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Summary 

 

Despite the evidence that noise does not conform to the 

White Gaussian Noise (WGN) assumption, the robustness 

of new processing and imaging algorithms are still tested 

with WGN. This paper presents an alternative noise 

modelling method, based on multivariate statistics, to 

generate realistic noise for incorporation in synthetic 

datasets. The realistic noise model captures the complex 

nature of noise arising from multiple sources and the 

varying signal-to-noise (SNR) observed at the different 

stations across the array. This complex noise structure 

results in microseismic events being detected at lower SNR 

than would be implied using a WGN model. It also 

successfully re-creates smearing of energy during imaging 

of microseismic events at low SNRs. This modelling 

method provides an opportunity to test the robustness of 

new algorithms under realistic noise conditions prior to 

recording data in the field. 

 

Introduction 

 

Synthetic microseismic datasets are commonly used to test 

the sensitivity/robustness of imaging algorithms to noise, 

providing a confidence limit onto the conditions under 

which an algorithm can be used to accurately identify an 

event and its properties such as fracture location, 

orientation and length. To provide a closer representation to 

recorded seismic data, noise is commonly added to 

synthetic microseismic datasets. 

 

Despite the evidence that noise does not conform to the 

WGN assumption, the robustness of new processing (e.g. 

Zhang et al., 2015) and imaging (e.g. Trojanowski and 

Eisner, 2015) algorithms are still commonly tested using 

WGN. Since this is not a representation of realistic noise, it 

becomes unclear as to how an algorithm will handle noise 

from a field dataset, leading to uncertainty in the accuracy 

of identified events and their derived properties. Other 

modelling methods include using distributed surface 

sources as demonstrated by Dean et al. (2015), or 

convolving a sample of recorded noise with broadband 

white noise as proposed by Pearce and Barley (1977). 

Chambers et al. (2010) directly incorporate a sample of 

recorded noise into the computed dataset, commonly 

referred to as creating a semi-synthetic dataset. The first 

method fails to capture the complex combination of 

meteorological, geological and geographical effects on 

noise (Dean et al. 2015) while the latter two methods 

require noise to be collected prior to modelling therefore 

making them of little use where noise data is unavailable. 

 

This study introduces a novel modelling method to create 

realistic noise models to be incorporated into the 

production of synthetic microseismic datasets. Comparing 

synthetic datasets with WGN, modelled realistic noise and 

recorded noise, this paper investigates the extent to which 

the noise models imitate recorded noise focusing on signal 

to noise ratio (SNR) across the array and the effect of noise 

on microseismic event detection and imaging procedures. 

 

Method 

 

The modelling method used in this paper is an extension of 

multivariate normal modelling that uses the covariance 

matrix to recreate multidimensional structures in the data. 

Our Isolated COVAriance-based (ICOVA) modelling 

method requires individual noise types to be identified and 

uses multiple realisations of each noise type to compute a 

mean vector, µ, and a covariance matrix, C, which form the 

basis of the noise model. The modelling workflow is 

illustrated in Figure 1, 

 

where the lower triangular of the covariance matrix is 

obtained using a Cholesky decomposition. The final noise 

model of a realization of a noise type is generated by,  

Figure 1:  ICOVA Modelling workflow 

d=Lb+µ                                           (1) 
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where b is a random basis vector with a normal Gaussian 

distribution and µ is the mean vector obtained from the 

recorded noise realisations.  

 

Once the desired noise model is generated it is 

superimposed on synthetic waveform data. Two other 

synthetic datasets have been created for comparison – a 

synthetic with WGN, and a semi-synthetic with recorded 

noise superimposed on synthetic waveform data. The 

waveform data is scaled to provide the desired array SNR. 

The following analysis is performed on all three synthetic 

datasets. 

 

As a first port-of-call, SNR is calculated for the full array 

and for each station within a 0.2 second time window 

proceeding the first break. The SNR is calculated using 

where SRMS and NRMS are the root mean squares of the 

amplitudes of the signal and noise, respectively, over the 

defined time window. The SNR analysis was performed on 

the raw data whilst the event detection and location 

investigation is performed on the data after a 10-60Hz 

bandpass was applied. 

 

To investigate the effect of noise on automated event 

detection, the ratio between the Short Term Average (STA) 

recorded amplitudes and the Long Term Average (LTA) 

amplitudes is calculated over a sliding window, similar to 

that used by Stork et al. (2014). The window lengths and 

event threshold were determined based on the STA/LTA 

results calculated on the semi-synthetic dataset and a 

minimum of 5 stations must observe the event before the 

trigger will occur. 

 

We also investigate detection and location in the image 

domain. Imaging was performed using a conventional 

diffraction stack imaging procedure (Zhebel et al., 2011). 

As the source is explosive, there is no need for a correction 

for moment tensor in this case. However, the technique can 

also be applied in situations where correction for the source 

mechanism is required. 

 

Data 

 

The ‘noise’ data used in this study was recorded on a 

permanent surface array at the Aquistore CO2 storage site 

in Saskatchewan, Canada. An initial noise analysis was 

performed by Birnie et al. (2015) which identified and 

classified different noise signals present in the data. The 

noise types modelled in this paper are the previously 

identified stationary and pseudo-non-stationary noise 

signals. 

 

The waveform data is generated using E3D (Larsen and 

Harris, 1993) and aims to imitate a microseismic event 

occurring at the reservoir level of the Aquistore CO2 

storage site. The modelled event is an explosive source 

below the middle of the N-S/E-W cross-shaped array at a 

depth of 3140m, where the subsurface is modelled as a 16-

layer, laterally homogeneous, isotropic medium with 

properties as  described by Roach et al. (2015). 

 

Results 

 

The noise modelling results are given in the Figure 2. 

Comparing the noise modelling results of ICOVA (a,d) and 

WGN (b,e) with the recorded noise (c,f), it is clear that in 

both the time and frequency domain ICOVA provides a 

much closer representation of recorded noise. The ICOVA 

model also observes the change in noise types at ~60 

seconds. Two seconds of data around the event arrival are 

given in Figure 2g-i for each synthetic dataset. 

 

Figure 3a+b, illustrate the results from the SNR 

investigation for the N-S and E-W receiver profiles 

respectively. All synthetics have an array SNR of one 

however it is clear that the individual stations’ SNR varies 

greatly across the array, in part due to the increased noise 

level around the center of the array. This variation is 

captured on the ICOVA synthetic dataset however is not 

observed on the WGN synthetic dataset. The SNR of the 

ICOVA data does not fully match the Semi-Synthetic due 

to the fact that the modelling method aims to recreate the 

statistical properties of the noise and not identically 

replicate the recorded noise.  

 

Figure 3c details the number of receivers (at different array 

SNRs) that observe an event in the STA/LTA investigation. 

The synthetic with WGN does not trigger 5 or more traces 

until a SNR of 1.5. Both the semi-synthetic and the 

synthetic with the ICOVA noise begin triggering by a SNR 

of 1 and both datasets show an increasing trend with the 

number of stations triggered and the array SNR. This is 

likely due to the uneven SNR distribution observed across 

the array therefore stations which individually have a 

higher SNR are likely to trigger before stations in noisier 

sections of the array.  

 

The N-S receiver slice of the imaging results are illustrated 

in Figure 4. Due to the array design all images display a 

diffraction smile. While both the ICOVA and WGN 

datasets perform similarly to the semi-synthetic at SNRs of 

1 and above, at lower SNRs the recorded noise starts to 

contaminate the image resulting in energy being smeared 

across the image (Figure 4i). This smearing is not observed 

on the data with WGN due to the random nature of the 

noise however it is observed on the ICOVA dataset which 

maintains the spatio-temporal structure of the noise signals 

from which it was modelled. 

 

SNR=SRMS/NRMS                                      (2) 
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Figure 2: 2 minutes of data in time (row 1) and frequency (row 2) for WGN (column 1), ICOVA noise (column 2), and recorded noise 

(column 3). Final row illustrates 2 seconds in which the first arrival from a synthetic microseismic event is observed at an array SNR=4.  

 
Figure 3: Individual stations’ signal-to-noise ratio across (a) N-S profile and (b) E-W profile, and (c) STA/LTA results detailing the 

number of stations triggered at different array SNRs. Red illustrates WGN, blue illustrates ICOVA noise and black illustrates 

recorded noise. 



Effect of noise on microseismic event detection and imaging 

Conclusions 

 

This paper introduced a noise modelling method to 

generate realistic noise models that replicate the complex 

spatio-temporal structures observed in recorded noise. 

Unsurprisingly, in all the analyses performed in this study, 

WGN failed to imitate recorded noise, particularly at low 

SNRs. The ICOVA modelling method better represented 

the noise signals in both the time and frequency domain, 

the varying SNR across the array, and the effect of noise on 

event detection and imaging procedures. Providing a closer 

comparison to recorded noise means that the synthetic 

dataset using noise modelled with the ICOVA method 

provides a better opportunity to investigate the effect of 

noise on processing and imaging algorithms.  

 

An additional benefit of the ICOVA modelling method is 

that once noise types have been identified then their 

modelling parameters, L and µ, can be saved for future 

models therefore removing the requirement for the full 

noise identification and modelling procedure to be 

repeated.  

 

Due to the requirement of multiple realisations of a noise 

type prior to modelling with the ICOVA method, this study 

has not included rare, non-stationary signals observed in 

the data, such as passing cars. Alternative methods for 

modelling such noise signals include using a linear 

prediction filter method which can model non-stationary 

signals and then be combined with other noise models 

created using the ICOVA method. Future work will aim to 

identify additional noise types and analyse the effect they 

have on event detection and imaging algorithms.  
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Figure 4: Slice of diffraction stack imaging results for N-S receiver profiles of synthetic datasets with WGN (column 1), ICOVA 

noise model (column 2) and recorded noise (column 3) at array signal-to-noise ratios of 1.5 (row 1), 1 (row 2), and 0.25 (row 3). The 

black star indicates the true source location and all images have been normalised. 


