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ALPHABET-ALMOST-SIMPLE 2-NEIGHBOUR TRANSITIVE CODES

NEIL I GILLESPIE AND DANIEL R HAWTIN

Abstract. Let X be a subgroup of the full automorphism group of the Hamming graph H(m, q), and C

a subset of the vertices of the Hamming graph. We say that C is an (X, 2)-neighbour transitive code if X
is transitive on C, as well as C1 and C2, the sets of vertices which are distance 1 and 2 from the code.

This paper begins the classification of (X, 2)-neighbour transitive codes where the action of X on the entries

of the Hamming graph has a non-trivial kernel. There exists a subgroup of X with a 2-transitive action
on the alphabet; this action is thus almost-simple or affine. If this 2-transitive action is almost simple we

say C is alphabet-almost-simple. The main result in this paper states that the only alphabet-almost-simple

(X, 2)-neighbour transitive code with minimum distance δ > 3 is the repetition code in H(3, q), where q > 5.

1. Introduction

Ever since Shannon’s 1948 paper [16] there has been a great deal of interest around families of error-
correcting codes with a high degree of symmetry. The rationale behind this interest is that codes with
symmetry should have good error correcting properties. The first families classified were perfect (see [17] or
[19]) and nearly-perfect (defined in [12] classified in [15]) codes over prime power alphabets. Such codes are
rare. In an effort to find further classes of efficient codes Delsarte [4] introduced completely regular codes, a
more general class of codes that posses a high degree of combinatorial symmetry. Much effort has been put
into classifying particular classes of completely regular codes (see for instance [1, 2]), and new completely
regular codes continue to be found [6]. However, completely regular codes have proven to be hard to classify,
and this remains an open problem.

Completely transitive (first defined in [18] with a generalisation studied in [10]) codes are a class of codes
with a high degree of algebraic symmetry and are a subset of completely regular codes. As such a classification
of completely transitive codes would be interesting from the point of view of classifying completely regular
codes. This problem also remains open.

Here, we relax the conditions of complete transitivity and study the family of 2-neighbour transitive codes,
a class of codes with a moderate degree of algebraic symmetry. Note that every completely transitive code
(see Section 2) is 2-neighbour transitive. By studying this class of codes we hope to find new codes and
gain a better understanding of completely transitive codes. Indeed a classification of 2-neighbour transitive
codes would have as a corollary a classification of completely transitive codes. We also note that codes
with 2-transitive actions on the entries of the Hamming graph (which 2-neighbour transitive codes indeed
have), have been of interest lately, where this fact can be used to prove that certain families of codes achieve
capacity on erasure channels [14]. The analysis of 2-neighbour transitive codes is being attacked as three
separate problems: entry-faithful (see [7]), alphabet-almost-simple, and alphabet-affine. This paper concerns
the alphabet-almost-simple case. The results of this paper do not return any new examples.
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2 NEIL I GILLESPIE AND DANIEL R HAWTIN

However, the results here are of interest from the point of view of perfect codes over an alphabet of
non-prime-power size, since in this case a code cannot be alphabet-affine (and also not entry-faithful, by
[7]), but may be alphabet-almost-simple. The existence of perfect codes over non-prime-power alphabets
with covering radius 1 or 2, is still an open question (see [13]). By Theorem 1.1, if such codes exist, then
they cannot be 2-neighbour transitive (unless they are equivalent to the repetition code of length 3). Note
that in the prime power case, for each set of parameters for which a perfect code with covering radius ρ > 2
exists, a 2-neighbour transitive code with those parameters exists. That is, the repetition and Golay codes
are 2-neighbour transitive. In fact, the repetition, Hamming and Golay codes are completely transitive, by
[10, Section 3.5].

1.1. Statement of the main results. Let X be a subgroup of the full automorphism group of the Hamming
graph Γ = H(m, q) and C be a code, that is, a subset of the set of vertices V Γ . We say that C is an
(X, s)-neighbour transitive code if X is transitive on C = C0, C1, . . . , Cs (where Ci are parts of the distance
partition, see Section 2). In joint work with Giudici and Praeger [7], the authors classified all (X, 2)-neighbour
transitive codes for which the group X acts faithfully on the set of entries of the Hamming graph. In this
paper, we begin the study of (X, 2)-neighbour transitive codes such that the action of X on the entries has
a non-trivial kernel.

If C is an (X, 2)-neighbour transitive code with minimum distance δ > 3, then X1, the subgroup of
X which fixes the first entry of H(m, q), has a 2-transitive action on the alphabet in that entry (see [7,
Proposition 2.7]). Any 2-transitive action is of affine or almost-simple type [5, Theorem 4.1B]. If C is (X, s)-
neighbour transitive, the action of X1 on the alphabet is almost-simple and the action X on the entries is
transitive, we say C is alphabet-almost-simple (X, s)-neighbour transitive. Our main aim here is to prove the
non-existence of codes which are alphabet-almost-simple (X, 2)-neighbour transitive with minimum distance
δ > 4.

Theorem 1.1. Let C be an alphabet-almost-simple (X, 2)-neighbour transitive code in H(m, q) with mini-
mum distance δ > 3. Then δ = 3 and C is equivalent to the repetition code in H(3, q), where q > 5.

In Section 2 we define the notation used in the paper. In Section 3 we give some results on the structure
of alphabet-almost-simple (X, 2)-neighbour transitive codes, as well as pose some questions about codes for
which the action of X1 on the alphabet in the first entry is affine. We present some examples of codes with
properties of interest in relation to our results in Section 4. Finally, in Section 5, we give a classification of
diagonally (X, 2)-neighbour transitive codes (see Definition 3.1) and prove Theorem 1.1.

2. Preliminaries

Throughout this paper we let M = {1, . . . ,m} and Q = {1, . . . , q}, with m, q > 2, though if q = 2 we will
at times use Q = {0, 1}. We refer to M as the set of entries and Q as the alphabet. The vertex set of the
Hamming graph Γ = H(m, q) consists of all m-tuples with entries labeled by the set M , taken from the set
Q. An edge exists between two vertices if they differ as m-tuples in exactly one entry. For vertices α, β of
H(m, q) the Hamming distance d(α, β) is the number of entries in which α and β differ, i.e. the usual graph
distance in Γ .

A code C is a subset of the vertex set of the Hamming graph. The minimum distance of C is δ =
min{d(α, β) | α, β ∈ C,α 6= β}. For a vertex α ∈ H(m, q), define

Γr(α) = {β ∈ Γ | d(α, β) = r}, and d(α,C) = min{d(α, β) | β ∈ C}.

We then define the covering radius to be

ρ = max{d(α,C) | α ∈ Γ}.



ALPHABET-ALMOST-SIMPLE 2-NEIGHBOUR TRANSITIVE CODES 3

For any r 6 ρ, define Cr = {α ∈ Γ | d(α,C) = r}. Note that Ci is the disjoint union ∪α∈CΓi(α) for
i 6 b δ−12 c.

2.1. Automorphism groups. The automorphism group Aut(Γ ) of the Hamming graph is the semi-direct
product B o L, where B ∼= Smq and L ∼= Sm (see [3, Theorem 9.2.1]). We refer to B as the base group, and
L as the top group, of Aut(Γ ). Let g = (g1, . . . , gm) ∈ B, σ ∈ L and α be a vertex in H(m, q). Then g and
σ act on α as follows:

αg = (αg11 , . . . , α
gm
m ) and ασ = (α1σ−1 , . . . , αmσ−1).

We define the automorphism group of a code C in H(m, q) to be Aut(C) = Aut(Γ )C , the setwise stabiliser
of C in Aut(Γ ). For a subgroup X 6 Aut(Γ ) we define two other important actions of X which will be
useful to us. First, consider the action of X on the set of entries M , which we will write as XM , defined by
the following homomorphism:

µ : X −→ Sm
(h1, . . . , hm)σ 7−→ σ

We define K to be the kernel of this map and note that K = X ∩ B. In this paper we are concerned with
(X, 2)-neighbour transitive codes where K 6= 1.

We also consider the action of the stabiliser Xi 6 X of the entry i ∈ M , on the alphabet Q. We denote

this action by XQ
i and it is defined by the homomorphism:

ϕi : Xi −→ Sq
(h1, . . . , hm)σ 7−→ hi

Let C be a code in H(m, q) and let X be a subgroup of Aut(Γ ). Recall that C is (X, s)-neighbour transitive
if each Ci is an X-orbit for i = 0, . . . , s. Note that this implies X 6 Aut(C) and C is also (X, r)-neighbour
transitive, for r < s. If s = 1 then C is simply X-neighbour transitive and if s = ρ, the covering radius,
then C is X-completely transitive. Recall, if C is (X, s)-neighbour transitive, XM is transitive on M and the

group XQ
1 is almost-simple, then we say C is alphabet-almost-simple (X, s)-neighbour transitive. We may

sometimes omit the group X from any of these terms if the meaning is clear from the context.
We say that two codes, C and C ′, in H(m, q), are equivalent if there exists x ∈ Aut(Γ ) such that Cx = C ′.

Since elements of Aut(Γ ) preserve distance, equivalence preserves minimum distance.

2.2. Projections. For α ∈ Γ , we refer to the element of Q appearing in the i-th entry of α as αi, so
that α = (α1, . . . , αm). For a subset J = {j1, . . . , jk} ⊆ M we define the projection of α with respect
to J as πJ(α) = (αj1 , . . . , αjk). For a code C we then define the projection of C with respect to J as
πJ(C) = {πJ(α) | α ∈ C}. So πJ maps a vertex or code from H(m, q) into the smaller Hamming graph
H(k, q).

Let XJ be the setwise stabiliser of a subset J = {j1, . . . , jk} ⊆M . For x = (h1, . . . , hm)σ ∈ XJ , we define
the projection of x with respect to J as χJ(x) where

πJ(α)χJ (x) = πJ(αx).

To be well defined, this requires x ∈ XJ and it follows that χJ(x) = (hj1 , . . . , hjk)σ̂ ∈ Aut(H(k, q)), where
σ̂ is the element of Sym(J) induced by σ. Moreover, we define χJ(X) = {χJ(x) | x ∈ XJ}.

3. Structural results

We collect below some results from [8], where alphabet-almost-simple X-neighbour transitive codes with
δ > 3 are characterised. This is our starting point when looking at codes C which are alphabet-almost-simple
(X, 2)-neighbour transitive with δ > 3, since we then have that C is indeed X-neighbour transitive.

For a subgroup T 6 Sq we define Diagm(T ) = {(h, . . . , h) ∈ B | h ∈ Sq}.
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Definition 3.1. A code C in H(m, q) is diagonally (X, s)-neighbour transitive, if C is (X, s)-neighbour
transitive and X 6 Diagm(Sq) o L.

Proposition 3.2. Let C be an alphabet-almost-simple X-neighbour transitive code with δ > 3. Then there
exists an X-invariant partition J = {J1, . . . , J`} of M such that πJi(C) is diagonally χJi(X)-neighbour
transitive and δ(πJi(C)) > 2.

Proof. Let T be the non-abelian simple socle of the almost-simple 2-transitive group XQ
1 . By the discussion

following [8, Proposition 5.2], there exists a partition J = {J1, . . . , J`} of M , with |Ji| = k, such that the
socle of X ∩B is equal to D1 × · · · ×D`, where each Di is a full diagonal subgroup of T k acting on πJi(Γ ).
Moreover, by [8, Remark 5.4], J is X-invariant. By examining this socle, it can be shown [8, Section 5] that,
up to equivalence, two possibilities occur. Either χJi(X) 6 Diagk(Sq) o Sk for all i, or there exists a more

refined X-invariant partition Ĵ of M such that χJ(X) 6 Diagk̂(Sq) o Sk̂ for all J ∈ Ĵ .
In either case, it follows from [8, Prop. 3.4 and Cor. 3.7] that χJi(X) acts transitively on πJi(C) and

either πJi(C) is the complete code or it is χJi(X)-neighbour transitive with minimum distance at least 2.
Since χJi(X) is a diagonal subgroup, we deduce that πJi(C) is χJi(X)-neighbour transitive as no diagonal
subgroup acts transitively on the complete code. �

Proposition 3.3. Let C be an (X, 2)-neighbour transitive code with δ > 3 in H(m, q), and suppose J =
{J1, . . . , Jl} is an X-invariant partition of M . Then for all i ∈ {1, . . . , l}, either;

(1) πJi(C) is the complete code, δ(πJi(C)) = 1, and χJi(X) is transitive on πJi(C);
(2) πJi(C) has covering radius 1, δ(πJi(C)) = 2 or 3, and is (χJi(X), 1)-neighbour transitive; or
(3) πJi(C) is (χJi(X), 2)-neighbour transitive.

Proof. Let C̄ = πJi(C). The fact that χJi(X) is transitive on C̄ and C̄1, if C1 is non-empty, follows from
[8, Proposition 3.4]. From this we deduce both parts 1 and 2 hold. Now, [8, Corollary 3.7] gives us that
δ(πJi(C)) > 2, and δ(πJi(C)) is at most 3 in part 2. Moreover, to prove part 3, we need only show that if
C̄2 is non-empty, then χJi(X) is transitive on C̄2.

Suppose C̄ has covering radius at least 2. Let µ, ν ∈ C̄2. Then there exists α, β ∈ C such that
d(µ, πJi(α)) = d(ν, πJi(β)) = 2. Let ν̂ ∈ H(m, q) with ν̂u = νu for u in Ji and ν̂v = αv otherwise.
Similarly, let µ̂ ∈ H(m, q) with µ̂u = µu for u in Ji and µ̂v = βv otherwise. We claim that ν̂, µ̂ ∈ C2. We
show this for ν̂ and note that an identical agrument holds for µ̂. First, note that d(α, ν̂) = 2 and δ > 3, so
ν̂ /∈ C. Suppose ν̂ ∈ C1. Then there exists α′ ∈ C such that d(ν̂, α′) = 1. We then have d(ν, πJi(α

′)) 6 1.
However, this contradicts ν ∈ C̄2. Hence µ̂, ν̂ ∈ C2.

As C is (X, 2)-neighbour transitive, there exists an x = hσ ∈ X mapping ν̂ to µ̂. We claim x ∈ XJi .
Suppose x /∈ XJi . Then, since J is a system of imprimitivity for the action of X on M , there exists
j ∈ {1, . . . , l} such that j 6= i and Jσj = Ji. Since πJj (ν̂) = πJj (α), this implies that πJi(ν̂

x) = πJi(α
x) ∈ C̄

and hence πJi(ν̂
x) 6= µ, which contradicts the fact that ν̂x = µ̂. Thus x ∈ XJi and

νχJi
(x) = πJi(ν̂)χJi

(x) = πJi(ν̂
x) = πJi(µ̂) = µ.

�

Proposition 3.4. Let C be an (X, 2)-neighbour transitive code in H(m, q) with δ > 3, and J be an X-
invariant partition of M . Then, for all J ∈ J ,

(1) χJ(X)Q1 is 2-transitive on Q; and,
(2) for α ∈ C, χJ(X)πJ (α) is transitive on J .

Proof. As C is X-neighbour transitive with δ > 3, we have that XQ
1 is 2-transitive and XM is transitive.

One then deduces that XQ
i is 2-transitive for all i. Now, because J is an X-invariant partition, it follows
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that Xi = (XJ)i for all i ∈ J . This in turn implies that χJ(X)i = χJ(Xi). It is now straight forward to

show that χJ(Xi)
Q = XQ

i .
Now, since Xα is transitive on M and J is an X-invariant partition of M , it follows that (Xα)J is

transitive on J . Thus χJ(Xα) 6 χJ(X)π(α) is transitive on J . �

The previous two propositions suggest studying (X, 2)-neighbour transitive codes where X acts primitively
on M with δ > 2. An answer to the following questions would provide us with the building blocks for (X, 2)-
neighbour transitive codes with δ > 3.

Question 3.5. Can we classify all (X, 2)-neighbour transitive codes with δ > 2 such that XM is primitive

and XQ
1 is 2-transitive?

Question 3.6. Can we classify all (X, 1)-neighbour transitive codes with δ = 2 or 3 and ρ = 1 such that

XM is primitive and XQ
1 is 2-transitive?

If C is (X, s)-neighbour transitive and X acts faithfully on M we say C is entry-faithful (X, s)-neighbour

transitive. If C is (X, s)-neighbour transitive, X 6 Aut(C), XM is transitive, and XQ
1 is affine we say C

is alphabet-affine (X, s)-neighbour transitive. Questions 3.5 and 3.6 can be further broken down into entry-
faithful and non-trivial kernel cases, that is, alphabet-affine and alphabet-almost-simple. By the main result
of this paper, the outstanding cases of Question 3.5 are alphabet-almost-simple (X, 2)-neighbour transitive

with δ = 2, and alphabet-affine (X, 2)-neighbour transitive, where XM is primitive and XQ
1 is 2-transitive.

Given Proposition 3.2, a third question is the following.

Question 3.7. Can we contrsuct (X, 2)-neighbour transitive codes with δ > 3 by taking copies of (X, 1)-
neighbour transitive codes with δ = 2 or 3 and ρ = 1.

4. Examples

We begin this section by considering some examples of codes which have properties relating to the results
of the previous section. We first introduce the operators Prod and Rep which allow the construction of new
codes from old ones. For an arbitrary code C in H(m, q) we define Prod(C, `) and Rep`(C) in H(m`, q) as

Prod(C, `) = {(α1, . . . ,α`) | αi ∈ C},
and

Rep`(C) = {(α, . . . ,α) | α ∈ C}.
The repetition code Rep(m, q) in H(m, q) is the set of all vertices (a, . . . , a) consisting of a single element
a ∈ Q repeated m times.

The next two examples are codes which are alphabet-almost-simple X-completely transitive, though the
second has δ = 2.

Example 4.1. Let C = Rep(3, q), where q > 5, and X = Diag3(Sq) o S3. By [11, Example 3.1] C is
X-completely transitive with covering radius ρ = 2, and hence (X, 2)-neighbour transitive. (Note that the

proof of this fact is stated for q > 7, but works for q > 5.) Now XQ
1
∼= Sq, with q > 5, is almost-simple and

XM ∼= S3 is transitive on M . Hence C is alphabet-almost-simple X-completely transitive.

Example 4.2. Let q > 5, ` > 2, C = Prod(Rep(2, q), `) and X = (Diag2(Sq))
` o U , where Diag2(Sq) is a

subgroup of the base group of Aut(H(2, q)) and U = S2 o S` = S`2 o S` is a subgroup of the top group of
Aut(H(2`, q)). Let J = {J1, . . . , J`}, with Ji = {2i−1, 2i}, be the partition of M preserved by U . Note that
δ = 2. Let R ⊆ {1, . . . , `} of size s, and ν ∈ H(m, q) be such that πJi(ν) = (a, b), where a 6= b for all i ∈ R,
and a = b for all i /∈ R. Any codeword β is at least distance s from ν, since d(πJi(ν), πJi(β)) > 1 for each
i ∈ R. Also, there exists some codeword α with πJi(α) = (a, a) whenever πJi(ν) = (a, b) for i ∈ {1, . . . , `},
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and hence d(α, ν) = s. So ν ∈ Cs. Any vertex ν of H(2`, q) can be expressed in this way, for some R, since
πJi(ν) = (a, b) has either a = b or a 6= b. Thus, for each s, Cs consists of all such vertices ν where |R| = s.
It also follows from this that ρ = `.

Let ν ∈ Cs, with R as above. Let x = (hJ1 , . . . , hJ`)σ ∈ X where hJi ∈ Diag2(Sq) such that πJi(ν)hJi =
(1, 2), for i ∈ R, and πJi(ν)hJi = (1, 1), for all i /∈ R. Moreover, since S` is `-transitive, there exists a
σ ∈ S` 6 S2 o S` mapping {Ji1 , . . . , Jis} to {J1, . . . , Js} (where R = {i1, . . . , is}), whilst preserving order
within each Ji. Then νx = γ ∈ Cs, where πJi(γ) = (1, 2) for all i ∈ {1, . . . , s} and πJi(γ) = (1, 1) for all
i /∈ {s + 1, . . . , `}. Since we can map any such ν to γ, X is transitive on Cs for each s ∈ {1, . . . , `}. Hence

C is X-completely transitive, and in particular (X, 2)-neighbour transitive for ` > 2. Since XQ
1
∼= Sq and

XM ∼= S2 o S` is transitive on M , C is alphabet-almost-simple X-completely transitive.

Lemma 4.3. Suppose C is an (X, 2)-neighbour transitive code in H(m, q), with q > 3, and J is an X-
invariant partition of M , such that πJ(C) = Rep(k, q), for all J ∈ J where k = |J |. Then either δ = k = 2,
or J is a trivial partition.

Proof. Let x = (h1, . . . , hm)σ ∈ X and J ∈ J . By the hypothesis it follows that for all a ∈ Q, there exists
α ∈ C such that πJ(α) = (a, . . . , a). Suppose Jσ = J ′ ∈ J . Then πJ′(α

x) = (ahi1 , . . . , ahik )σ = (b, . . . , b)
for some b ∈ Q, that is, ahis = ahit for all is, it ∈ J . In particular χJ(xσ−1) = (h, . . . , h) for some h ∈ Sq,
and X 6 Diagk(Sq) o U , where U is the stabiliser of J in the top group.

Now suppose that J is a non-trivial partition, so k, ` > 2. Since C ⊆ Prod(Rep(k, q), `), which has
minimum distance k, it follows that δ > k > 2.

Suppose δ > 3. As C is a subset of Prod(Rep(k, q), `) we can replace C by an equivalent code contained
in Prod(Rep(k, q), `) containing α = (1, . . . , 1) and such that

J = {{1, . . . , k}, {k + 1, . . . , 2k}, · · · , {m− k + 1, . . . ,m}} .
Consider,

µ = (2, 3, 1, 1, . . . , 1, 1, 1, 1, . . . , 1, · · · , 1, . . . , 1) and

ν = (2, 1, 1, 1, . . . , 1︸ ︷︷ ︸
k entries

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
k entries

, · · · , 1, . . . , 1︸ ︷︷ ︸
k entries

).

If k = 2, then we claim µ ∈ C2. Any vertex β ∈ Prod(Rep(2, q), `) ⊇ C with d(µ, β) = 1 is of the form
γ = (a, a, 1, . . . , 1), where a = 2 or 3. However, no such γ is an element of C, since each is distance 2
from α. If k > 3 then µ ∈ C2 since d(α, µ) = 2 and there is no closer codeword as πJ1(µ) ∈ πJ1(C)2.
In both cases ν ∈ C2 since d(α, ν) = 2 and no codeword is closer, as πJi(ν) ∈ πJi(C)1 for i = 1, 2. Let
x = (h1, . . . , hm)σ ∈ X such that µx = ν. We reach a contradiction here, since h1 = h2 = · · · = hk = h
cannot, assuming k > 3, map the set {1, 2, 3} to either of the sets {1, 2} or {1}. In the case k = 2, in at
least one block we must map the set {1} to {1, 2}, which is not possible. Hence 2 > δ > k > 2. �

The next example shows that it is possible to have a neighbour transitive code where δ > 3 and the
projection code for some system of imprimitivity on M is the complete code. Note that this does not
contradict the results from [9] as there is more than one system of imprimitivity present.

Example 4.4. Let C̄ = Prod(C, `) be a code in Γ = H(m, q), where m = k` and C is an X-neighbour
transitive code in H(k, q) where X ∩ B is transitive on C and δ > 3. Let X̄ = 〈(X ∩ B)`,Diag`(X), S`〉
preserve the partition

J = {{1, . . . , k}, . . . , {m− k + 1, . . . ,m}} = {J1, . . . , J`},
of M , where χJ((X ∩B)`) = X ∩B and χJ(Diag`(X)) = X for all J ∈ J , and S` acts as pure permutations
by the permuting blocks of J whilst preserving the order of entries within a given block. It follows that we
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preserve two X̄-invariant partitions, J and one attained from taking the corresponding entries, by order,
from each copy of C as a block:

J ′ = {{1, k + 1, . . . ,m− k + 1}, . . . , {`, `+ k, . . . ,m}}.

Given any α = (α1, . . . ,α`) ∈ C̄, αi ∈ C, and β = (β1, . . . ,β`) ∈ C̄, βi ∈ C there exists an x ∈ (X ∩ B)`

mapping α to β since X ∩ B is transitive on C. Hence X̄ is transitive on C̄. Given any two neighbours
µ, ν ∈ Γ1(α), where µ, ν differ from α in the respective blocks Ji and Jj , we can map Jj to Ji via some
element σ ∈ S`. Then, since Xαi

is transitive on Γ1(αi), there exists an element x ∈ Diag`(X) such that
πJi(ν

σx) = πJi(µ). We can then map νσx to µ via some element h ∈ (X ∩B)`, where χJi(h) = 1, since each
πJt(ν

σx) and πJt(µ) are elements of C for t 6= i and X ∩B is transitive on C. Hence σxh maps ν to µ and
X̄ is transitive on C̄1.

When we consider the projection πJ(C̄) for any J ∈ J ′ we are left with the complete code. To see
this, consider that for (α1, . . . ,α`) ∈ C̄, αi ∈ C, we may choose an arbitrary element of C as αi for each

i. Since XQ
1 is 2-transitive on Q, each element appears in the first entry for some codeword. Thus, as

πJ((α1, . . . ,α`)) when J = {1, k + 1, . . . ,m− k + 1} is the first entry of each αi, we have that πJ(C̄) is the
complete code.

5. Alphabet-almost-simple (X, 2)-neighbour transitive codes

Before we prove the final results we define the codes used in this section, which first requires the following
definition.

Definition 5.1. Define the composition of a vertex α ∈ H(m, q) to be the set

Q(α) = {(a1, p1), . . . , (aq, pq)},

where pi is the number of entries of α which take the value ai ∈ Q. For α ∈ H(m, q) define the set

Num(α) = {(p1, s1), . . . , (pj , sj)},

where (pi, si) means that si distinct elements of Q appear precisely pi times in α.

Definition 5.2. We define the following codes:

(1) Inj(m, q), where m < q, is the set of all vertices α ∈ H(m, q) such that Num(α) = {(1,m)};
(2) for m odd, W ([m/2], 2) is the set of vertices in α ∈ H(m, 2) such that Num(α) = {(m+1)/2, 1), (m−

1)/2, 1)}; and,
(3) All(pq, q), where pq = m, is the set of all vertices α ∈ H(m, q) such that Num(α) = {(p, q)}.

For more information on these codes see [9, Definition 2]. The following lemma is [9, Lemma 4].

Lemma 5.3. For any vertex α of H(m, q), Num(α) is preserved by Diagm(Sq) o L.

The last result, when combined with the classification of diagonally neighbour transitive codes [9, Theo-
rem 4.3], allows us to prove the next result.

Proposition 5.4. Let C be a diagonally (X, 2)-neighbour transitive code in H(m, q). Then one of the
following holds:

(1) q = 2 and C = {(a, . . . , a)};
(2) m = 3 or q = 2, and C = Rep(m, q);
(3) C = Inj(3, q);
(4) m is odd and C = W ([m/2], 2); or,
(5) q = 2 or q = m = 3, and there exists some p such that m = pq and C is a subset of All(pq, q).
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Proof. By [9, Theorem 4.3], a diagonally neighbour transitive code C is one of: {(a, . . . , a)} for some a ∈ Q,
Rep(m, q), Inj(m, q) with m < q, W ([m/2], 2) with m odd, or there exists a p such that m = pq and C is a
subset of All(pq, q). Here we consider m > 2, since if m = 1 then C2 is empty, so C is not (X, 2)-neighbour
transitive. Also to prove some C is (X, 2)-neighbour transitive, we need only find some X 6 Aut(C) such
that X 6 Diagm(Sq) o L and X is transitive on C2, since C is already X-neighbour transitive, for some X,
by [9, Theorem 4.3].

First, if C = Inj(2, q) then C2 is empty. Thus, C is not (X, 2)-neighbour transitive. Table 1 lists the
remaining cases which are not 2-neighbour transitive. The second and third columns give a pair µ, ν ∈ C2

such that Num(µ) 6= Num(ν). Hence, by Lemma 5.3, X is not transitive on C2. It can be deduced from
Num(µ),Num(ν) that µ, ν ∈ C2, since this makes it clear that we must change µ, ν in at least two entries
to get a vertex in C. Note that we let α = (1, 2, 3, . . . , q) ∈ H(q, q) and in the second last and last rows
we assume α ∈ C and (α, . . . , α) ∈ C, respectively, and observe for the last row µ̂ = (1, 1, 1, 4, 5, . . . , q),
ν̂ = (1, 1, 3, 4, 5, . . . , q) are in Γ2(α).

C µ ∈ C2 ν ∈ C2

Conditions Num(µ) Num(ν)

{(a, . . . , a)} (b, b, a, . . . , a) (b, c, a, . . . , a)
q > 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Rep(m, q) (2, 2, 1, . . . , 1) (2, 3, 1, . . . , 1)
m > q > 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Inj(m, q) (1, 1, 1, 4, 5, . . . ,m) (1, 1, 3, 3, 5, 6, . . . ,m)
m > 4 {(3, 1), (1,m− 3)} {(2, 2), (1,m− 4)}

⊆ All(q, q) (1, 1, 1, 4, 5, . . . , q) (1, 1, 3, 3, 5, 6, . . . , q)
q > 4 {(3, 1), (1, q − 3)} {(2, 2), (1, q − 4)}

⊆ All(pq, q) (µ̂, α, . . . , α) (ν̂, ν̂, α, . . . , α)
q > p > 2 {(p− 1, 2), (p, q − 3), (p+ 2, 1)} {(p− 2, 1), (p, q − 2), (p+ 2, 1)}

Table 1. Diagonally neighbour transitive codes C which are not diagonally 2-neighbour transitive,
and elements of C2 which illustrate this. Note: µ̂ = (1, 1, 1, 4, 5, . . . , q), ν̂ = (1, 1, 3, 4, 5, . . . , q) and
α = (1, 2, 3, . . . , q).

Now we prove the result for the cases which are 2-neighbour transitive. Suppose C = {(a, . . . , a)} for
some a ∈ Q. Let q = 2 and Q = {0, 1}. Then L = Sm = Aut(C). Without loss of generality, let a = 0 so
that C2 is the set of weight two vertices. Since L is transitive on the sets of weight 2 and weight 1 vertices,
it follows C is diagonally (X, 2)-neighbour transitive. Let C = Rep(m, q). It follows from Example 4.1 that
Rep(3, q) is (Diag3(Sq) o S3, 2)-neighbour transitive. If q = 2 then Aut(C) ∼= Diagm(S2) o Sm and C is
completely transitive [11, Example 3.1]. Consider C = Inj(m, q) with 3 = m < q and q > 4. If ν ∈ C2 then
ν1 = ν2 = ν3, since otherwise ν ∈ C or C1. Since Diagm(Sq) 6 Aut(C), we are transitive on C2. Suppose
C = W ([m/2], 2) and m is odd. Then by [9, Corollary 3.4] C is Diag(S2)oSm-completely transitive. Finally,
suppose C is a subset of All(pq, q) for some p such that m = pq. Let p > 2, q = 2 and C = All(2p, 2). Then
C2 is the set of all weight p± 2 vertices, which Diag2(S2) o Sm 6 Aut(C) is transitive on. Let p = 1, q = 3
and C = All(3, 3). Then C2 = Rep(3, q) and is Aut(C)-completely transitive by Example 4.1. �

With our classification of diagonally (X, 2)-neighbour transitive codes from the previous result, Proposi-
tions 3.2 and 3.3 mean we are now in a position to prove the main theorem.
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Proof of Theorem 1.1. Suppose C is an alphabet-almost-simple (X, 2)-neighbour transitive code with δ > 3
such that X ∩ B 6= 1. By Proposition 3.2, there exists an X-invariant partition J = {J1, . . . , J`}, for
some `, for the action of X on M . Moroever, πJi(C) has minimum distance at least 2 and is diagonally
χJi(X)-neighbour transitive. By Proposition 3.3, either πJi(C) has covering radius ρ 6 1, or πJi(C) is also
(χJi(X), 2)-neighbour transitive. Note ρ 6= 0, that is, πJi(C) is not the complete code, since πJi(C) has
minimum distance at least 2.

Suppose πJi(C) has covering radius ρ > 2. Since XQ
1 is almost-simple, it follows that q > 5. By

Proposition 5.4, the only diagonally 2-neighbour transitive code with q > 5 and δ > 2 is Rep(3, q) for q > 5
(note that δ = 1 for Inj(3, q)). Then Lemma 4.3 implies J is a trivial partition. Since |Ji| = k = 3 > 1, it
follows that ` = 1, k = m, and C = Rep(3, q).

Suppose πJi(C) has covering radius ρ = 1. By [9, Thm. 4 and Cor. 2], the only diagonally neighbour
transitive code with δ > 2 and ρ = 1 is Rep(2, q). If l = 1 then δ = 2, a contradiction. Suppose l > 2. Then
Lemma 4.3 implies δ = 2, a contradiction. �
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