 6
along with the omnibus results for all variables considered
together. The omnibus results (ALL) showed that discrimination
ability significantly predicted overall performance in both the CHL
and CNH, accounting for 26% to 43% of the variability. The part r's
indicated that discrimination skills significantly predicted both the
CHL's and CNH's identification of the onsets when the variation due
to the other variables was controlled (accounting for 21% to 41% of
the variability). Finally, results suggested that the discrimination
ability of CHL also predicted their word recognition performance
(however, this association did not achieve significance, p = 0.06).
Albeit non significant, this result seems worthy of mention because
our statistical approach was stringent as it constrained prediction
to only the variance that was uniquely shared between discrimi-
nation and word recognition.

4. Discussion

In adults, visual speech provides cues that can enhance multiple
levels of linguistic processing such as discrimination and identifi-
cation [67]. Yet there is scant evidence in CNH and CHL to clarify
how visual speech affects these fundamental processes underlying
accurate perception. The purpose of this research was to assess the
relation between discrimination and identification in CNH vs. CHL
and to determine whether visual speech makes it 1) harder to
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Fig. 1. Average discrimination (% same) and identification (% correct) in the Better vs. Poorer CHL Groups in the audiovisual and auditory modes. The PTA averaged 35.45 dB HL
(SD = 10.15; range: 5—49 dB HL) in the Better CHL Group and 68.30 dB HL (SD = 12.03; range: 51—-98 dB HL) in the Poorer CHL Group. The sticks alongside the bars detail average
performance in the CNH (Table 2). If visual speech filled in the non-intact auditory onsets, this effect, in turn, should make the non-intact onsets more difficult to discriminate from

intact speech and more likely to be identified as intact in the audiovisual mode.
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Table 6

Summary of multiple regression results for the prediction of Identification (Audiovisual Onsets and Auditory Words) by Audiovisual Discrimination. Data were the stimuli with/
B/onsets. Results show multiple correlation coefficient and omnibus F for all variables considered simultaneously followed by the slope coefficient, part r, and partial F statistics
evaluating the variation in Identification uniquely accounted for by Audiovisual Discrimination (after removing the influence of the other variables).

A. CHL (with Degree of HL as a control variable)

Variables Multiple R Omnibus F p
ALL (Onset ID, Word ID, Degree of HL) 0.514 6.35 0.0009
Slope Coefficient Part r Partial F p
Onset ID: Audiovisual 0.425 0.456 15.05 0.0003
Word ID: Auditory 0487 0224 3.59 0.063
Note: MSE = 305.52.
B. CNH (with Hearing Sensitivity as a control variable)
Variables Multiple R Omnibus F p
ALL (Onset ID, Word ID, Hearing PTA) 0.660 13.88 <0.0001
Slope Coefficient Part r Partial F p
Onset ID: Audiovisual 0.655 0.643 39.61 <0.0001
Word ID: Auditory —0.617 0.032 0.10 0.751

Note: MSE = 487.96.

Grand Note. Significant results are bolded. df's = 3,54 for omnibus F and 1,54 for partial F.

discriminate non-intact from intact speech (e.g., Baa:/—B/aa
perceived as Baa:Baa), and 2) more likely to perceive non-intact
onsets as intact (e.g.,/—G/ak perceived as Gak).

4.1. Did visual speech affect discrimination and identification?

A primary finding was that visual speech can fill in non-intact
auditory speech. Visual speech consistently made it 1) harder to
discriminate the non-intact from intact speech and 2) more likely
to perceive the non-intact onsets as intact in both CHL and CNH for
the easy to speechread onsets (/B/). These results agree with the
finding that visual speech benefits both word discrimination and
recognition (obtained in AX paradigm) in CNH [30]. For the hard-
to-speechread onsets/G/, visual speech minimally (<10%) affected
both discrimination and identification in the CHL but only
discrimination in the CNH. With regard to the relation between
discrimination and identification, the tasks did not differ in either
group for the easy to speechread onsets (/B/), with one exception:
The CHL exhibited unusual difficulty discriminating the intact vs.
non-intact onsets in the auditory mode and thus they voted same
disproportionately whereas they did not identify the non-intact
onsets as intact disproportionately. For the hard-to-speechread
onsets/G/, both groups exhibited slightly (<10%) greater diffi-
culty discriminating the intact from non-intact onsets—a pattern
of results that produced a significant difference between tasks in
both modes for the CHL but only in the audiovisual mode for the
CNH. This latter result indicated that visual speech affected
discrimination more than identification in CNH for the hard-to-
speechread onsets—although again this effect was noticeably
slight.

In short, overall findings in the groups were more similar than
different. The only significant difference between groups was
that—when results were collapsed across modes and onsets—the
groups identified the stimuli similarly (CHL: 31%, CNH: 36%)
whereas they discriminated the stimuli differently (CHL: 53%, CNH:
39%). Again, the CHL had disproportionate difficulty discriminating
the non-intact from intact onsets (CHL: voted same 53% of time,
CNH: voted same 39% of time) whereas they did not dispropor-
tionately identify the non-intact onset as intact (CHL: 31%, CNH:
36%).

A bias-free measure of the children's discrimination (i.e., a d’
analysis) indicated that visual speech impressively lessened both
groups' ability to discriminate the intact vs. non-intact speech.
Further the analysis confirmed that the CHL exhibited poorer

discriminability of the intact vs. non-intact speech in both modes
than the CNH. This latter finding agrees with results for the
discrimination of auditory speech features in CNH vs. CHL who use
cochlear implants [37]. Relative to the d’ values (auditory mode)
obtained by Bouton et al. [37], the d’ values (auditory mode) in our
CNH were reasonably similar (3.23 vs. 3.5 estimated from Bouton
et al.), but the values in our CHL were lower than those of Bouton in
cochlear implant users (1.09 vs. 2.0 estimated).

4.2. Did degree of HL affect discrimination and identification?

Results indicated that only the ability to discriminate the intact
vs. non-intact onsets in the auditory mode worsened as the degree
of HL worsened. We illustrated this finding by examining results in
three groups: CNH, CHL with Better Sensitivity (35 dB HL), and CHL
with Poorer Sensitivity (68 dB HL). These results clearly illustrated
that the degree of HL affected only auditory discrimination. Also the
effect of HL was systematic; when children discriminated the intact
vs. non-intact onsets in the auditory mode, the CNH voted same
less often than the CHL: Better group who voted same less often
than the CHL: Poorer group (CNH # Better = Poorer). With regard
to the effects of visual speech, discrimination in the audiovisual
mode differed only between the CNH # Poorer CHL. Thus, visual
speech appeared to eliminate the difference between the CNH —
Better CHL in the auditory mode, a pattern suggesting that visual
speech minimized or eliminated the effects of mild HL on auditory
discrimination.

4.3. Did discrimination predict identification?

Our specific question was whether a child's discrimination of
the intact vs. non-intact onsets predicted her identification of the
onsets in the audiovisual mode. Results indicated that discrimina-
tion ability did significantly predict—even after the variation due to
the other variables was controlled— both the CHL's and CNH's
identification of the onsets (accounting for 21% to 41% of the
variability).

4.4. Conclusion

This research documented that visual speech significantly alters
the discrimination and identification of non-intact auditory speech
in children. Overall findings in the CHL and CNH were more similar
than different. Visual speech filled in the non-intact auditory
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speech, and this effect, in turn, made the non-intact onsets 1) more
difficult to discriminate from intact speech and 2) more likely to be
identified as intact. Such results clearly demonstrate the value of
visual speech cues at multiple levels of linguistic processing in
children. Clinically these data support intervention programs that
view visual speech as a powerful asset for developing spoken lan-
guage in CHL. The incorporation of visual speech would focus
attention: 1) on the talker's face, and this should promote socio-
linguistic competencies, and 2) on the correspondences between
the auditory and visual speech inputs, and this should promote
both speech perception and production skills.
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