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a b s t r a c t

The subject of this paper pertains to the contentious issue of synchronisation of walking
pedestrians to lateral structural motion, which is the mechanism most commonly purported
to cause lateral dynamic instability. Tests have been conducted on a custom-built experi-
mental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking
table. The experimental setup can accommodate adaptive pedestrian behaviour via a be-
spoke speed feedback control mechanism that allows automatic adjustment of the treadmill
belt speed to that of the walker. 15 people participated in a total of 137 walking tests during
which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was
set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping
behaviours are identified in the kinematic data obtained using a motion capture system. The
most common behaviour is for the timing of footsteps to be essentially unaffected by the
structural motion, but a few instances of synchronisation are found. A plausible mechanism
comprising an intermediate state between unsynchronised and synchronised pedestrian and
structural motion is observed. This mechanism, characterised by a weak form of modulation
of the timing of footsteps, could possibly explain the under-estimation of negative damping
coefficients in models and laboratory trials compared with previously reported site mea-
surements. The results from tests conducted on the setup for which synchronisation is
identified are evaluated in the context of structural stability and related to the predictions of
the inverted pendulum model, providing insight into fundamental relations governing pe-
destrian behaviour on laterally oscillating structures.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is now well known that walking pedestrians have a capacity to cause lateral dynamic instability of structures [1].
Whether divergent-amplitude lateral structural vibrations will develop under the action of walking pedestrians depends on
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the net damping of the crowd-structure system. The initiation of dynamic instability for a given vibration mode will occur
when the total negative damping of the mode from the pedestrians is greater in magnitude than the structural damping.
The most widely publicised occurrence of pedestrian-induced instability is the case of the London Millennium Footbridge
which suffered from excessive vibrations on the day of its opening. Subsequently, a series of controlled crowd loading tests
was conducted on that bridge of which results showed that pedestrian lateral force is approximately proportional to the
lateral velocity of the deck. It was proposed to model this force as a damping coefficient per pedestrian, having an empirical
numerical value of –300 N s m‐1 for structural vibration modes within the frequency range 0.5–1 Hz [2]. This modelling
framework was later extended to account for the component of pedestrian lateral force at the frequency of the excited
vibration mode orthogonal to the one in phase with structural velocity [3]. Similar to the approach adopted in wind en-
gineering for modelling flutter [4], after appropriate scaling, the components in phase with velocity and acceleration can be
expressed as equivalent added damping and mass to the structure [e.g. 5–7], denoted herein as ΔC and ΔM , respectively, and
expressed per pedestrian. This framework implies that ΔC and ΔM , which are often termed as self-excited (or motion-
dependent) forces, are in fact independent of bridge motion amplitude, which might not always be the case. Nevertheless, it
has become a convention to express self-excited pedestrian forces in this concise form. The effect of ΔM is effectively to
change the vibration frequency, which should be accounted for in analyses of dynamic structural stability as, at least in
theory, this could in turn have an effect of modifying ΔC [7]. ΔC itself is more important as it can become negative hence
effectively reduce the total damping. However, what value of ΔC should be used for the assessment of structural stability
remains an open issue. This is because a discrepancy exists between the measurements of ΔC obtained from tests on full-
scale structures, representing a top-down approach to the derivation of self-excited forces, and results of laboratory in-
vestigations on the behaviour of a single walker, representing a bottom-up approach.

The values obtained using a top-down approach, relying on back-calculation of ΔC from the measured structural re-
sponse, are summarised in Table 1.

It can be seen that, with the exception of ΔC derived from the behaviour of the Clifton Suspension Bridge, all the values
fall at or below –300 N s m–1. This is considerably lower than the average values reported from an extensive experimental
campaign of Ingólfsson et al. [5], which reached a minimum of approximately –200 N s m�1 for a vibration amplitude of
4.5 mm, but increased to above half that value (hence became less detrimental in the context of structural stability) for
vibration amplitudes above 20 mm. This seems inconsistent with the measurements on the London Millennium Footbridge,
for which ΔC was found to be fairly constant up to the maximum vibration amplitude of 48 mm experienced in the tests [2].
The recent laboratory results reported by Bocian et al. [11] concur in that respect, suggesting that the expected ΔC for a
mode at 0.9 Hz vibrating with an amplitude of 10 mm would be just –150 N s m�1, accounting only for pedestrians un-
synchronised to the lateral motion, walking at their preferred unimpeded speed.

It is noteworthy that during the tests on instrumented treadmills aiming at quantification of self-excited forces the speed
of the walker was either imposed (equal to the preferred walking speed on an unactuated treadmill) [2], or self-selected (i.e.
unconstrained) due to the application of a treadmill belt speed feedback control mechanism [11]. All these speeds might not
correspond to the speed of a pedestrian walking in a dense crowd, which can be expected to reduce with increasing crowd
density. The predictions of the inverted pendulum pedestrian model (IPM) proposed by Macdonald [6] suggest that ΔC can
then become more detrimental, for the range of natural frequencies coinciding with the frequencies of the excited modes
listed in Table 1 [7]. This might explain the large negative values of :5823mm;ltÞ¼}graphic:mml:print:m440856860
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8010} observed on most

of the bridges identified in Table 1 [12]. However experimental evidence is currently lacking to validate this prediction.
Another suggested explanation of the discrepancy in ΔC derived using bottom-up and top-down approach is preferential

phase frequency entrainment [13]. This is a state in which the pedestrians synchronise their motion to the motion of the
vibrating structure, adjusting their relative phase such as to input more energy into the excited structural mode than the
average expected ΔC for unsynchronised walking. It has been suggested that this behaviour might be driven by a desire to
avoid less comfortable gait patterns in which the step width becomes narrow or the position of the foot during a step
crosses to the contralateral side of the body [14]. However, no experimental evidence has been presented supporting the
prevalence of preferential phase frequency entrainment or even its very existence.

To address the uncertainty as to the discrepancy between self-excited forces obtained using top-down and bottom-up
approaches, the aim of this study is to evaluate temporal pedestrian stepping behaviour on laterally oscillating structures
and its consequences for structural stability. To this end a series of tests was performed on a laterally oscillating in-
strumented treadmill in which kinematic data of the behaviour of walkers were collected with a motion capture system.
Critical for realising the aim of this study is the capacity of the experimental setup to accommodate adaptive pedestrian
behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to

Table 1
Pedestrian damping coefficient identified from tests on full scale structures. The values in brackets denote the natural frequencies of the relevant modes.

London Millennium Footbridge
[2]

Changi Mezzanine Bridge
[8]

Clifton Suspension Bridge [9] Pedro and Inês Footbridge [10]

ΔC [N s m�1] –300 (0.5 & 1 Hz) –376 (0.9 Hz) –160 (0.52 Hz) & –210
(0.74 Hz)

–300 (0.91 Hz)
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that of the walker. After this introduction, Section 2 briefly presents the experimental setup, the protocols applied during
the tests and data processing methods. Five different types of stepping behaviour identified from the collected data are
described in Section 3. These include phase drift, phase pulling, intermittent frequency entrainment, frequency locking and
non-uniform distribution of phase angles. Since phase drift has already been described in detail in [11], the focus in the
current study in on the phase pulling and synchronisation mechanisms. Phase pulling occurs when the duration of pe-
destrian steps changes systematically depending on the timing of footsteps relative to lateral structural motion. This be-
haviour, which has never been observed before in experimental data, is shown to be able to explain the aforementioned
discrepancy between the self-excited forces. The possibility of the occurrence and the consequences of synchronisation on
structural stability are considered in Section 4 in which the experimental results, quantified in terms of self-excited forces,
are also related to the predictions of the IPM, providing a template of pedestrian behaviour on laterally oscillating structures.
Overall conclusions are stated in Section 5.

2. Materials and methods

2.1. Equipment

A novel experimental setup developed at the University of Bristol was used in this study. In short, the setup consists of:

� an instrumented treadmill supported on a hydraulic motion base, providing a 1.5 m wide and 2 m long laterally actuated
walking platform;

� a treadmill speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the
walker;

� a motion capture system consisting of six infrared cameras (Oqus 3, Qualisys), used to collect kinematic data;
� an immersive virtual reality environment provided via nVisor SX111 stereoscopic head-mounted display.

Full details on this setup and its validation are available in [11] and [15]. Fig. 1 shows a subject during a test on the
experimental setup. The insertion in Fig. 1 shows an example of the computer generated image projected onto the left-eye
screen of the head-mounted display.

2.2. Participants

Twelve males and three females volunteered in the tests. The means and standard deviations of the basic parameters for
the whole cohort are, respectively: 23.8 and 4.8 years for age, 75.9 and 14.3 kg for mass and 1.82 and 0.08 m for height. All
subjects were adults, naïve as to the purpose of the experiments and without any known conditions which could impair
their performance. All subjects had experience with walking on a treadmill prior to participating in the study. All subjects
signed an informed consent form before commencing the experiments. The study was approved by the University of Bristol
Ethics of Research Committee.

2.3. Procedures

Each subject conducted several tests during which the treadmill underwent a sinusoidal lateral motion. The amplitude of

Fig. 1. A subject during a test on the custom-built instrumented treadmill.
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this motion was set to 5 mm, 10 mm or 15 mm, and the frequency was set to 0.54 Hz, 0.76 Hz, 0.9 Hz or 1.1 Hz. 137 tests
were conducted in total on the laterally oscillating treadmill, each lasting between 2 to 3 minutes which, after discarding
periods of gait and setup initiation and termination stages, gave approximately 1 to 2 minutes of data for further processing.
Before any recordings were made, each subject was given approximately 10 minutes to habituate to the experience of
walking on the treadmill in different combinations of base motion and visual conditions applied during the tests. The visual
environment varied from that of the lab to different scenarios applied with virtual reality, consisting of a bridge and dif-
ferent surroundings (see example in Fig. 1). Different visual environments were applied for a different research purpose, but
the data enabled different types of temporal stepping behaviours adopted by pedestrians in response to laterally oscillating
walking surface to be identified. Since the same types of stepping behaviours were found for all visual environments applied
during the tests, visual conditions are not treated in the analyses as an independent variable.

2.4. Data processing

All data collected during tests were sampled at 128 Hz.
The dynamics of the pedestrian-structure system are analysed according to a mathematical convention [16], by con-

structing a discrete map of instantaneous phase between the pedestrian and structural motion at a suitable point in the gait
(or step) cycle. For gait analysis, a convenient event for the construction of this map is the instant of touchdown of a foot to
the walking surface, which marks the beginning of each step. This event is associated with an abrupt change in foot motion,
which is relatively easily identifiable from kinetic and kinematic gait data.

The instance of touchdown, marking the beginning of a step and the double-support phase of gait, was identified from
vertical velocity signals of the motion capture system marker placed on the lateral malleolus, using the method of O’Connor
et al. [17]. The instance of take-off, i.e. the time when the foot loses contact with the walking surface, marking the end of
step and double-support phase of gait, was identified from the fore-aft velocity of the motion capture system marker placed
on the fourth metatarsal, using the method of Ghoussayni et al. [18].

The beginning of the treadmill lateral vibration cycle was taken when the treadmill displacement was zero and its
velocity was towards the right of the walker. Pedestrian stepping behaviour was quantified by means of the phase angle
between the pedestrian and bridge motion, ψ, at the instant of the heel strike (the terms heel strike and touchdown are used
interchangeably herein), tTD, in relation to the treadmill vibration period (equal to reciprocal of vibration frequency fb):

( )ψ = π − ( )t t f2 1TD b b,0

where tb,0 is the time of the most recent beginning of a treadmill vibration cycle. This is visualised in Fig. 2.
It is noteworthy that the symmetry in pedestrian behaviour associated with the bipedal nature of human gait implies

that compatible phase angles for the right and the left legs are shifted relatively by π. For example, a phase angle of π0.5
measured for the right leg touchdown, occurring when the treadmill is at the rightmost position relative to the direction of
progression of the walker corresponds with a phase angle of π1.5 measured for the left leg touchdown, occurring when the
treadmill is at the leftmost position relative to the direction of progression. Therefore, the set of phase angles in which data
for the left leg are shifted by π and, if necessary, wrapped to be within the range 0 to 2π is hereafter called the set of
compatible phase angles, denoted by the symbol ψc.

Pedestrian-induced self-excited forces at the treadmill oscillation frequency were quantified in terms of the equivalent
added damping and mass to the structure (ΔC andΔM, respectively). In the calculation of the self-excited forces the length
of the data record was taken containing, as closely as possible, an integer number of pedestrian and bridge vibration cycles,
making provision for the type of evolution of phase angle. This ensured the obtained ΔC and ΔM were representative of the
average pedestrian behaviour during any given test. It also allowed the calculation of the self-excited forces to be simplified
to the following two equations [11]:

⎡⎣ ⎤⎦( ) ( )Δ = − −
⌢

( )¨ ¨M H f H fRe 2x F b x F bb b

⎡⎣ ⎤⎦( ) ( ) ωΔ = −
⌢

( )¨ ¨C H f H fIm 3x F b x F b bb b

Fig. 2. Adopted convention for the definition of phase angle ψ of the instant of the touchdown relative to the most recent beginning of a treadmill vibration
cycle. A and ω = πf2b b denote the treadmill displacement amplitude and angular vibration frequency, respectively.
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where [ •]Re and [ •]Im denote the real and imaginary part of the complex number •, respectively, ωb is the angular oscil-

lation frequency of the treadmill and ( )¨H fx F bb and ( )⌢
¨H fx F bb are the transfer functions between the measured treadmill ac-

celeration and lateral force, evaluated at the oscillation frequency. ( )¨H fx F bb and ( )⌢
¨H fx F bb were found from the ratio of Fast

Fourier Transforms of the force and acceleration signals, the difference being that the former was obtained from data
collected in the presence of the walking pedestrian while the latter was obtained for the empty treadmill with the belt set to
run at a constant speed to account for the inertia forces and possible dynamics of the treadmill itself.

The Lomb-Scargle algorithm was used to obtain power spectra of unevenly spaced data [19], to uncover the components
of variability of time between hell strikes serving in the identification of the type of pedestrian stepping behaviour. The
advantage of this method is that it does not require interpolation, which can often introduce spurious power at low fre-
quencies, and allows the significance of the identified components of the spectrum to be readily estimated [20]. Before
obtaining the power spectrum, the algorithm requires normalisation of the data by subtraction of the mean.

3. Pedestrian stepping behaviour on laterally oscillating structure

Five types of pedestrian stepping behaviour on laterally oscillating structure were identified from the analysis of the
measured phase angles and are presented in this section. These are: phase drift, phase pulling, intermittent frequency
entrainment, persistent frequency locking and non-uniform distribution of phase angles. Of these, phase drift is mentioned
only briefly since this behaviour has been already reported in detail in [11]. It needs to be pointed out that the terms
‘frequency locking’ and ‘frequency entrainment’ are sometimes used synonymously [16]. However, a distinction is made
herein in that ‘frequency entrainment’ refers to synchronisation of the first order only, i.e. =f f/ 1p b , with any phase dif-
ference, whereas ‘frequency locking’ is more general and refers to synchronisation of any order, i.e. { }=f f/ 1, 2p b , with any
phase difference, where fp is the average pedestrian stride frequency which is equal to half step frequency since one stride
consists of two steps. A summary of the conducted tests with reference to the identified pedestrian stepping behaviour is
presented in Table 2.

3.1. Phase drift

This was the most common type of pedestrian stepping behaviour (see Table 2). It is characterised by close to uniform
distribution of phase angles, due to the stride frequency being fairly constant and different from the bridge vibration fre-
quency. The phase angle evolves in this case at a nearly constant rate and the variation of time between heel strikes,
analysed with the Lomb-Scargle algorithm, shows no significant components apart from the one at the average stride
frequency [20]. An example of phase drift is shown in Fig. 3.

Successive steps on the right (●) and left (○) legs are joined by black lines. Four grey lines plotted at the beginning of the
record, each underlying data points for one leg during one phase angle evolution cycle, are the best linear fits. It can be seen
that the gradients of these lines are similar, indeed confirming that the phase evolves at a nearly constant rate.

3.2. Phase pulling

This type of behaviour is characterised by a non-uniform distribution of phase angles and orderly phase evolution. Five
cases of phase pulling showing multiple cycles of evolution of the phase angle throughout its entire range were identified
for four different subjects, for walking with four different treadmill vibratory conditions. The details of these tests are
presented in Table 3. The results can be divided into two groups for which the average stride frequency was slightly higher

Table 2
Summary of the conducted tests.

Vibration ampli-
tude A [mm]

Vibration fre-
quency fb [Hz]

Number of con-
ducted tests

Phase drift Phase
pulling

Persistent fre-
quency locking

Intermittent fre-
quency entrainment

Non-uniform distribu-
tion of phase angles

5 0.54 14 10 0 0 0 4
5 0.76 18 12 1 0 0 5
5 0.9 13 8 1 0 2 2
5 1.1 13 9 0 0 0 4
10 0.54 12 9 0 1 0 2
10 0.76 11 10 0 0 0 1
10 0.9 44 31 2 1 4 6
10 1.1 6 4 1 0 0 1
15 0.54 2 1 0 0 0 1
15 0.76 2 1 0 0 0 1
15 0.9 2 1 0 0 1 0
Total 137 96 5 2 7 27
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or lower than the treadmill lateral oscillation frequency. Examples of these types of behaviour are presented in Sections 3.2.1
and 3.2.2, respectively. It needs to be remarked that more cases of possible phase pulling were identified in which the
evolution of the phase angle was either too slow to complete more than one full cycle or indicated that the walker changed
their stepping behaviour during the test. These tests fall into the category ‘non-uniform distribution of phase angles’ in
Table 2. Since the evidence of phase pulling in these cases is uncertain, they are omitted from further analysis. To better
understand the significance of phase pulling and the flow of energy between the components of the pedestrian-structure
system, the work done by the pedestrian on the treadmill is quantified in Section 3.2.3. The possibility of the occurrence of
phase pulling is subsequently discussed in Section 3.2.4.

3.2.1. Phase pulling for the average stride frequency higher than the treadmill oscillation frequency
An example of phase pulling is presented in Fig. 4(a) for a test with =f 0.9Hzb , =A 10mm, =f 0.94Hzp , =h 1.81m and
=m 75kgp (see Table 3). The phase angles corresponding to the right and left leg touchdowns, denoted by ● and ○ re-

spectively, do not evolve in equal increments but vary non-linearly. To make this clear, best fit straight lines were fitted to
the data in ranges in which the phase angles evolve distinguishably faster and slower and denoted in Fig. 4(a) by lines
underlying data points. Faster evolution of phase angles in the range from π to π2 for the right leg, and in the range from 0 to
π for the left leg, are in fact compatible since the corresponding phase angles for both legs are shifted exactly by π (see
Section 2.4).

The distribution of phase angles and its consequences are presented in more detail in Fig. 4(b) to (d). The phase angles
presented in Fig. 4(a) are plotted against time, which is consistent with the plot of the time between heel strikes, TTD,
presented in Fig. 4(b). The regions in Fig. 4(b) where the values of time between heel strikes fall consistently below the
mean value, denoted by a dashed line, i.e. in time intervals 11 to 20 s, 40 to 48 s and 66 to 73 s, are representative of the
regions in Fig. 4(a) where the patterns of phase angles have the steepest negative gradients. In those cases the subject
walked with a stride frequency which was relatively higher (up to approximately 0.1 Hz) than the treadmill lateral vibration
frequency. This can be seen by relating data points in Fig. 4(b) to the black line representing half of the bridge vibration
period at ( )−f2 b

1. Conversely, the values in Fig. 4(b) which lie at the top of the plot indicate stride periods in the vicinity of
the treadmill lateral vibration period, i.e. time intervals 0 to 11 s, 20 to 40 s, 48 to 66 s and 73 to 75 s, hence regions where
the phase angle evolves more slowly in Fig. 4(a).

Fig. 4(c) presents histograms of phase angles for the right and leg touchdowns with a bin size of π/16. The distributions of
the phase angles for both legs are clearly non-uniform with the touchdowns of the right leg occurring predominantly with
phase angles in the range from π/8 to π17 /16 and the touchdowns of the left leg occurring predominantly with phase angles
in the range from 0 to π/16 and from π18 /16 to π31 /16. The ranges of densification of phase angles for both legs are in fact
compatible.

Fig. 4(d) presents the normalised power spectrum of the time history of the time between heel strikes, from the data
presented in Fig. 4(b), obtained using the Lomb-Scargle algorithm. It can be seen that there is a dominant sinusoidal
component of the signal at a frequency of 0.037 Hz, which has a significance level greater than 0.999. This component,
corresponding to the beating frequency between the treadmill lateral oscillation frequency and the average pedestrian

Fig. 3. Pedestrian behaviour and its consequences in the case of phase drift identified for =f 0.9Hzb , =A 5mm, =f 1.09Hzp . Phase angles for the right and
left leg touchdowns are denoted by ● and ○, respectively.

Table 3
Details of tests in which phase pulling was identified.

Gender Height [m] Mass
mp [kg]

Vibration am-
plitude [mm]

Vibration fre-
quency [Hz]

Average stride
frequency fp
[Hz]

Average tread-
mill velocity
[ms�1]

Normalised equiva-
lent added damping
ΔC m/ p [s�1]

Normalised equiva-
lent added mass
ΔM m/ p [–]

male 1.84 85 5 0.76 0.72 0.8 �9.05 �1.39
male 1.76 56 5 0.9 0.87 1.1 �8.73 �0.13
malea 1.81 75 10 0.9 0.94 1.2 �0.35 0.11
malea 1.81 75 10 0.9 0.93 1.2 1.8 0.2
female 1.64 51 10 1.1 1.08 1.7 �0.53 0.33

a denotes the same subject.

M. Bocian et al. / Journal of Sound and Vibration 392 (2017) 382–399 387



stride frequency and having a period of approximately 27 s, reveals itself in Fig. 4(b) in a wavelike pattern of the time
between heel strikes with regions of low values occurring in regular intervals. Note another component of the spectrum
clearly visible at a frequency of 0.266 Hz. This component does not exceed a significance level of 0.5 which marks an upper
boundary for components which could be expected by chance [20].

3.2.2. Phase pulling for the average stride frequency lower than the treadmill oscillation frequency
A different example of phase pulling, based on data from a test during which =f 0.9Hzb , =A 5mm, =f 0.87Hzp ,

=h 1.76m and =m 56kgp (see Table 3), is presented in Fig. 5. Unlike for the data in Fig. 4(a), the gradient of the evolution of
the phase angle is here generally positive since <f fp b. However, similarly to those data, the rate of evolution of ψ changes in
different ranges. This causes bias in the distribution of phase angle, as can be seen in Fig. 5(c). In this case, however, the most
populated bins on the histograms are approximately shifted by π in comparison to those presented in Fig. 4(c) for which

>f fp b. The only significant component of variation of time between heel strikes in Lomb-Scargle power spectrum presented
in Fig. 5(d) is at a frequency of 0.033 Hz. Similarly to the case discussed in Section 3.2.1, this component corresponds to the
beating frequency between the treadmill lateral oscillation frequency and the average pedestrian stride frequency, having a
period of 30 s, approximately matching the oscillation of the signal in Fig. 5(b).

3.2.3. Phase pulling and asymmetry in energy flow between components of pedestrian-structure system
To better understand significance of phase pulling it is worth to look at the data from the point of view of energy flow

Fig. 4. Pedestrian behaviour and its consequences in the case of phase pulling identified for =f 0.9Hzb , =A 10mm, =f 0.94Hzp . (a) Phase angle for right
(●) and left (○) leg touchdowns. (b) Time between heel strikes with dashed line representing the mean value and continuous line representing half of the
treadmill vibration period. (c) Histograms of phase angles for leg touchdowns, with bin size of π/16. (d) Lomb-Scargle normalised power spectrum of time
between heel strikes with significance levels denoted by dashed lines.
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between the components of pedestrian-structure system. To this end Fig. 6 presents work done on the bridge by a pe-
destrian during each step taken between two consecutive contralateral (i.e. opposite) leg touchdowns, obtained from:

∫= ̇
( )

+
W F x dt

4
n

t

t

L b
TD n

TD n

,

, 1

where W is the work done on the bridge, n is the step number and FL is the pedestrian force. FL was taken as the difference
between the measured lateral force during the considered test (i.e. in the presence of a pedestrian) and the force from an
empty treadmill oscillating in the same prescribed motion as during that test. It was then filtered with a two-way fourth-
order Butterworth low-pass filter with cut-off frequency 6 Hz. The steps starting from the right and left leg touchdowns are
denoted by ● and ○, respectively. All data in Fig. 6 come from the test described in Section 3.2.1 ( =f 0.9Hzb , =A 10mm and

=f 0.94Hzp ) and correspond to data in Fig. 4.
Fig. 6(a) presents the time history of W . It can be seen that W evolves in regular patterns of positive and negative regions

of values and that the regions of positive values are more pronounced hence the pedestrian, on average, does positive work
on the structure. Since Δ

∼
C and W only differ in the sign and scaling factors, the pedestrian is in this case inducing a net

negative self-excited damping force. This observation has been previously made by Barker [21] and Macdonald [6] from the
output of their respective models (see Fig. 3 in [21] and Figs. 7 and 8 in [6]), but this is the first time that this asymmetric
behaviour is observed in experimental data.

The work done on the oscillating treadmill is re-plotted in Fig. 6(b) against the compatible phase angle corresponding to
the instant of touchdown, marking the beginning of the step. The densification of data points in the region of ψc from π/8 to

π17 /16, evident in closely spaced lines, dots and circles, reflects phase pulling visible in Fig. 4 (see e.g. histograms in Fig. 4

Fig. 5. Pedestrian behaviour and its consequences in the case of phase pulling identified for =f 0.9Hzb , =A 5mm, =f 0.87Hzp . (a) Phase angle for right (●)
and left (○) leg touchdowns. (b) Time between heel strikes with dashed line representing the mean value and continuous line representing half of the
treadmill vibration period. (c) Histograms of phase angles for leg touchdowns with bin size of π/16. (d) Lomb-Scargle normalised power spectrum of time
between heel strikes with significance levels denoted by dashed lines.
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(c)). It can be seen that the distribution of data points follows a sinusoidal waveform. The best sinusoidal fit to the data is
denoted in Fig. 6(b) by a black curve and its equation is given at the top of the plot. The standard error of the fit is 0.18 N m
and the adjusted R-square is 0.93, indicating that the fit describes the data reasonably well. Apart from the asymmetry of W
visible in Fig. 6(a) discussed earlier, it can be seen that the range of ψc for which W is predominantly positive, i.e. from 0 to

π0.16 and from π0.76 to π2 , is much wider than the range of ψc for which W is predominantly negative, i.e. from π0.16 to
π0.76 . Furthermore, the data points are not evenly distributed through the range of ψc, but densify around π/2, which agrees

with data in Fig. 4.
The data presented in Fig. 6 reveal the reason for different influence of the bias in the distribution of ψc on dynamic

structural stability. For example, the bias in the distribution of ψc for the two sets of data in Table 3 for which >f fp b is
similar, with ψc most often taking values in the lower half of its whole range. The timing of footsteps for the most populated
bins of ψc is such that the pedestrian does net negative work on the bridge throughout a step, hence damps its motion.
Higher skewness of ψc towards its lower range in the set of data in Table 3 for which =f 0.93Hzp implicates that, although
steps initiated at higher ψc usually generate more destabilising energy transmitted to the structure than the steps initiated at
lower ψc generating energy damping structural motion, since there are relatively fewer of them, they do not cause the
average effect of pedestrian action to be detrimental. In contrast, the distribution of ψc for the set of data for which

=f 0.94Hzp (see Figs. 4 and 6) exhibits lower skewness hence the net effect of pedestrian action is such to excite structural
vibration mode.

Fig. 6. (a) Time evolution of work done on the oscillating treadmill during steps initiated on touchdowns of the right (●) and left (○) leg. (b) Data from
(a) re-plotted against compatible phase angle. Black curve denotes the best sinusoid fitted to these data, described by the equation at the top of the plot.

Fig. 7. (a) Time evolution of work done on the oscillating treadmill during steps initiated on touchdowns of the right (●) and left (○) leg. (b) Data from
(a) re-plotted against compatible phase angle. Black curve denotes the best sinusoid fitted to these data, described by the equation at the top of the plot.
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For comparison, a set of plots for work done on the bridge by a pedestrian during each step for the test described in
Section 3.2.2 ( =f 0.9Hzb , =A 5mm and =f 0.87Hzp ) is presented in Fig. 7, which corresponds to data in Fig. 5. As in Fig. 6(a),
W in Fig. 7(a) evolves in regular patterns of positive and negative regions of values and the regions of positive values are
more pronounced hence the pedestrian, on average, does positive work on the structure. The bias in the distribution of ψc for
the set of data presented in Fig. 5, for which <f fp b, differs from the results for >f fp b presented in Fig. 4 in the preferred ψc,
which most often falls into the higher half range as can be seen in Fig. 7(b). Consequently, work done on the bridge during
most of the steps is positive and Δ

∼
C is strongly detrimental (see Table 3). Generally lower magnitudes of W and its slightly

different envelope (not shown in Fig. 7(b) explicitly due to relatively high variability in pedestrian behaviour) reflect
changes in pedestrian-structure interaction pertaining to the treadmill vibration and pedestrian parameters.

3.2.4. Possibility of occurrence of phase pulling
Phase pulling occurred for cases when the average pedestrian stride frequency was within 0.05 Hz (6%) of the lateral

vibration frequency, but the maximum magnitude of the difference between the treadmill oscillation and pedestrian stride
frequencies reached 0.1 Hz (11%). This suggests phase pulling could be relatively common where the structural frequency
falls within the range of typical stride frequencies.

Phase pulling was not observed in the tests with the treadmill oscillating with a lateral displacement amplitude of
15 mm, which was the highest amplitude applied in the tests. However, since only six tests were conducted in these
conditions and the criteria adopted in the identification of phase pulling are quite stringent, the possibility of occurrence of
this mechanism for displacement amplitudes higher than 10 mm (see Table 3) cannot be discounted.

It is well known that the average walking speed of pedestrians in a crowd reduces with increasing crowd density [22],
and that the walking speed has a positive correlation with the walking frequency [23,24]. Therefore, given the effect of the

Fig. 8. Pedestrian behaviour and its consequences in the case of frequency entrainment for = =f f 0.9Hzb p and =A 10mm. (a) Phase angle for right (●) and
left leg touchdowns (○). (b) Time between heel strikes with dashed line representing the mean value. (c) Histograms of phase angles for leg touchdowns
with bin size of π/16. (d) Lomb-Scargle normalised power spectrum of time between heel strikes with significance levels denoted by dashed lines.
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phase pulling behaviour above, a sudden increase in structural vibration amplitudes could occur when the velocity of a
crowd reduces thus causing a decrease in pedestrians’ stride frequencies to below the frequency of the excited structural
mode. Interestingly, this effect could explain why the pedestrians on the widely publicised video footage of the opening day
on the London Millennium Footbridge, during a period of instability, appeared to alternately fall in and out of synchrony
with the lateral bridge motion [25]. Furthermore, the outputs from the IPM, derived based on an assumption of invariance of
stride frequency, suggest that the magnitudes ofΔC andΔM are larger for lower stride frequencies (hence walking speeds),
causing a more detrimental negative damping effect [7]. Therefore it can be expected that the walking speed of pedestrians
in a crowd can be an important factor in determining the dynamic structural stability [12].

The discovered phase pulling mechanism is remarkably similar to the behaviour of the IPM previously used to model
pedestrian actions on vertically oscillating structures [26,27]. Unsynchronised and synchronised pedestrian motion was
shown to be separated by intermittency occurring when the pedestrian stride frequency and the frequency of the excited
mode are relatively close. In this dynamic regime the speed of evolution of the instantaneous phase angle changes cyclically
in different phase angle ranges (see Fig. 6 in [27]), as the pacing frequency alternately gets closer to the structural vibration
frequency and drifts further apart from it in prolonged periods. This is in line with phase pulling presented in Section 3.2.

It was speculated by McRobie et al. [14] that similar behaviour, albeit unimodal –meaning there is only one phase pulling
pattern, could occur for walking on a laterally oscillating structure. The subsequent preferential phase frequency entrain-
ment triggered by increasing vibration amplitudes could bias the average ΔC towards more detrimental values, in line with
those measured on full-scale structures. This hypothesis is further explored in Section 4.

3.3. Persistent frequency locking (synchronisation)

If persistent frequency locking occurs the phase angles for each leg are expected to be almost constant values. Only two
cases in which frequency locking was a dominant stepping behaviour throughout the test were identified in the experi-
mental data, although a few cases of intermittent frequency locking were also identified and are discussed in Section 3.4.
These two cases in which =f f/ 1p b and =f f/ 2p b , respectively, are presented in Sections 3.3.1 and 3.3.2.

3.3.1. Frequency locking for =f f/ 1p b (frequency entrainment)
The evolution of the phase angle for the case of frequency entrainment is presented in Fig. 8(a). The time history of time

between heel strikes is presented in Fig. 8(b) with a mean value of 0.556 s, corresponding to half the treadmill vibration
period at ( )−f2 b

1, denoted by a dashed line. It can be seen that the values of time between heel strikes are spaced closely
around the mean.

Fig. 8(c) presents the distribution of phase angles. It can be seen that the phase angles are concentrated in narrow bands
of π19 /16 to π23 /16 for the right leg and π2 /16 to π7 /16 for the left leg touchdowns, respectively.

Only one dominant component at a frequency of 0.9 Hz, having significance level higher than 0.999, was identified in the
normalised power spectrum presented in Fig. 8(d). This indicates that there is a pattern of variation of heel strike intervals
with a frequency of 0.9 Hz, i.e. once per full gait cycle, so there is some asymmetry of the gait, but there is no other
significant component of the power spectrum.

For the set of data presented in Fig. 8 the pedestrian did work on the moving structure. The right leg touchdowns
occurred just before the treadmill started moving to the right and the left leg touchdowns occurred just before the treadmill
started moving to the left (see Fig. 2), so the pedestrian force throughout each step was mostly applied in phase with the
treadmill velocity. As a result, the equivalent added damping for this case, identified as –1008 Ns/m, is strongly detrimental
for structural stability, while the equivalent added mass is negligible.

3.3.2. Frequency locking for =f f/ 2p b
Another example of frequency locking is presented in Fig. 9, for a treadmill amplitude of 10 mm and frequency of 0.54 Hz.

It can be seen in Fig. 9(a) that the phase angles for right and left leg touchdowns take values in two distinct ranges separated
by π. This means that the subject's stride frequency was twice the treadmill vibration frequency. The time history of the time
between heel strikes is presented in Fig. 9(b) with the mean value of 0.462 s, corresponding to a quarter of the treadmill
vibration period, denoted by a dashed line.

Fig. 9(c) presents the distribution of phase angles. It can be seen that the phase angles are concentrated in two narrow
bands of 0 to π3 /16 and π to π19 /16 for the right leg, and π8 /16 to π11 /16 and π24 /16 to π27 /16 for the left leg touchdowns,
respectively. There is only one dominant component at a frequency of 0.54 Hz, with a significance level higher than 0.99, in
the Lomb-Scargle normalised power spectrum presented in Fig. 9(d). This means that there is a pattern of variation of heel
strike intervals which occurs at the treadmill lateral oscillation frequency.

3.4. Intermittent frequency entrainment

This type of behaviour occurs when the evolution of phase angle is irregular, meaning that the rate of change of phase
angle changes in prolonged periods, and the pedestrian stride frequency exhibits intermittent frequency entrainment.

An example case of intermittent frequency entrainment is presented in Fig. 10 for =f 0.9Hzb and =A 10mm. Frequency
entrainment can be seen in Fig. 10(a) for the regions where phase angle for the right leg takes values close to π0.29 and
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π0.99 . These regions are separated by periods during which the average (over several steps) rate of change of phase angle
deviates significantly from zero. The highest positive and the lowest negative gradients of the evolution of phase angle
correspond to the periods in which the pedestrian walked with the lowest and highest stride frequency, respectively, falling
below and above the treadmill lateral vibration frequency (cf. Fig. 5 and Fig. 4, respectively). This can be seen in Fig. 10(b) by
tracking changes in time between heel strikes. The distributions of phase angle on histograms in Fig. 10(c) show irregular
patterns, with the most populated bins corresponding to the entrained phase angles for both legs. However, unlike in Figs. 8
(c) and 9(c), phase angles are not confined to few, but spread to relatively many neighbouring bins. Fig. 10(d) shows several
statistically significant components of variability of data in Fig. 10(c), at frequencies of 0.008, 0.877, 0.885 and 0.9 Hz, which
reflect changes in pedestrian temporal stepping behaviour throughout the test.

3.5. Non-uniform distribution of phase angles

Non-uniform distribution of phase angles is characterised by randomness in the collected data, in particular lack of
evidence of consistency of gait parameters and any type of phase attraction. The phase angle evolves in these cases similarly
to the one presented in Fig. 10, however, no intermittent phase locking periods are present.

4. The effect of frequency locking on structural stability

Preferential phase frequency entrainment whereby a pedestrian synchronises their frequency to the frequency of a

Fig. 9. Pedestrian behaviour and its consequences in case of frequency locking for =f 0.54Hzb , =A 10mm and =f 1.08Hzp . (a) Phase angle for right (●) and
left (○) leg touchdowns. (b) Time between heel strikes with dashed line representing the mean value. (c) Histograms of phase angles for leg touchdowns
with bin size of π/16. (d) Lomb-Scargle normalised power spectrum of time between heel strikes with significance levels denoted by dashed lines.
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moving structure, adjusting their phase such as to increase structural motion, has been postulated as an explanation for
discrepancy in ΔC estimated from the bottom-up and top-down approach (see Section 1). The applicability of this as-
sumption is explored in this section based on experimental data. The experimental results are also related to the predictions
of the IPM, which is currently the most promising template of pedestrian behaviour on laterally oscillating structures.

Frequency locking was identified for 6 subjects, in 9 out of 137 tests. The details of these tests, hereafter referred to as T1
to T9, are given in Table 4. During some of the tests the frequency entrainment was intermittent (see Section 3.4) and the
subject entrained more than once, but never at the same phase. Therefore Table 4 includes 13 records from all frequency
locking periods, a necessary condition for inclusion being that the period lasted for at least 10 s and the variability of phase
angle quantified in terms of standard deviation had to be within 70.05π. This prevented spurious identification of syn-
chronisation at the same time allowing for the possibility of intermittency in this behaviour. For completeness, Table 4 also
includes the results from the test during which a subject walked with the stride frequency equal twice the treadmill lateral
oscillation frequency (T3), discussed in Section 3.3 and presented in more detail in Fig. 9.

Frequency entrainment occurred most often during tests conducted at the vibration amplitude and frequency of 10 mm
and 0.9 Hz, respectively. These are also the vibratory conditions applied in the most number of tests (44 out of 137).
Considering all the data in Table 4, the average body-mass normalised equivalent added damping and mass were, re-
spectively, �3.32 s�1 and �0.49. Converting these values to units allowing comparison with data in Table 1 while ac-
counting for the population statistics in Table 4, by taking the weighted means with relation to the pedestrian mass and the
duration of frequency entrainment period, these correspond to �415 N s m–1 and �42 kg for and ΔM , respectively.
Therefore, on average, based on the data in Table 4, synchronisation had a relatively strong negative added damping effect

Fig. 10. Pedestrian behaviour and its consequences in the case of intermittent frequency entrainment for =f 0.9Hzb and =A 10mm. (a) Phase angle plot for
right (●) and left (○) leg touchdowns. (b) Time between heel strikes with dashed line representing the mean value. (c) Histograms of phase angles for leg
touchdowns with bin size of π/16. (d) Lomb-Scargle normalised power spectrum of time between heel strikes with significance levels denoted by dashed
lines.
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detrimental and, contrary to what might be expected, pedestrians would effectively reduce the modal mass of the vibrating
mode. This may give some support to the preferential phase entrainment notion suggested by McRobie [14]. However, in the
derivation of this average value,ΔC from Table 4 were reweighted by the duration of the frequency entrainment periods and
hence were strongly biased towards the result from a single test in which frequency entrainment was the dominant pe-
destrian stepping behaviour and ΔC was overall the most detrimental.

It may be speculated that phase pulling is an intermediate step towards frequency entrainment. However, no definite
phase preference during the synchronisation periods can be seen in the data presented in Section 4, which would be then
expected. The results reported in [5] seem to concur in this respect. This might suggest that the test subjects synchronised
with the treadmill oscillation at the identified phases by chance rather than due to a synchronisation transition [16].
Therefore, it is believed that synchronisation is not the main mechanism causing the discrepancy between the self-excited
forces derived using bottom-up and top-down approaches (see Section 1).

To be able to relate the current results to the predictions of the IPM, analytical formulations of the quasi self-excited
forces for the case of frequency entrainment are first presented in a form allowing direct comparison and some relevant
issues related to the performance of the IPM are discussed in the next section.

4.1. Analytical formulation of the quasi self-excited forces for frequency entrainment

Analytical expressions describing the phase-dependent magnitudes of the quasi self-excited forces for the IPM [6] in the
case of frequency entrainment were derived by McRobie [28]. Converting these expressions to account for the phase angle
convention adopted herein (see Section 2.4), these are:
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In the above expressions mp is the pedestrian mass, Ω = g l/p is the angular frequency of the IPM with g and l denoting

Table 4
Body weight normalised equivalent added damping and mass for all tests in which synchronisation of pedestrian footsteps to the lateral treadmill os-
cillation was identified. Entrained compatible phase is the upper boundary of the most populated bin within a histogram of a compatible phase angle
having a bin size of π/16.

Test ID Gender Height h
[m]

Mass mp

[kg]
Vibration ampli-
tude A [mm]

Vibration fre-
quency fb [Hz]

Entrained compa-
tible phase ψc

[×π/16; rad]

Normalised equivalent
added damping ΔC m/ p

[s�1]

Normalised equivalent
added mass ΔM m/ p

[n/a]

T1 male 1.76 78 5 0.9 30 �4.99 2.36
T2 male 1.87 104 5 0.9 2 8.48 1.69
T3b,a male 1.86 92 10 0.54 18 & 2 �2.47 �2.07
T4 male† 1.81 75 10 0.9 16 �5.51 �2.07
T4 male† 1.81 75 10 0.9 13 4.71 �1.88
T5 male† 1.81 75 10 0.9 16 �6.59 �2.17
T6a male‡ 1.99 87 10 0.9 22 �11.61 �0.02
T7 male‡ 1.99 87 10 0.9 2 0.26 0.79
T7 male‡ 1.99 87 10 0.9 19 �8.84 �0.74
T8 male‡ 1.99 87 10 0.9 5 1.55 0.37
T8 male‡ 1.99 87 10 0.9 16 �5.74 �0.92
T9 male‡† 1.84 85 15 0.9 13 1.75 �1.46
T9 male‡† 1.84 85 15 0.9 18 �6.18 �1.61

†, ‡ and ‡† denote the 3 subjects for which phase entrainment was identified in more than one test or at multiple phases.
a denotes tests during which synchronisation was the dominant stepping behaviour (see Section 3.3).
b denotes the test during which the subject's stride frequency was twice the treadmill lateral oscillation frequency (see Section 3.3.2).

M. Bocian et al. / Journal of Sound and Vibration 392 (2017) 382–399 395



gravitational acceleration and pendulum leg length, respectively, and bmin is the constant defined by Hof et al. [29] as the
margin of stability. The coefficients κ0 and κ1 allow, within the solution of the IPM, for different variants of the foot pla-
cement control law to be readily considered:
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where u is the lateral position of the foot at the instant of heel strike (taken at a point), xCoM is the lateral position of the
centre of mass (CoM), xb is the lateral position of the bridge and dots over symbols denote differentiation with respect to
time. According to Eq. (8), the pedestrian will place their foot laterally (i.e. in the frontal plane) at a position dependent on
the lateral velocity of the CoM at the instant of heel strike, offset by bmin. In the original formulation of the IPM [6] two
versions of Eq. (8) were presented, since the velocity of CoM could be taken relative to the bridge, or to an absolute reference
point. To account for these two scenarios, κ0 and κ1 take values κ κ[ ] = [ ], 0, 00 1 for the relative velocity control law, when ̇xCoM

is taken relative to the bridge ( ̇xCoM
rel ), and κ κ[ ] = [ ], 0, 10 1 for the absolute velocity control law, when ̇xCoM is taken relative to a

stationary point outside the bridge ( ̇xCoM
abs ).

It is worth noting that Eqs. (5) and (6) show dependence of the self-excited forces on bmin and A via Eq. (7), which is not
the case for the IPM for phase drift. In that case the long-term average pedestrian force is equal to the sum of the pedestrian
force for walking on stationary ground and the self-excited forces. The former is proportional to bmin but the latter are
independent of it. For the case of phase entrainment the force for walking on stationary ground and the dominant self-
excited force act at the same frequency, so they cannot be distinguished from each other in empirical measurements. To be
compatible with this, Eqs. (5) and (6) treat them together, so hence give amplitude dependent equivalent added damping
and mass. However, since according to the analysis, part of the forcing is not actually self-excited, the forces from Eqs.
(5) and (6) will be hereafter termed quasi self-excited forces.

4.2. Comparison of the predictions of the IPM with experimental data

Additional steps in data processing are necessary for the experimental results to be compatible with the outputs of the
IPM described in Section 4.1 thus allowing direct comparison. Human walking gait comprises of single and double support
phases in which one and both feet are in contact with the walking surface, respectively. For simplicity, the IPM does not
model the double support stance phase and the transition between steps is taken as instantaneous, occurring at the mid
double support. Clearly, this instant does not correspond to the instant of foot placement identified from the experimental
data which marks the beginning of the double support phase of gait and was used to obtain ψc. Therefore, the identified
phase angle was offset by half the average duration of the double support period, normalised by the bridge vibration period
and converted to an angular scale.

The following sections present the results of comparison of the predictions of the IPM with experimental data. The
comparison is split into two parts addressing amplitude and phase dependence of the quasi self-excited forces, respectively.
Since the pedestrian mass, mp, scales ΔC and ΔM directly, the quasi self-excited forces are presented normalised by that
parameter (Δ

∼
C and ΔM ). The amplitude dependence of Δ

∼
C and ΔM is shown based on results from T1, T2, T4, T5 and T9. This

is to account for the influence of the leg length (via the term Ω = g l/p in Eqs. (5) and (6)) which is correlated to the
pedestrian height, since T6, T7 and T8 were conducted with a pedestrian much taller than the rest of the group (see Table 4).
Furthermore, since the most complete set of results obtained for a single pedestrian for the same treadmill vibratory
conditions was assembled for the latter set of tests, that set is used to show the phase dependence of Δ

∼
C and ΔM . For the

same reason only the results from that latter set of tests are used in quantification of the predictive power of the IPM. T3 is
not further considered since this was the only test during which the pedestrian locked their stride frequency to the fre-
quency of the lateral treadmill motion with a 2:1 ratio.

4.2.1. Amplitude dependence of the quasi self-excited forces in the case of frequency entrainment
The following values of parameters were used to obtain the quasi self-excited forces from Eqs. (5) and (6):

= =f f 0.9Hzb p , =b 15.7mmmin , {= }A 5, 10, 15 mm and, as in Hof et al. [30], =l l1.34 leg. The representative value of the leg
length, lleg, had to be chosen based on the population statistics from T1, T2, T4, T5 and T9 (see Table 4). The relationship
between height and leg length, established (although not given explicitly) for male subjects by Pheasant [31] was used:

= − ( )l h0.7028 0.3091 9leg

where h is the height in metres taken from Table 4, to find the weighted mean lleg over all subjects from the relevant

population (=0.97m). The amplitude dependence of Δ
∼
C and Δ ∼

M in the case of frequency entrainment, for the experimental
results and from the IPM Eqs. (5) and (6), based on both relative and absolute velocity foot placement control laws, is shown
in Fig. 11.

It can be seen in Fig. 11 that the experimental points generally agree with the output from the IPM in sign. A very good
match for both Δ

∼
C and ΔM can be seen for T1 and T2, for which the vibration amplitude was 5 mm, for the foot placement

control law based on ̇xCoM
abs . A reasonable match for both Δ

∼
C and ΔM can also be seen for T9, for which the vibration

amplitude was 15 mm, although the foot placement control law based on ̇xCoM
rel seems more applicable in this case.

M. Bocian et al. / Journal of Sound and Vibration 392 (2017) 382–399396



Experimental data from T4 and T5, for which the vibration amplitude was 10 mm, seem to match the results from the IPM
for ΔM derived with the foot placement control law based on ̇xCoM

rel . This is also true for Δ
∼
C obtained during T4 at the lower

ψc, however, less agreement can be seen for Δ
∼
C obtained for T4 at the higher ψc and for T5, for which the experimental data

are shifted towards lower ψc relative to values from the IPM. It is noteworthy that these data points are near the zero
crossing, where the rate of change of the function in Eq. (5) is relatively high, hence small lateral shifts in ψc cause large
discrepancies between the results.

4.2.2. Phase dependence of the quasi self-excited forces in the case of frequency entrainment
The following values of parameters were used to obtain the quasi self-excited forces from Eqs. (5) and (6):

= =f f 0.9Hzb p , =b 15.7mmmin , =A 10mm and =l 1.46m. The phase dependence of Δ
∼
C and ΔM in the case of phase en-

trainment, for the experimental results from T6, T7 and T8 (see Table 4) and data from the IPM, based on both relative and
absolute velocity foot placement control laws, is shown in Fig. 12.

It can be seen in Fig. 12 that the foot placement control law based on ̇xCoM
rel gives a better match with the experimental

results in the case of Δ
∼
C , although Δ

∼
C for T6 falls well below the model prediction. However, a better match for ΔM can be

seen for the output of the IPM based on ̇xCoM
abs . The normalised root-mean-square errors, calculated by dividing root-mean-

square error by the mean of five experimental observations, are �32% and �69% for Δ
∼
C , and 30% and 10% for ΔM , for the

output of IPM based on ̇xCoM
rel and ̇xCoM

abs , respectively. These quantitative results, analogous to the coefficients of variation,

Fig. 11. (a) Normalised equivalent added damping and (b) normalised equivalent added mass for synchronisation periods during tests T1, T2, T4, T5 and T9.
Black and grey curves represent the results from the IPM based on relative and absolute velocity foot placement control law, respectively.

Fig. 12. (a) Normalised equivalent added damping and (b) normalised equivalent added mass for synchronisation periods during tests T6, T7 and T8. Black
and grey curves represent the results from the IPM based on relative and absolute velocity foot placement control law, respectively.
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should be taken with care since the limited number of experimental data does not guarantee strong statistical power.
Considering all data in Fig. 12, it can be concluded that the test subject, on average, synchronised their gait to the treadmill
motion such as to input energy into the vibrating mode.

4.3. Applicability of the inverted pendulum pedestrian model

The results presented in Section 4.2 suggest that the IPM performs well in explaining the trend in quasi self-excited
forces in the case of frequency entrainment. Although there is some scatter of experimental data around the simulated
results, some of it can be associated with variability in pedestrian gait throughout a test. An issue which still needs to be
addressed is the form of the foot placement control law which should be used within the IPM and this requires further
investigations [32], and indeed other refinements of the model could be considered. Nevertheless, it can be concluded that
the IPM is a good template for pedestrian behaviour on laterally oscillating structures. It is the only model currently
available which has been shown to be able to explain all the components of pedestrian lateral loading on laterally oscillating
structures in the presence of single- [11] and multi-modal [33] structural motion. Furthermore, the low-dimensionality of
the model means it easily lends itself to modifications allowing the phase pulling mechanism to be incorporated [14].

5. Conclusions

A variety of pedestrian stepping behaviour on laterally oscillating structures has been identified experimentally in this
study. Phase drift, in which the pedestrian stride frequency differs from the frequency of structural motion so the relative
phase evolves at a nearly constant rate, is the most common behaviour. This supports the assumptions made in the use of
the inverted pendulum pedestrian model [6,7,12]. However, the evidence has been found for adaptive timing of pedestrian
footsteps, classified in this study as phase pulling. This behaviour, identified here for the first time in experimental data,
reveals itself in a pattern of evolution of phase between the pedestrian and structural motion in which the rate of change of
phase changes systematically in well-defined phase ranges. This observed weak form of modulation of the timing of
footsteps can cause the magnitudes of the self-excited forces to be significantly changed in comparison to the case of phase
drift.

The discovered phase pulling mechanism can apparently cause a different bias in the timing of footsteps, depending on
whether the stride frequency falls below or above the lateral oscillation frequency. This is similar to predictions of the
inverted pendulum pedestrian model previously studied in the context of walking on vertically oscillating structures [26,27].
The most detrimental effect for structural stability is when the stride frequency falls below the frequency of the structural
mode. The equivalent added damping can then fall well below the values obtained frommeasurements on full scale bridges,
reaching approximately �9 N s m–1 s/m per kilogram of pedestrian mass. This is particularly pronounced for relatively slow
walking speeds, indicating that structural instability could develop quickly when the speed of pedestrians reduces, e.g. as
can be expected with the densification of a crowd, such that their stride frequencies fall below the frequency of the
structural mode.

Evidence for persistent and intermittent frequency locking has also been found, although this behaviour was relatively
rare. The lack of consistency of the entrained phase between the pedestrian and the bridge motion in these cases suggests
that pedestrians might not have a well-defined preferred synchronisation mode, at least in the experimental regime tested.

Comparison of the experimental data and outputs from the inverted pendulum pedestrian model in the case of fre-
quency entrainment has revealed that the model can capture the dependence of (quasi) self-excited forces on the amplitude
of motion and the entrained phase. However, further investigation is necessary to determine the foot placement control law
applicable for walking on laterally oscillating ground and thus calibrate the model.

The findings from this study support the argument that the tendency of pedestrians to synchronise with lateral structural
motion is weak, at least for the vibration conditions applied in the tests, and that synchronisation is not the main me-
chanism leading to dynamic instability. Instead, it is phase pulling that may explain the under-estimation of negative
damping coefficients in models and results from treadmill tests in comparison with previously reported site measurements.
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