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Abstract

This paper presents an analysis of hyperelastic constitutive models for continuous bodies both
from a modeling and numerical point of view. Contributions are made within the context of finite
element numerical simulations. Numerical results with relevance to flows in the cardiovascular
system are outlined in the case of a sophisticated fluid-structure interaction problem, in specific
complex geometries of anatomically accurate cerebral arteries in diseased state. In this regard,
the work carefully outlines the numerical validation of constitutive models for healthy and un-
healthy cerebral arterial tissues by means of simulations of static inflation tests on an idealized
specimen of anterior cerebral artery (ACA). The healthy tissue is described by means of isotropic
and anisotropic models that, are fitted with respect to experimental data describing the mechan-
ical behavior of the ACA; the numerical results are presented highlighting the most important
numerical aspects influencing the correct and efficient simulation of the mechanics of continu-
ous bodies such as, for instance, the arterial wall. We further consider numerical simulations
of unhealthy conditions of the tissue by taking into account different levels of weakening of its
mechanical properties. Taking the cerebral cardiovascular system as a challenging test problem,
we focus on the study of the effects of the imposed mechanical levels of degradation on kine-
matic quantities of interest by simulating static inflation tests for the different models. This work
does not aim to propose a new mathematical model for the mechanical damage occurring at the
onset of cardiovascular diseases such as cerebral aneurysms. The modelling and numerical tech-
niques presented may be applied to a wide range of problems, equally challenging to that of the
cardiovascular system with complex structural models and fluid-structure coupling.
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1. Introduction

In continuum mechanics constitutive models aim at capturing the features of interest of the
mechanical behavior of a continuous body under consideration, e.g. elasticity, nonlinearity or
anisotropy (Truesdell and Noll, 1965). Bodies can be described at different modeling scales, e.g.
microscopic or macroscopic. When a microscopic scale is adopted, the mechanical behavior of
a body is described by considering the dynamics of each of its particles and their interactions; on
the other hand, at the macroscopic scale, a body is modeled by means of certain field quantities.
In this work, we present and discuss nonlinear macroscopic constitutive laws that have been pro-
posed for the mathematical modeling of biological tissues, particularly the modeling of human
arterial tissues. Some of the models, such as the neo-Hookean, Mooney-Rivlin, or anisotropic
constitutive relations of the same form as the ones considered here, commonly used to describe
biological tissues (e.g. (Torii et al., 2006; Chen et al., 2009; Valencia et al., 2013; Bazilevs et al.,
2010; Isaksen et al., 2008)), can be employed for the study of the mechanical behavior of other
materials; for instance, elastomers (see e.g. (Boyce and Arruda, 2000) and references therein) or
rubber like materials, see (Ciarletta et al., 2011). However, in this paper we confine ourselves to
the context of biomechanics. For more general and advanced materials, we refer the reader e.g.
to (Criscione et al., 2000), (Rajagopal, 2003), and (Criscione and Rajagopal, 2013).

In the last decades we have witnessed an increased use of mathematical models and numerical
simulations for the study of the cardiovascular system. This development has improved the abil-
ity to faithfully describe and simulate aspects of the complex physical processes involved, con-
tributing to the progress in healthcare technologies. While investigation of cerebral aneurysms is
considered in this work, the problem of choice may equally be generalized to other fluid-structure
interaction problems. Extensive detail of the modeling challenges, the sophistication of the cur-
rent state-of-the-art, details on methods for parameter setting and the validation of the models and
simulations are presented in the context of biomedical simulations. Equally, the mathematical
models and numerical methods outlined, are widely applicable to other problems of choice.

The present study provides an extensive numerical validation of existing constitutive models
that have been used to describe human arteries. Based on this validation, we analyze and iden-
tify isotropic and anisotropic constitutive models that can be effectively employed in numerical
simulations of the fluid-structure interaction problem concerning the hemodynamics in compli-
ant arteries in the cerebral vasculature harbouring aneurysms. To the best of our knowledge,
this work represents the first extensive numerical validation of isotropic and anisotropic models
for human cerebral arteries and establishes the basis for more complex studies, as already done
for fluid-structure interaction simulations with both isotropic and anisotropic constitutive laws in
(Tricerri et al., 2015). A similar validation was considered in (Hollander et al., 2011) for three
isotropic and anisotropic models for porcine coronary arteries. In (Polzer et al., 2013) numer-
ical simulations for abdominal aortic aneurysmal tissues mechanics are proposed, but only for
isotropic models under biaxial mechanical tests.

As other biological tissues, arteries feature a highly heterogeneous composition accounting
for different types of connective and muscular tissues, cells and liquids. For this reason, con-
stitutive models formulated within the framework of mixture theory have been proposed, see
e.g. (Truesdell and Noll, 1965; Humphrey and Rajagopal, 2002; Baek et al., 2006; Rajagopal
and Tao, 1995). In spite of the mixture-composite nature of biological tissues, when character-
izing their mechanical properties, it may be sufficient to consider models proposed within the
theories of hyperelasticity or viscoelasticity. For instance, proximal arteries (i.e. arteries located
close to the heart) of elastic type are commonly represented by means of hyperelastic models
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(Balzani, 2006), while distal arteries of muscular type can be described either as hyperelastic ma-
terials (Wulandana and Robertson, 2005; Dalong and Robertson, 2009) or by taking into account
their viscoelastic and pseudoelastic response (Holzapfel and Gasser, 2001; Fung et al., 1979).
The mechanical conditions of interest for which the hyperelastic, viscoelastic and pseudoelastic
models have been proposed to characterize the mechanical behavior of the arterial tissue (see e.g.
(Holzapfel and Gasser, 2001; Fung et al., 1979; Dalong and Robertson, 2009)) are represented
by the physiological hemodynamical loads and vessel wall displacements occurring during one
heart beat. In this work, only hyperelastic laws are considered to model the cerebral arterial
tissue since in (Scott et al., 1972; Monson, 2001; Monson et al., 2006; Kenneth et al., 2008; Mc-
Gloughlin, 2011), where experimental measurements of stress-strain relation for cerebral arteries
are presented, viscoelastic effects on the mechanical response of the vessel wall are not reported.
Arteries show both active and passive mechanical responses to external loads. Here, we focus
on the mathematical models proposed for the latter which is determined by the mechanical prop-
erties of the elastin and collagen fibers (Holzapfel and Gasser, 2000; Humphrey, 2003). The
typical passive mechanical behavior of healthy arteries is highly nonlinear and anisotropic with
a stiffening effect occurring at high stresses (Nichols and O’Rourke, 1998; Burton, 1954; Roach
and Burton, 1957); such effect is due to the recruitment of the collagen fibers embedded in the
elastin network of the media and adventitia layers.

This paper is concerned with the numerical validation of isotropic and anisotropic mathemat-
ical models for the description of the in vitro passive mechanical behavior of healthy cerebral
arteries; in vivo effects as perivascular tissue and active contraction of the arterial tissue are not
considered in this study. We remark that the choice of employing both isotropic and anisotropic
models is driven by the fact that both classes of constitutive laws are largely used nowadays in
the Computational Mechanics and Bioengineering communities; for this reason, we aim at ad-
dressing the numerical validation of mathematical models that represent the state of the art of
arterial tissue modeling. As discussed in (Humphrey, 2003), several mathematical models have
been proposed for biological tissues, in particular blood vessels (Fung, 1993; Humphrey, 2002).
Among these, most of the constitutive laws describe the vessel wall, at the macroscopic scale,
as a continuous body whose mechanical behavior is modeled according to the finite elasticity
theory (Holzapfel and Gasser, 2000; Humphrey, 2003; Fung, 1993; Holzapfel, 2000). The most
common constitutive laws are of phenomenological type, for which isotropic models represent
the artery as a single layer material (Fung, 1993; Delfino et al., 1997). Isotropic constitutive laws
are largely used to model the arterial tissue due to their simplicity and the limited number of ma-
terial parameters that usually need to be estimated to characterize the mechanical response. For
instance, the Mooney-Rivlin and the neo-Hookean models have been largely used in literature to
describe the arterial tissue within the context of fluid-structure interaction numerical simulations
of the cerebral vasculature (Torii et al., 2006; Chen et al., 2009; Valencia et al., 2013; Bazilevs
et al., 2010; Isaksen et al., 2008). However, they turned out to be inappropriate to fit the exper-
imental data considered in this work (Scott et al., 1972). For that reason in this paper we use
isotropic laws based on the St. Venant-Kirchhoff (Holzapfel, 2000) and exponential type models
(Delfino et al., 1997).

Based on the experimental observations of the anisotropic mechanical response of the arterial
tissue, several anisotropic models have been formulated to include in the constitutive laws the
mechanical contribution of the collagen fibers. Such models rely on the mechanical theory of
fiber-reinforced composites (Spencer, 1984). In this work, the tissue is assumed to be composed
by a single layer embedding two constituents: the so called background material (whose main
constituent is the elastin) and the fibrous network (i.e. the collagen fibers) which endows the
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tissue with its anisotropic response to external loads. Such choice is motivated by the fact that,
although multi-layer constitutive models have been considered in literature for different types of
arteries (e.g. (Holzapfel and Gasser, 2000; Balzani et al., 2006a; Dalong et al., 2012)), to the
best of our knowledge, layer-specific experimental data for the elastic properties of cerebral ar-
teries are not available in literature, as also pointed out in (Dalong et al., 2012). The mechanical
response of the background material is usually described by isotropic models, while the mechan-
ical contribution of the collagen fibers is represented by a finite number of fiber families (Balzani
et al., 2012; Brands et al., 2008; Calvo et al., 2007; Gasser and Holzapfel, 2006; Dalong and
Robertson, 2009), each of them oriented along a characteristic direction for the tissue at rest.
In this work, the recruitment of the collagen fibers is supposed to occur either at zero strains
(Balzani et al., 2012; Gasser and Holzapfel, 2006), or at finite strains (Dalong and Robertson,
2009; Wulandana and Robertson, 2005), yielding the so called multi-mechanism constitutive
law. We remark that the multi-mechanism model in (Dalong and Robertson, 2009; Wulandana
and Robertson, 2005) was specifically proposed after the analysis of the experimental measure-
ments reported in (Scott et al., 1972); for this reason we consider this set of data. However,
other studies have focused either on the characterization of the mechanical behavior of cerebral
arteries by considering inflation-extension tests (Monson et al., 2008, 2006) or on the mechanical
properties of other arteries (e.g. (Sommer et al., 2010; Kamenskiy et al., 2012)).

The arterial tissue behaves as a nearly incompressible material within the physiological range
of deformations (Carew et al., 1968). We enforce the nearly incompressibility constraint by pe-
nalizing the deformations of the tissue leading to changes in its volume for which we employ
the approach based on the multiplicative decomposition of deformation tensor into a volumetric
and an isochoric part (Flory, 1961; Odgen, 1997). The numerical validation of the constitutive
models is carried out by means of finite elements simulations of static inflation tests on a com-
putational domain representing a specimen of an anterior cerebral artery for which experimental
measurements of the strain-stress relation are provided in (Scott et al., 1972).

Afterwards, we consider the mathematical modeling and numerical simulations of unhealthy
cerebral arterial tissue. Cardiovascular diseases such as cerebral aneurysms are related to degen-
erative changes in the mechanical properties of the vessel wall driven by a complex interaction
of biological and hemodynamic factors. In this work, the weakening of the arterial tissue that
occurs in diseased states of arteries, as in the early stages formation of a cerebral aneurysm,
is described by means of an isotropic weakening model for the background material (elastin).
According to the approach proposed in (Kachanov, 1958), the level of mechanical weakening
of the tissue is introduced in the constitutive model for healthy cerebral arterial tissue by means
of a dimensionless parameter D ∈ [0, 1). In literature, e.g. (Dalong et al., 2012; Balzani et al.,
2012; Calvo et al., 2007; Balzani et al., 2006b; Li and Robertson, 2009), different mathematical
models have been proposed to describe the time evolution of the dimensionless parameter D as
a function of both the mechanical and hemodynamical forces and stresses. Besides the difficulty
of tuning the evolution of the parameter D with the progressive weakening of the arterial wall,
in this work we are interested in studying the influence of the material model on the deformation
and stresses distribution throughout the body during static inflation tests. For this reason, the
different levels of mechanical weakening are imposed a priori, by means of preset values of the
parameters D, suitably chosen to consistently compare the material models. We remark that this
work does not aim at proposing a new mathematical model for the mechanical damage occurring
in the onset of a cerebral aneurysm; rather, we focus on the study of the effects of the imposed
mechanical levels of degradation on kinematic quantities of interest by simulating static inflation
tests for the different models, including the multi-mechanism law.
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The paper is organized as follows. Section 2 introduces the kinematics quantities for the
formulation of the constitutive laws and presents the mathematical models used to describe the
healthy cerebral arterial tissue; in addition, the weakening model for the arterial tissue is pre-
sented. Section 3 deals with the finite element approximation of the linear momentum equation
governing the deformations of the tissue under the action of external forces. The numerical re-
sults are presented and discussed in Section 4. In addition, in Section 4 we present and discuss
results obtained from fluid-structure interaction simulations on a patient-specific geometry of
a cerebral artery using some of the constitutive models previously discussed; in particular, our
discussion of the numerical results focuses on mechanical indicators including the rupture risk.
Conclusions follow in Section 5.

2. Mathematical modeling of the arterial tissue

This section deals with the mathematical modeling of the arterial tissue by taking into ac-
count the macroscopic nature of the vessel wall. Section 2.1 introduces the basic notations used
to describe the motion of a continuous body under the action of external forces. Section 2.2
presents the mathematical models for the description of the healthy cerebral arterial tissue. Sec-
tion 2.3 focuses on the description of the experimental data fitting procedure for estimating the
material parameters of the constitutive laws. Section 2.4 deals with the mathematical modeling
of unhealthy arterial tissue. In Section 2.5 we describe the choice of the weakening parameter
D for the comparisons of different constitutive models representing unhealthy cerebral arterial
tissues.

2.1. Kinematics of continuous media
The arterial tissue is assumed to be a continuous medium (also referred as continuous body)

whose elastic properties are represented by suitable mathematical models. The kinematics of the
vessel wall is described in terms of the vectorial and tensorial fields defined for the continuum
theory (Holzapfel, 2000); the constitutive models (laws) are formulated under the finite elasticity
assumption (Humphrey, 2003).

Let B0⊂R3 and B⊂R3 be the reference and current configuration of a continuous body, re-
spectively. The position of a point in B0 is indicated by the material coordinates X, while, in the
current configuration, by the spatial coordinates x. The motion from B0 to B experienced by the
body under the action of external forces is described by the nonlinear function φ(X, t) that maps
any point X∈B0 into the point x∈B at each time t ∈ R+. The material (i.e. Lagrangian) descrip-
tion of the displacement at each point X∈B0 is represented by the vector d(X) = x−X ∈ R3. Lo-
cally, the deformations of the body in the material coordinates are described by the deformation
gradient tensor F, the local volume ratio J (also referred as Jacobian) and the right Cauchy-Green
tensor C defined as:

F = ∇Xφ = ∇X d + I, J = det(F) > 0, and C = FT F, (1)

respectively; ∇X d is the material gradient of the displacement field and I is the second order
identity tensor in R3 (Holzapfel, 2000). We focus on the mathematical modeling of the passive
mechanical response of the arterial tissue which is assumed to be an hyperelastic material whose
mechanical behavior is characterized by means of a scalar-valued function of the deformations
(measured either by F or C), the so called strain energy function W (Holzapfel, 2000). The
stresses that occur in the body during its motion are measured in both the reference and current
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(a) Reference configuration B0 (b) Cross section of B0. ∆P =

pin − pout , pout = 0.

Figure 1: Computational domain B0 representing the arterial specimen and data of problem (3).

configuration through the first Piola-Kirchhoff tensor P and the Cauchy stress tensor σ defined,
respectively, as:

P =
∂W

∂F
and σ =

1
J

PFT . (2)

The mechanical response of the body to external loads is governed by the linear momentum equa-
tion in Lagrangian form complemented by suitable boundary conditions. Since in this work we
specifically consider inflation tests on cylindrical specimen of arteries, the mechanical problem
is defined in the computational domain B0 of Fig. 1(a) that represents a cylindrical geometry of
internal radius r0 and thickness h (as in Fig. 1(b)). The problem reads:

find d : B0 → R3 :


Div(P(d)) = 0 in B0,
Pn = −pout n on Γout,
Pn = −pinn on Γin,
d = 0 on ΓD,

(3)

where ΓD is the subset of ∂B0 where homogeneous Dirichlet boundary conditions are imposed;
the subsets Γout and Γin indicate the external and internal surfaces of the body and n is the outward
directed, unit vector normal to the corresponding surface. pout and pin represent the pressures
acting on Γout and Γin defining the transmural pressure ∆P = pin−pout. We assume, for simplicity,
that pout = 0, thus yielding ∆P = pin (see Fig. 1(b)). The undeformed internal radius (r0 = 0.033
cm) and the vessel wall thickness (h = 0.010 cm) of the tissue represented in Fig. 1(b) correspond
to the physiological dimensions of the anterior cerebral artery described in (Scott et al., 1972;
Wulandana and Robertson, 2005). We set the length L of the cylindrical specimen L = 2 cm.
The range of transmural pressures considered to validate the different constitutive models is the
physiological one occurring in cerebral arteries during one heart beat; therefore, ∆P ∈ [70, 150]
mmHg (Dalong, 2009). We remark that the Dirichlet boundary conditions applied on ΓD do
not exactly represent the experimental setting described in (Scott et al., 1972); indeed, in (Scott
et al., 1972) one of the two extremities of the specimen under consideration is ligated, while the
other one is attached to the inflating apparatus. However, details about the axial deformations
of the specimen during the inflation test are not provided in (Scott et al., 1972) for which the
unique component of the displacement that is presented is the one along the radial direction.
For this reason, we have applied homogeneous Dirichlet conditions on both extremities and, in
order to remove the boundary effects on the vessel wall displacement in the central portion of the
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cylindrical geometry, we have considered a computational domain of length L = 30D.
The arterial tissue behaves as a nearly incompressible material within the physiological range

of deformations (Carew et al., 1968). In order to model such behavior, we adopt the approach
based on the volumetric-isochoric split of the deformation gradient tensor F (Flory, 1961; Odgen,
1997) which has been used in literature (e.g. (Bazilevs et al., 2010; Calvo et al., 2007; Gasser
et al., 2002; Nobile et al., 2013)) for numerical simulations of the arterial tissue. According to
(Flory, 1961), the local deformation gradient F and the right Cauchy-Green C tensors are split
into a so called volumetric and an isochoric part by means of the relations:

F =
(
J1/3I

)
F and C =

(
J2/3I

)
C, (4)

where the tensors J1/3I and J2/3I are associated with isotropic volume-changing deformations,
while the tensors F := J−1/3F and C := J−2/3C with volume-preserving deformations of the
material, for which det(F) ≡ det(C) ≡ 1. Based on this kinematic assumption, the strain energy
functionW can be reformulated in its penalty form as:

W =W(C, J) = U(J) +W(C), (5)

where the volumetric termU(J) penalizes the volume-changing deformations and the isochoric
partW(C) characterizes the mechanical response of the material to external loads according to
different constitutive laws. The first Piola-Kirchhoff tensor P is defined according to Eq. (2) as:

P = P̃ + P =
∂U(J)
∂F

+
∂W(C)
∂F

, (6)

where P̃ and P measure the stresses due to volume-changing and isochoric deformations, re-
spectively. We remark that, in order to guarantee the existence of realistic physical solutions
of Eq. (3), the strain energy function in Eq. (5) has to satisfy the polyconvexity condition (see
(Ball, 1977; Balzani, 2006)). In addition, both the functions U(J) and W(C) must satisfy the
requirement of objectivity under changes of coordinates systems (Holzapfel, 2000). We discuss
the choice ofU andW in Secs. 2.2.1 and 2.2.2.

2.2. Volumetric and isochoric strain energy functions for the arterial tissue

2.2.1. The choice of the volumetric strain energy functionU
Due to the polyconvexity requirements on the strain energy functionW, the volumetric term

U = U(J) must be a strictly convex function of J endowed with a unique minimum in J = 1
(Holzapfel, 2000). This component of the strain energy functionW can be chosen independently
from the isochoric termW of Eq. (5), even if the decomposition approach is effective only when
the functionsU andW are properly balanced.

Different functionsU have been proposed in literature (see for instance (Odgen, 1997; Simo
and Taylor, 1991; Miehe, 1994)); in this work, it is assumed in the form:

U(J) =
κ

4

[
(J − 1)2 + log2J

]
, (7)

in order to penalize the cases J , 1 and J → 0 corresponding to unphysical solutions. The
parameter κ, which can be interpreted as a bulk modulus, assumes the role of a user-specified
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penalty parameter that is suitably determined to weakly enforce the nearly incompressible re-
sponse of the material in the physiological range of deformations of the body. The choice of the
parameter κ is a trade-off between the need to represent the quasi-incompressible behavior of the
tissue and to yield a physical meaningful displacement of the body.

2.2.2. The choice of the isochoric strain energy functionW
We consider the healthy arterial tissue as a homogeneous body with constant material param-

eters for which the layered structure of the vessel wall is neglected. As described in (Nichols and
O’Rourke, 1998), the arteries show a highly nonlinear and anisotropic mechanical behavior. In
the last decades, structurally motivated models (as for instance anisotropic laws), that take into
account the fibrous nature of the tissue into the constitutive relation, have been proposed and
used to represent the anisotropic behavior of arteries (Holzapfel and Gasser, 2000; Dalong and
Robertson, 2009; Kroon and Holzapfel, 2008). However, isotropic models are still largely used
to represent the arterial tissue (Holzapfel and Gasser, 2000; Humphrey, 2003; Fung, 1993). For
this reason, we will consider both isotropic and anisotropic models. We remark that, in order
for the strain energy functionW to satisfy the polyconvexity condition for all the deformations
of the body, also the isochoric strain energy functionW must be a polyconvex function for all
states of deformations.

2.2.3. Constitutive models for isotropic bodies
When the arterial tissue is modeled by means of isotropic models, it is assumed to be com-

posed by a unique elastic material by neglecting its fibrous nature. Due to requirements of frame
indifference of the constitutive law (Holzapfel, 2000), the isochoric part of the strain energy
function in Eq. (5), indicated asWiso, is formulated in terms of the principal invariants of C, as:

Wiso =Wiso(C) =Wiso(I1, I2, I3) =Wiso(I1, I2), (8)

where:

I1 = Tr(C) = J−2/3I1, I2 =
1
2

[
Tr2(C) − Tr(C

2
)
]

= J−4/3I2 , and

I3 = det(C) = J−2I3, (9)

with (I1, I2, I3) the principal invariants of C (Holzapfel, 2000). We remark that the explicit depen-
dency ofWiso on I3 in Eq. (8) can be dropped since I3 ≡ 1, due to the definition of the isochoric
right Cauchy-Green tensor C.

A common constitutive model is the St. Venant-Kirchhoff (SVK) (Holzapfel, 2000), for
which:

Wiso =W
S VK
iso

(
I1, I2

)
=

(
λ

8
+
µ

4

)
I

2
1 −

(
3
4
λ +

µ

2

)
I1 −

µ

2
I2 +

9
8
λ +

3
4
µ, (10)

where λ and µ are the Lamé parameters, depending on the Young modulus E and Poisson’s ratio
ν as:

λ =
Eν

(1 + ν)(1 − 2ν)
and µ =

E
2(1 + ν)

. (11)

We recall that the Young modulus measures the mechanical stiffness of the material and the
Poisson’s ratio ν ∈ (0, 0.5) represents the relative change of volume of an elementary cube in-
side the body due to deformations of the material. We remark that the St. Venant-Kirchhoff
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law, and eventually its linearized approximation, is still largely used in the fluid-structure inter-
action numerical simulations of the blood flow in complaint arteries both in the case of cerebral
arteries (Torii et al., 2006; Valencia et al., 2013; Torii et al., 2008) and other types of arteries
(Crosetto, 2011; Malossi, 2012); for this reason, we will include the SVK model for a numerical
comparison.

In addition, we consider the first order exponential (EXP1) model proposed in (Delfino et al.,
1997), for which:

Wiso =W
EXP1
iso (I1) =

α1

2γ1

(
eγ1(I1−3) − 1

)
(12)

and the second order exponential model (EXP2) (Balzani, 2006):

Wiso =W
EXP2
iso (I1) =

α2

2γ2

(
eγ2(I1−3)2

− 1
)
, (13)

where α1, α2, γ1 and γ2 are suitable material parameters. In Eqs. (12) and (13) α1 and α2 measure
the mechanical stiffness of the arterial tissue, while γ1 and γ2 are representative of the level of
nonlinearity of the mechanical response of the vessel wall.

We remark that the strain energy functions associated to the exponential (EXP1 and EXP2)
models of Eqs. (12) and (13) satisfy the polyconvexity condition for all the states of deformations
(Balzani, 2006). Conversely, the SVK model does not satisfy this condition under compression
states of deformations (Holzapfel, 2000; Raoult, 1986); however, we observe that this situation
does not occur during inflation tests of cylindrical geometries like the one represented in Fig. 1(a).

2.2.4. Constitutive model for anisotropic bodies
When modeling the passive mechanical response of the vessel wall by means of anisotropic

models, the tissue is assumed to be composed of an isotropic medium, also called background
material, in which a network of collagen fibers is immersed (Holzapfel and Gasser, 2000; Humphrey,
2003). Such models describe the overall mechanical behavior of the arterial tissue as the sum of
the contributions provided by its two main constituents. Based on experimental observations, the
two constituents are the elastin and the collagen fibers respectively, that are the main components
of the vessel wall (Nichols and O’Rourke, 1998; Holzapfel and Gasser, 2000). In literature (see
(Dalong, 2009; Balzani, 2006) and references therein) the anisotropic models commonly em-
ployed are based on the theory of fiber-reinforced composites (Spencer, 1984). The contribution
of the collagen fibers to the overall mechanical behavior of the tissue is usually modeled as the
sum of the mechanical responses of a finite number of families of collagen fibers. As described in
(Dalong and Robertson, 2009; Wulandana and Robertson, 2005), the collagen fibers contribute
to the mechanical response of the arterial tissue only when activated. Indeed, the recruitment
of the collagen fibers has been hypothesized as the underlying mechanism for the mechanical
stiffening with increasing stress in arteries.

When the collagen fibers are activated, the isochoric strain energy functionW characterizing
anisotropic materials, that we indicate byWaniso, is decomposed into the sum of the load-bearing
contributions provided by the background material and the collagenous constituent as:

Waniso =W
bg
aniso +W

f ibers
aniso , (14)

where W
bg
aniso characterizes the background material and W

f ibers
aniso models the fiber-reinforcing

component of the tissue. As described in (Holzapfel and Gasser, 2000), isotropic laws as those
9



Figure 2: Directions a(i)
0 , i = 1, 2, of the families of collagen fibers in the reference configuration B0.

presented in Section 2.2.3 (SVK, EXP1, EXP2) can be used to describe the background material.
Conversely, the component W

f ibers
aniso of Waniso takes into account for the anisotropic effects in

the mechanical response of N families of collagen fibers. For any point X in the reference
configuration B0, each family of collagen fibers is endowed with a characteristic direction a(i)

0 ,
for i = 1 . . .N, as highlighted in Fig. 2. Due to the weak interactions between the fiber families
(Holzapfel and Gasser, 2000), the strain energy function W

f ibers
aniso is written as the sum of N

strain energy functions, W
f ibers,(i)
aniso , each of them characterizing the mechanical behavior of the

i-th family, as:

W
f ibers
aniso =

N∑
i=1

W
f ibers,(i)
aniso . (15)

The functionW
f ibers,(i)
aniso , due to frame indifference requirements, can be formulated in terms of

the so called modified pseudo-invariants of C and the second order tensor (a(i)
0 ⊗ a(i)

0 ) associated

to the i-th family (Holzapfel, 2000; Spencer, 1971), indicated by I
(i)
4 and I

(i)
5 , as:

W
f ibers,(i)
aniso =W

f ibers,(i)
aniso (I

(i)
4 , I

(i)
5 ), (16)

where
I

(i)
4 = Tr

(
C(a(i)

0 ⊗ a(i)
0 )

)
= J−2/3Tr

(
C(a(i)

0 ⊗ a(i)
0 )

)
= J−2/3I(i)

4 , (17)

and
I

(i)
5 = Tr

(
C

2
(a(i)

0 ⊗ a(i)
0 )

)
= J−4/3Tr

(
C2(a(i)

0 ⊗ a(i)
0 )

)
= J−4/3I(i)

5 , (18)

being I(i)
4 and I(i)

5 the fourth and fifth invariants associated to C and the tensor (a(i)
0 ⊗ a(i)

0 ). From
the mechanical point of view, I(i)

4 corresponds to the square of the stretch of the body along
the fiber direction a(i)

0 , or alternatively, it can be interpreted as the square of the length of the
deformed fiber in the current configuration; I(i)

5 measures the deformations of the i-th collagen
fiber under shear conditions (Raoult, 2009). In the anisotropic models under consideration, we
set either W

bg
aniso = W

EXP1
iso or W

bg
aniso = W

EXP2
iso . The isochoric strain energy function for the

single collagen fiber family W
f ibers,(i)
aniso in Eq. (15) is chosen as a second order exponential law

along the fiber direction, that is:

W
f ibers,(i)
aniso

(
I

(i)
4 , I

(i)
5

)
=W

f ibers,(i)
aniso

(
I

(i)
4

)
=

α(i)

2γ(i)

(
eγ

(i)(I
(i)
4 −‖a

(i)
A ‖

2)2
− 1

)
, (19)
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where α(i) and γ(i) are the mechanical stiffness and level of nonlinearity characterizing the i-th
family of collagen fibers, respectively, and ‖a(i)

A ‖ is called the activation length of the i-th family
of collagen fibers. From the modeling point of view, ‖a(i)

A ‖ is the length at which the recruitment
of the i-th family of collagen fibers occurs. The i-th family of collagen fibers is considered ac-
tivated, i.e. it contributes to the mechanical response of the arterial tissue, when I

(i)
4 is higher

than the square of the activation length ‖a(i)
A ‖ (Dalong and Robertson, 2009; Balzani, 2006). Ac-

cording to (Gasser and Holzapfel, 2006; Balzani, 2006), the activation length corresponds to the
length of the collagen fibers in the reference configuration B0; therefore, for this class of models,
the i-th family of collagen fibers is activated whenever the activation condition, I

(i)
4 > ‖a(i)

0 ‖
2,

is satisfied. In literature (see (Calvo et al., 2007; Gasser and Holzapfel, 2006; Balzani, 2006;
Brinkhues et al., 2013)), the length of the i-th fiber family in the reference configuration B0 is
usually set to 1. In the following, this constitutive model will be indicated as EXP2-RC. On
the other hand, according to the multi-mechanism model (Dalong and Robertson, 2009; Wulan-
dana and Robertson, 2005), the recruitment of the i-th family of collagen fibers occurs whenever
I

(i)
4 > ‖a(i)

MM‖
2, where ‖a(i)

MM‖ is the activation length associated to the i-th family in a de-
formed configuration of the body B(i)

MM , called the activation configuration. In (Dalong, 2009),
the activation length satisfies the condition ‖a(i)

MM‖ > 1 since, in the reference configuration
B0, the collagen fibers are assumed of unitary length. The strain energy function for the colla-
gen fibers in the multi-mechanism model will be indicated as EXP2-MM. We remark that the
strain energy functionW

f ibers,(i)
aniso in Eq. (19) satisfies the polyconvexity condition for all states of

deformations (Balzani, 2006).
The full isochoric strain energy functionWaniso in Eq. (14) for anisotropic material reads as

follows:
Waniso(I1, I2, I3, I4, I5) =W

bg
aniso(I1, I2) +W

f ibers
aniso (I4, I5), (20)

where I4 = {I
(i)
4 }

N
i=1 and I5 = {I

(i)
5 }

N
i=1 are the set of pseudo-invariants of the different fiber families.

We remark that, similarly to Eq. (8), the dependency of Waniso on I3 has been dropped since
I3 ≡ 1. When including the activation condition in Eq. (20), the general formulation of the
isochoric strain energy functionWaniso reads:

Waniso =


W

bg
aniso(I1, I2), if I4 ≤ ‖aA‖

2,

W
bg
aniso(I1, I2) +W

f ibers
aniso (I4, I5), if I4 > ‖aA‖

2,

(21)

where ‖aA‖
2 indicated the set of activation lengths {‖a(i)

A ‖
2}Ni=1. In Eq. (21), when assuming the

activation length equal to the one in the reference configuration, ‖a(i)
A ‖

2 = ‖a(i)
0 ‖

2 = 1, otherwise,
for the multi-mechanism model, we have ‖a(i)

A ‖
2 = ‖a(i)

MM‖
2. In Eq. (21), the condition I4 >

‖aA‖
2 is verified if there exists at least a fiber family i, with i = 1, . . . ,N, such that I

(i)
4 > ‖a(i)

A ‖
2.

It is worth pointing out that, when the collagen fibers contribute to the mechanical response of
the tissue, the isochoric part of the first Piola-Kirchhoff tensor P for anisotropic models in Eq. (6)
reads as follows:

Paniso = P
bg
aniso + P

f ibers
aniso = P

bg
aniso +

N∑
i=1

P
f ibers,(i)
aniso . (22)
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We include the collagen recruitment in the definition of Paniso by means of an activation function
that multiplies the contribution P

f ibers,(i)
aniso as follows:

Paniso = P
bg
aniso +

N∑
i=1

(1
π

arctan(ε(I
(i)
4 − ‖a

(i)
A ‖

2)) +
1
2

)
P

f ibers,(i)
aniso , (23)

where ε is a dimensionless user-specified parameter which we choose as ε = 5.0 · 105 to model
the abrupt recruitment of the collagen fibers. We remark that, for small values of ε in Eq. (23)
the recruitment of the collagen fibers becomes more gradual and the collagen fibers are described
as mechanically active also for values of the stretch smaller than the activation stretch (Tricerri,
2014).

2.3. Determination of the material parameters from experimental data

In order to characterize the mechanical behavior of the healthy arterial tissue, it is neces-
sary to estimate the material parameters of the isochoric constitutive models described in Sec-
tion 2.2.2. Although in vitro mechanical inflation-extension and twist tests would be required to
fully characterize the mechanical behavior of anisotropic materials (Holzapfel and Gasser, 2000;
Holzapfel and Ogden, 2008), for the anisotropic constitutive models described in Section 2.2.4
biaxial data can be employed under the incompressibility assumption to completely describe the
mechanical response of the healthy arterial tissue. In addition, we remark that for cerebral arter-
ies, although some publications, as (Kenneth et al., 2008; Monson et al., 2008; Bell et al., 2013),
report biaxial measurements of the stress-strain relation to the best of our knowledge, the only
full set of experimental measurements that can be employed in a data fitting procedure available
in literature is reported in (Scott et al., 1972). Therefore, in this work, the material parameters
of each isochoric model are determined by computing the least-squares approximation (Quar-
teroni et al., 2007) of experimental measurements of the strain-stress relation of cerebral arteries
reported in (Scott et al., 1972). In (Scott et al., 1972) quasi-static inflation tests up to the trans-
mural pressure (∆P) of 200 mmHg on cylindrical specimens of healthy human anterior cerebral
artery (ACA) are shown. We remark that this work focuses on an unidirectional analysis of the
mechanical behavior of cerebral arteries. Indeed, in (Scott et al., 1972) only the strain-stress rela-
tion along the circumferential direction is analyzed. However, as previously mentioned, we deal
with an extensive numerical validation of existing constitutive models for human arteries in or-
der to provide a contribution within the context of finite element realistic numerical simulations
of cerebral arteries and the cardiovascular system at large. In this work, similarly to (Dalong
and Robertson, 2009; Wulandana and Robertson, 2005), the ACA is modeled as a cylindrical
membrane of undeformed internal radius (r0) and thickness (h) composed of a homogeneous
and incompressible material. We remark that, in virtue of the incompressibility assumption (i.e.
J = 1), the volumetric functionU in Eq.(5) is identically null, while the modified invariants of C
coincide with the principal invariants of C, being C ≡ C (see Eqs. (9), (17), and (18)). In (Scott
et al., 1972) the deformation of the internal radius is measured by the circumferential stretch,
indicated by λr, that is defined as λr = r/r0, with r being the deformed radius at a certain level
of transmural pressure ∆P. In order to fit the experimental data we consider nonlinear functions
T = T (λr) (detailed in Secs. 2.3.1 and 2.3.2) that relate the membrane tension T to the circum-
ferential stretch λr as in (Dalong and Robertson, 2009; Wulandana and Robertson, 2005; Naghdi
and Tang, 1977; Naghdi, 1984). In addition, the membrane tension is related to the transmural
pressure by means of the Young-Laplace equation, T = r ∆P ((Scott et al., 1972)). For a given
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constitutive model for the cerebral arterial tissue, the nonlinear approximation of the experimen-
tal data is computed by means of the Levenberg-Marquardt least-squares method (Marquardt,
1963).

Once the material parameters of a constitutive model have been estimated, the quality of the
least-squares approximation is evaluated by means of the R2 value (Brown, 2001) defined as:

R2 = 1 −

ns∑
i=1

(
Ti − T (λi

r)
)2

ns∑
i=1

(
Ti − T

)2
, (24)

where ns is the number of strain-stress experimental measurements (λi
r , Ti), for i = 1, . . . , ns,

T is the mean measured membrane tension, and T (λi
r) is the membrane tension evaluated at

the measured deformation λi
r. The closer to one is the R2 value corresponding to a constitutive

model, the better is the data fitting.
Secs. 2.3.1 and 2.3.2 present the functions T (λr) used to approximate the experimental mea-

surements for the constitutive models of Section 2.2.2 together with the values of the selected ma-
terial parameters and the corresponding R2 values. We recall that, as discussed in Section 2.2.1,
the penalization parameter κ in Eq. (7) is not involved in the parameter estimation procedure; we
set κ = 9.0 · 106 dyn/cm2.

2.3.1. Determination of the parameters for isotropic materials
For isotropic models, under the incompressibility assumption (i.e. J = 1), Eq. (5) reduces to

W =Wiso(I1, I2) =Wiso(I1, I2). (25)

According to (Wulandana and Robertson, 2005), the strain-stress function T = T (λr) for the
data fitting is

T (λr) =
h
λr

(
λ2

r −
1
λ2

r

)(
2
∂Wiso

∂I1
+ 2

∂Wiso

∂I2

)
(26)

for each of the constitutive models of Section 2.2.3 (WS VK
iso , WEXP1

iso , and WEXP2
iso ). Fig. 3(a)

shows the least-squares approximation of the experimental data of (Scott et al., 1972) by means of
the function T = T (λr) for each of the isotropic constitutive models with the material parameters
of Tab. 1. As indicated by the R2 value in Tab. 1, in the case of the SVK model the experimental
data are not properly approximated on the full range of transmural pressures. Conversely, the data
fitting improves when the EXP1 and EXP2 models are considered. In these cases, as shown in
Fig. 3(a), for transmural pressures higher than 50 mmHg, small differences are observed between
the two approximated strain-stress relations. On the other hand, see Fig. 3(b), for low transmural
pressures, the second order exponential (EXP2) model provides the best approximation of the
data with respect to the other two isotropic model.

2.3.2. Determination of the parameters for anisotropic materials
Similarly to Eq. (25), under the incompressibility assumption (i.e. J = 1), Eq. (20) reduces

to:
W =Waniso(I1, I2, I4, I5) =W

bg
aniso(I1, I2) +W

f ibers
aniso (I4, I5). (27)
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Figure 3: Least-squares approximation of the data in (Scott et al., 1972) using the isotropic models. Full range of
transmural pressures ∆P ∈ [0, 200] mmHg (left); low transmural pressures regime ∆P ∈ [0, 40] mmHg (right).

Model (Wiso) Parameters R2

WS VK
iso E = 1.1420 · 105, ν = 0.4500 0.9338

WEXP1
iso α1 = 7.6350 · 104, γ1 = 0.7410 0.9942

WEXP2
iso α2 = 6.8220 · 104, γ2 = 0.0609 0.9971

Table 1: Material parameters and R2 values for the isotropic models. E, α1, α2 [dyn/cm2]; ν, γ1,γ2 [-].

As in other works where anisotropic models describe the arterial tissue (e.g. (Balzani et al.,
2006a, 2012; Dalong and Robertson, 2009)), we consider two families of collagen fibers ori-
ented symmetrically with respect to the circumferential direction of the cylinder as in Fig. 2. In
addition, we remark that, for anisotropic models, the material parameters α(i) and γ(i) in Eq. (19)
are the same for all families of fibers. According to (Dalong and Robertson, 2009), for the
anisotropic models of Section 2.2.4 the function T = T (λr) reads as :

T (λr) =
h
λr

[
2
(
λ2

r −
1
λ2

r

)∂Wbg
aniso

∂I1
+

2∑
i=1

2
∂W

f ibers,(i)
aniso

∂I(i)
4

λ2
r cos2 β(i)

‖a(i)
A ‖

2

]
, (28)

where β(i) is the angle between the characteristic direction of the i-th fiber family in the reference
configuration B0, indicated by a(i)

0 , and the circumferential axis eθ (see Fig. 2). We remark that
in Eq. (28), due to the representation of the arterial tissue as a membrane, the recruitment of the
collagen fibers will occur simultaneously throughout the thickness of the vessel wall (Wulandana
and Robertson, 2005). In addition, we set β(1) = −β(2) and ‖a(1)

A ‖
2 = ‖a(2)

A ‖
2. In order to include

in the least-squares approximation the activation condition (I(i)
4 > ‖a(i)

A ‖
2) of Eq. (21) we consider
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Figure 4: Least-squares approximation of the data in (Scott et al., 1972) using the anisotropic models.

the following modified form of Eq. (28):

T (λr) =
h
λr

[
2
(
λ2

r −
1
λ2

r

)∂Wbg
aniso

∂I1
+

+

2∑
i=1

(
1
π

arctan(ε(I(i)
4 − ‖a

(i)
A ‖

2)) +
1
2

)
2
∂W

f ibers,(i)
aniso

∂I(i)
4

λ2
r cos2 β(i)

‖a(i)
A ‖

2

]
, (29)

to relate the membrane tension to the circumferential stretch. The activation stretch ‖a(i)
A ‖

2 de-
pends on the angle β(i) and on the circumferential stretch (λA,(i)

r ) at which the recruitment of the
i-th family of collagen fibers occurs by means of the relation (Dalong and Robertson, 2009):

‖a(i)
A ‖

2 = (λA,(i)
r )2 cos2 β(i) + sin2 β(i), (30)

and we set λA,(1)
r = λA,(2)

r . As discussed in Section 2.2.4 we consider anisotropic models for which
the collagen fibers are activated when their deformed length is either greater than their length in
the reference configuration ‖a(i)

0 ‖ or greater than a reference length ‖a(i)
MM‖. In the first case

(EXP2-RC model) such assumption implies that λA,(i)
r = 1 and therefore ‖a(i)

A ‖
2 = ‖a(i)

0 ‖
2 = 1, for

i = 1, 2. Conversely, for the multi-mechanism model (EXP2-MM model) λA,(i)
r > 1 and, there-

fore, ‖a(i)
A ‖

2 > 1, for i = 1, 2, (Dalong, 2009). In (Dalong and Robertson, 2009; Wulandana and
Robertson, 2005) an estimation of the circumferential stretch of activation in Eq. (30) is provided
based on the measurements reported in (Scott et al., 1972). However, since no experimental ob-
servations on the circumferential stretch of activation were reported in (Scott et al., 1972), we
consider λA,(1)

r as an additional material parameter to be estimated for the EXP2-MM model.
As discussed in Section 2.2.4, we employ either the EXP1 or EXP2 model to describe the

mechanical behavior of the background material. In the following, an anisotropic model will be
indicated by the couple of strain energy functions used for the background material and the col-
lagen fibers. Tab. 2 summarizes the material parameters and R2 value for each of the anisotropic
models under consideration. In Tab. 2, (αbg,γbg) represent the material parameters characteriz-
ing the background material while (α(1),γ(1),β(1),λA,(1)

r ) are the material parameters for the single
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Model (Waniso ) Material Parameters R2

WEXP1
aniso +WEXP2-RC

aniso

α
bg
aniso = 1.7471 · 104 , γbg

aniso = 0.8620
α(1) = 1.4979 · 105 , γ(1) = 0.5736

β(1) = 0.9865
0.9951

WEXP2
aniso +WEXP2-RC

aniso

α
bg
aniso = 6.8220 · 104 , γbg

aniso = 0.8620
α(1) = 6.008 · 10−6 , γ(1) = 0.8211

β(1) = 1.4984
0.9971

WEXP1
aniso +WEXP2-MM

aniso

α
bg
aniso = 3.5270 · 104 , γbg

aniso = 0.3424
α(1) = 1.3370 · 105 , γ(1) = 0.2141
β(1) = 0.7473 , λA,(1)

r = 1.5009
0.9980

WEXP2
aniso +WEXP2-MM

aniso

α
bg
aniso = 5.5420 · 104 , γbg

aniso = 3.0 · 10−4

α(1) = 1.3087 · 105 , γ(1) = 0.5133
β(1) = 0.8251 , λA,(1)

r = 1.6538
0.9985

Table 2: Parameters for the anisotropic models. αbg
aniso, α(1) [dyn/cm2]; β(1) [rad]; γbg

aniso,γ(1), λA,(1)
r [-].

family of collagen fibers. We remark that the least-squares approximation of the data improves
when anisotropic models are used with respect to isotropic models (Tab. 1). In addition, when
the multi-mechanism model describes the collagen fibers the approximation of the experimental
data is further improved with respect to the EXP2-RC model. Fig. 4(a) shows the membrane
tension T (λr) for the (EXP1, EXP2-RC) and (EXP1, EXP2-MM) models. Fig. 4(b) shows the
function T (λr) when either the EXP1 or the EXP2 models describe the background material and
the collagen fibers are represented by the EXP2-MM model. In this case, the estimation of the
circumferential stretch of activation λA,(1)

r is strongly affected by the choice of the model for the
background material (see Fig. 4(b) and Tab. 2). This is due to the fact that, as shown in Fig. 3(b),
the EXP2 model fits better than the EXP1 law the data in the low pressure regime; therefore,
when using the EXP2 model for the background material, the collagen fibers are activated at a
higher activation circumferential stretch in order to fit the high transmural pressure regime.

We observe that, in Figs. 4(a) and 4(b), the recruitment of the collagen fibers at finite strains
induces the sharp change in the membrane tension T (λr) around the circumferential stretch of
activation λA,(1)

r . Although the (EXP2, EXP2-MM) model gives the best least-squares approxi-
mation of the experimental measurement, it will not be employed in the numerical simulations
of healthy cerebral arterial tissue due to numerical issues related to the numerical solution of
the structural mechanics problem (3) (Tricerri, 2014). The fact that the highest R2 values are
obtained in the case of anisotropic models, for which the number of parameters is higher than the
one of the isotropic laws, stresses the importance of experimental observations on the properties
of the collagen fibers in terms of their spatial orientation and activation stretch (Hill et al., 2012).
Indeed, when a large number of parameters needs to be estimated by means of the least-squares
data fitting of experimental measurements ((Odgen et al., 2004)), non-uniqueness issues may
arise. These effects are mitigated when some parameters of the material model are known a pri-
ori; for example, in the case of anisotropic models, these may be the properties of the collagen
fibers.
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2.4. Mathematical modeling of elastin weakening

As described in Section 1, the onset of diseases such as atherosclerosis or cerebral aneurysms,
is related to the mechanical degradation of the mechanical properties of the elastin of the arterial
tissue. We describe the weakening of the arterial tissue that occurs in diseased states of arteries
(e.g. during the early phases of the formation of a cerebral aneurysm) by means of an isotropic
damage model. Following the approach proposed in (Kachanov, 1958; Skrzypek and Ganczarski,
1999), a dimensionless weakening parameter D ∈ [0, 1) is used to represent the level of mechan-
ical weakening affecting the material. The unhealthy arterial tissue is then described by means
of one of the constitutive models described in Section 2.2.2 for which the parameter representing
the mechanical stiffness of the material is reduced by a factor of D. The arterial tissue is healthy
and its mechanical properties intact when D = 0, while its full mechanical failure occurs when
D → 1. We remark that the approach of (Kachanov, 1958; Skrzypek and Ganczarski, 1999) is
commonly employed in literature when the mechanical degradation of the arterial tissue is de-
scribed at the macroscopic scale as a function of either hemodynamical or chemical factors, as
done in e.g. (Dalong et al., 2012; Calvo et al., 2007; Li and Robertson, 2009; Weisbecker et al.,
2011; Famaey et al., 2012). However, we point out that there is a general lack of experimental
measurements on weakened arterial tissue that can be used to validate the mathematical dam-
age models proposed for unhealthy tissues in (Dalong et al., 2012; Calvo et al., 2007; Li and
Robertson, 2009; Weisbecker et al., 2011; Famaey et al., 2012).

As discussed in Section 2.1 the choice of the isochoric strain energy function W (either
isotropic or anisotropic) characterizes the mathematical description of the arterial tissue. When
describing an unhealthy state of the arterial tissue, the weakening factor (1 − D) affects only the
isochoric part in the additive decomposition of the strain energy function (see Eq. (5)). Therefore,
when using isotropic laws to model the unhealthy vessel wall, Eq. (5) is transformed as follows:

Wiso(J, I1, I2; D) = U(J) +Wiso(I1, I2; D). (31)

When the vessel wall is described by the anisotropic model of Eq. (21), the weakening factor
could affect the strain energy for the background materialW

bg
aniso and the one describing the col-

lagen fibersW
f ibers
aniso in Eq. (14), or only one of the two. Based on the experimental observations

on cerebral aneurysms, for which only the elastin is degraded in the early stages development of
cerebral aneurysms, we assume that the weakening model affects only the mechanical contribu-
tion provided by the isotropic partW

bg
aniso of the strain energy function in Eq. (21). According to

this choice, the anisotropic constitutive model for the unhealthy vessel wall reads:

Waniso(J, I1, I2, I4, I5; D) = U(J) +W
bg
aniso(I1, I2; D) +W

f ibers
aniso (I4, I5). (32)

In (Dalong and Robertson, 2009; Balzani et al., 2006b; Dalong, 2009; Balzani, 2006) the weak-
ening parameter D is a function of kinematics quantities that depend on the history of the de-
formations that occur during the motion of the body, such as the maximum deformation or the
maximum value of elastic energy (Dalong, 2009; Balzani, 2006). We are interested in analyz-
ing the influence on kinematics quantities of interest for the modeling of unhealthy cerebral
arterial tissue of isotropic and anisotropic constitutive models at different levels of mechanical
weakening of the arterial tissue. For this reason, we fix a priori different values for D in the
constitutive models of Eqs. (31) and (32). In order to have consistent comparisons among the
different numerical simulations, it is necessary to calibrate the weakening parameter D for the
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different constitutive models; we detail this aspect in Section 2.5.

2.5. Calibration of the weakening parameter D for unhealthy cerebral arterial tissue

Based on the results obtained from the least-squares approximation of the experimental data,
we represent the unhealthy cerebral arterial tissue by introducing the weakening parameter D in
three of the constitutive models discussed in Section 2.2.2: the isotropic EXP2 model, and the
anisotropic models (EXP1, EXP2-RC) and (EXP1, EXP2-MM). The weakening parameter D is
introduced in the constitutive models by means of the factor (1 − D) multiplying the material
parameters representing the mechanical stiffness of the material. Thus, the isochoric termWiso

in Eq. (31) for the isotropic EXP2 model (indicated as U-EXP2) reads as:

Wiso(I1, I2; D) =W
U-EXP2
iso (I1, I2; DEXP2) =

=
(1 − DEXP2)α2

2γ2

(
eγ2(I1−3)2

− 1
)
. (33)

The weakened background material in the anisotropic models is described by the following mod-
ified form of the EXP1 model (indicated as U-EXP1):

W
bg
aniso(I1, I2; D) =W

U-EXP1
iso (I1, I2; DEXP1) =

=
(1 − DEXP1)αbg

aniso

2γbg
aniso

(
eγ

bg
aniso(I1−3) − 1

)
. (34)

In the following, the anisotropic models for unhealthy cerebral arterial tissue will be indicated
as (U-EXP1, EXP2-RC) and (U-EXP1, EXP2-MM), respectively, and DEXP2-RC

EXP1 and DEXP2-MM
EXP1

will represent the weakening parameter affecting the material properties of the background ma-
terial in the (U-EXP1, EXP2-RC) and (U-EXP1, EXP2-MM), respectively. As pointed out in
Section 2.4, the mechanical weakening of the tissue affects only the mechanical properties of
the background material (Eq. (32)). Although different constitutive models can be adjusted to a
set of experimental measurements in order to represent the healthy cerebral arterial tissue (Sec-
tion 2.3), the choice of the weakening parameter D in Eqs. (33) and (34) has an important effect
on the characterization of unhealthy cerebral arterial tissues. Fig. 5 shows the strain-stress func-
tions T (λr) of Figs. 3(a) and 4(a) for the EXP2, (EXP1, EXP2-RC) and (EXP1, EXP2-MM)
models for different values of the weakening parameter D. We observe that, for D > 0.6 the
three curves do not intersect in the physiological range of transmural pressures (∆P ∈ [70, 150]).
For this reason, the proper calibration of the weakening parameter D according to the model
describing the vessel wall is necessary. We have calibrated the values of the parameter D for
the three constitutive models with respect to a reference value for Dre f and the reference trans-
mural pressure ∆Pre f = 110 mmHg. More specifically, we have considered two cases. Firstly,
we have fixed Dre f = DEXP2-MM

EXP1 = 0.75 for the (U-EXP1, EXP2-MM) model and determined
the values of DEXP2 and DEXP2-RC

EXP1 for the remaining two models such that the three functions
T = T (λr) intersect at the reference transmural pressure ∆Pre f . Then, we followed the same
approach considering Dre f = DEXP2-RC

EXP1 = 0.6 for the (U-EXP1, EXP2-RC). We remark that in
the latter case, as shown in Fig. 5(c), it is not possible to find a value of D ∈ [0, 1) for which the
(U-EXP1, EXP2-MM) model yield the reference deformation at the reference pressure. Fig. 6
shows the functions T = T (λr) for the three constitutive models under consideration with the
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(b) U-EXP1, EXP2-RC
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(c) U-EXP1, EXP2-MM

Figure 5: Functions T (λr) for different values of the weakening parameter D.
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(a) Case 1.
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Figure 6: Functions T (λr) with the weakening parameters of Tab. 3.

material parameters of Tabs. 1 and 2 and the values of the weakening parameter D summarized
in Tab. 3.
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Case Weakening parameter D

1 Dre f = DEXP2-MM
EXP1 = 0.7500 , DEXP2-RC

EXP1 = 0.3010, DEXP2 = 0.1103

2 Dre f = DEXP2-RC
EXP1 = 0.6000 , DEXP2 = 0.2641

Table 3: Values for the weakening parameter D used in the numerical simulations.

3. Numerical approximation: the Finite Element method

Problem (3) is solved by means of the Finite Element method (Quarteroni and Valli, 1999b).

With this aim, let us introduce the Hilbert space V of functions V(B0) = [H1
ΓD

(B0)]3 =

{
ψ ∈

[H1(B0)]3 s.t. ψ = 0 on ΓD

}
, for which the weak formulation of problem (3) reads :

find d = d(X) ∈ V :∫
B0

P(d) : ∇ψ dB0 =

∮
Γin

−pn · ψ dΓin ∀ψ ∈ V. (35)

The discrete problem is obtained by approximating the reference configuration B0 by Bh
0, a con-

forming mesh (triangulation) of B0, and by considering a finite dimensional subspace Vh =

(Xp
h ∩ V) ⊂ V composed of Lagrangian, piecewise continuous polynomial basis functions of lo-

cal polynomial degree p ≥ 1 defining the space (Xp
h ). Let {ψA}

Nh
A=1, where Nh := dim(Vh), be the

Lagrangian basis of Vh, in the form ψA = (φAe1 + φAe2 + φAe3), where φA is a scalar Lagrangian
function of Vh defined on the mesh Bh

0, and (e1, e2, e3) is the Euclidean base in R3. The discrete
weak formulation of problem (3) is given by:

find dh = dh(X) =

Nh∑
A=1

3∑
j=1

(dh, j)AφA(X)e j ∈ Vh :

∫
Bh

0

P(dh) : ∇ψA dBh
0 =

∮
Γh

in

−phn · ψA dΓh
in ∀ψA ∈ Vh, (36)

where the j-th component of the displacement field is defined as dh, j =

Nh∑
A=1

(dh, j)AφA, with j =

1, 2, 3. In Eq. (36), Γh
in is the approximation of the internal surface Γin provived by the mesh Bh

0,
and ph is a suitable approximation of the boundary data p on Γin (e.g. the L2-projection of p
onto Xp

h (Γin)). We remark that the nonlinear constitutive relations considered in this work lead to
the nonlinear problem (36) which is solved by means of the Newton method (Quarteroni et al.,
2007). In order to guarantee the convergence of the Newton method for the values of transmural
pressures of interest, we use a pseudo-time approach, for which the inflating pressure is gradually
applied by using a pseudo-time function p(t), represented in Fig. 7. At each iteration of the
Newton method, Eq. (36) is linearized with respect to the displacement field d (see (Holzapfel,

2000; Balzani, 2006)) for which the tangent matrix
(
JP =

dP(d)
dd

)
of the first Piola-Kirchhoff

tensor P(d) is evaluated, and the resulting linear system is solved by means of the GMRES
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Figure 7: Inflating pseudo-time pressure profile p(t) for problem (3).

method (Saad, 1986) preconditioned with the Additive-Schwarz method (Quarteroni and Valli,
1999a).

4. Numerical validation

We numerically validate the constitutive models described in Sec. 2.2.2, for which the mate-
rial parameters are reported in Tabs. 1 and 2. Firstly, we show results of numerical simulations
of static inflation tests on healthy cerebral arterial tissue. Then, the weakening model discussed
in Sec. 2.4 is considered and numerical simulations on unhealthy cerebral arterial tissue are dis-
cussed. Finally we report and discuss numerical results obtained from fluid-structure interaction
simulations applied to patient-specific cerebral aneurysm. In this latter case, we compare results
obtained with different isotropic constitutive laws.

The computational domain representing the cerebral artery (see Fig. 1) is discretized by a
tetrahedral mesh composed of 384,000 elements with P1 Lagrangian finite elements for which
the total number of degrees of freedom (DOFs) when approximating Eq. (36) is 241,200. The
constitutive material models have been implemented in the finite element library LifeV (LifeV,
2010) by means of an expression template assembly framework (Quinodoz, 2012). The numer-
ical simulations have been run in parallel on 128 processors on the Cray XE6 supercomputer
Monte Rosa at the Swiss national supercomputing center CSCS in Lugano, Switzerland.

4.1. Inflation tests on healthy cerebral tissue

We report in Fig. 8 the magnitude of the displacement field at the cross section located at
z = 1 cm for ∆P = 150 mmHg for the constitutive models of Sec. 2.2.2. As expected, the
contour lines of the displacement are concentric with the largest displacement occurring at the
inner surface of the artery. The displacement magnitude in Figs. 8(a)-(e) has been rescaled in
order to show the correct qualitative behavior of all the numerical solutions; Fig. 8(f) presents
the radial displacement through the thickness of the vessel wall for all the constitutive models.
Figs. 9 and 10 show the strain-stress relations resulting from the least-squares approximation of
the experimental measurements (see Sec. 2.3) and the ones obtained by the numerical simulations
for the isotropic and anisotropic models, respectively. We report the circumferential stretch λr

at the internal radius of the domain in order to compare it with the experimental measurement
presented in (Scott et al., 1972). The circumferential stretch was obtained from the numerical
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Figure 8: Displacement magnitude [cm] at the cross section at z = 1 cm and ∆P = 150 mmHg for different material
models.

results computing the magnitude of the displacement field on Γin at the cross section z = 1 cm
such that the effects of Dirichlet boundary conditions applied on ΓD (see Fig. 1(a)) are negligible.

For the SVK isotropic model, as observed in Fig. 9(a), with pressures ∆P ∈ [70, 150] the
strain-stress relation obtained from the numerical simulations does not adequately reproduce
the one predicted by the data fitting, especially for the high values of ∆P. Conversely, a good
agreement between the numerical and least-squares fitted strain-stress relations is observed for
the EXP1 and EXP2 models. Such difference among the isotropic models can be ascribed to
the choice of the penalization parameter κ in Eq. (7). The larger is κ, the smaller is the body
displacement under the action of external forces. Thus, a value for κ that represents a good
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(b) EXP1
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(c) EXP2

Figure 9: Strain-stress relation T (λr) and corresponding relation obtained from the numerical simulations for the
isotropic models of Sec. 2.2.2. The dots represent the experimental data in (Scott et al., 1972).

compromise between the need to model the quasi-incompressible behavior of arteries and to
obtain a meaningful displacement field for a certain constitutive model, e.g. the EXP1 and EXP2
models, may become inappropriate for another one, e.g. the SVK model. However, in this
study, in order to have a consistent comparison of the numerical results among the different cases
under consideration, the same value for the penalty parameter has been used in our numerical
simulations.

Fig. 10 shows the strain-stress curves obtained from the least-squares approximation and nu-
merical simulation for the (EXP1, EXP2-RC) and (EXP1, EXP2-MM) models respectively. We
observe a good agreement between the simulated strain-stress relations and the corresponding
functions T (λr). For the (EXP1, EXP2-RC) model the highest error occurs for high transmural
pressures while for the multi-mechanism model, i.e. (EXP1, EXP2-MM), the two curves are
overlapped. However, in the latter case, the highest error occurs around the activation circumfer-
ential stretch. As discussed in Sec. 2.3.2, this is due to the fact that, in the data fitting, due to the
membrane modeling of the vessel wall, the recruitment of the collagen fibers occurs simultane-
ously throughout the thickness of the vessel wall; this assumption does not hold in the numerical
simulations since the arterial wall is described as a full three dimensional model.

Fig. 11 shows the relative error between the function T (λr) and the ones obtained from the
23
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(b) (EXP1, EXP2-MM)

Figure 10: Strain-stress relation T (λr) and corresponding relation obtained from the numerical simulations for the
anisotropic models of Sec. 2.2.2. The dots represent the experimental data in (Scott et al., 1972).
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Figure 11: Relative error between the two strain-stress relations of Figs. 9 and 10 as a function of ∆P.

numerical simulations. In the range of physiological transmural pressures, the maximum relative
error is around 4% and it is observed for the isotropic SVK model. However, from the strain-
stress measurements presented in (Scott et al., 1972), we can conclude that the relative error
between the function T (λr) and the numerically simulated strain-stress relations is compatible
with (that is within the same range as) the one affecting the experimental measurements in (Scott
et al., 1972). In the physiological range of pressures for the EXP1, EXP2 and the anisotropic
models, the relative error is below 2.5% confirming the good approximation of the least-squares
fitted strain-stress relation by the numerical simulations.

In the low pressures regime (i.e. for ∆P ∈ [0, 20] mmHg) the high relative errors are due to
the use of linear finite elements for the discretization of Eq. (35) and they are observed for all
the constitutive models. Indeed, from the numerical point of view, high values of the penalty
parameter κ can lead to incorrect displacement fields or to locking phenomena when discretizing
Eq. (35) by means of P1 finite elements (Brinkhues et al., 2013; Hughes, 2000). In this work,
the value for κ has been set in order to simulate the nearly-incompressible behavior of blood
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P1 P2
(a) Transmural pressure ∆P = 2 mmHg

P1 P2
(b) Transmural pressure ∆P = 20 mmHg

P1 P2
(c) Transmural pressure ∆P = 70 mmHg

P1 P2
(d) Transmural pressure ∆P = 150 mmHg

Figure 12: Displacement magnitude [cm] at different inflating pressures using the isotropic EXP1 model: using P1
elements (#DOFs: 241, 200) (left columns); using P2 elements (#DOFs: 234, 360) (right columns).

vessels for ∆P ∈ [70, 150] mmHg; this may lead to displacements which are not circumferen-
tially symmetric for low transmural pressures, as shown in Fig. 12 (left columns). However, such
asymmetry can be addressed, for instance, by discretizing Eq. (35) by means of quadratic (P2)
finite elements, as shown in Fig. 12 (right columns). For this comparison we employ the isotropic
EXP1 model and, in order to have the same number of DOFs with the quadratic elements as in
the linear case, a new mesh with 49, 896 elements and 234, 360 DOFs has been considered. In
Fig. 12 we observe that for ∆P ∈ [70, 150] mmHg, the use of P2 finite elements does not affect
the circumferential stretch; therefore, we can conclude that the results presented in Figs. 9 and
10 are not significantly affected by the choice of the finite element space. Indeed, the vessel wall
displacement on the internal surface of the domain is qualitatively equivalent when measured for
the range of transmural pressures under consideration in the case of P1 and P2 finite element
spaces. The results presented in Figs. 9 and 10 are slightly affected by the choice of the finite
element space in the low pressure regime that, however, is not of interest in this work.

In order to highlight the influence of the bulk modulus on the approximation of the circum-
ferential stretch, Fig. 13(a) shows the strain-stress relations obtained for different values of κ
in Eq. (7) using the SVK model with the material parameters reported in Tab. 1. We observe
the influence of the penalization parameter on the computed displacement field and we show
that, in this case, a different value of κ (i.e. κ = 4.0 · 106 dyn/cm2) would have led to a better
approximation of the function T = T (λr) in the range of transmural pressures of interest (see
Fig. 13(b)).

Fig. 14 shows the approximation of the incompressibility constraint at the cross section z = 1
cm at the inflating pressure of 150 mmHg for the constitutive models of Sec. 2.2.2. The largest
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Figure 13: Strain-stress relations for different values of κ for the isotropic SVK model with the material parameters of
Tab. 1.

error on the approximation of the volumetric constraint (J = 1) occurs at the internal surface
of the artery where the displacement is higher. The smallest error, around 4.5%, is obtained
for the SVK model due to the smaller radial displacement (see Fig. 9(a)) of the vessel with re-
spect to those obtained with the other constitutive laws. As discussed for Fig. 13, the choice of
the penalization parameter κ strongly affects the numerical results for the SVK model. Fig. 15
shows the Jacobian J at the cross section z = 1 cm at the inflating pressure of 150 mmHg for
two different values of κ (κ = 4.0 · 106 and κ = 9.0 · 106 dyn/cm2) using the SVK model. We
remark that, in Fig. 15, the Jacobian J is presented only for the values of κ such that the error
on the incompressibility constraint is lower than 20%. For the SVK model, Fig. 13(a) shows
that for ∆P ∈ [70, 150] mmHg, κ = 4.0 · 106 dyn/cm2 leads to a better approximation of the
strain-stress relation T (λr) by means of the numerical simulations; however, such choice for the
penalization parameter yields a poor approximation of the incompressibility constraint. For the
constituive models of Sec. 2.2.2 the biggest error is reported for the anisotropic models, as in
Fig. 14. Although the approximation of the kinematic constraint J = 1 is acceptable for all the
constitutive laws under consideration, the numerical results indicate that a higher value of the
penalization parameter κ in the volumetric strain energy function could be employed in the case
of anisotropic models (Tricerri, 2014). This suggests that, once again, the value of the penalty
parameter κ used for the numerical simulations should be tuned according to the constitutive
law used to describe the tissue. Fig. 14-(f) shows the relative error (percentage) on the incom-
pressibility constraint for ∆P = 150 mmHg. More specifically, in Fig. 14-(f) the relative error
is defined as Er = 100(Javg − 1), where Javg is the average of the volume ratio along each one
of the directions depicted in Fig. 14-(a). The oscillations reported in Fig. 14-(f) highlight the
mesh dependence of the numerical results. Indeed, we observe that the Jacobian J in Fig. 14 is
computed at the highest value of the transmural pressure for which the numerical solution ob-
tained with linear and quadratic finite elements is the same. However, the Jacobian J depends
on the spatial gradient of the displacement field, which in the case of Lagrangian basis function
is strongly affected by the spatial orientation of the tetrahedra in the mesh. Thus, the oscilla-
tions in Fig. 14-(f) cannot be addressed by employing P2 finite elements for the discretization
of the weak formulation. The averaged Jacobians Javg in Fig. 14-(f) indicate that the value of κ
used in the numerical simulations leads to an acceptable approximation of the incompressibility
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Figure 14: Volume ratio J and Javg at z = 1 cm, ∆P = 150 mmHg for the different material models; κ = 9.0 ·106 dyn/cm2.

constraint with the maximum relative error being approximatively 7%.
In order to evaluate the mesh dependency on the approximation of the incompressibility

constraint, numerical simulations of static inflation tests have been carried out for two additional
meshes: one coarser and one finer than the reference mesh. For this numerical comparison, the
tests have been carried out using the isotropic EXP1 model and P1 finite elements. The coarser
mesh is composed of 108,000 elements while the finer one is composed of 2,960,640 tetrahedra,
yielding to 72,480 and 1,852,800 DOFs, respectively. Fig. 16 shows the approximation of the
incompressibility constraint at the cross section z = 1 cm at the inflating pressure of 150 mmHg.
No strong mesh refining effects are noticeable on the numerical solution suggesting that the
approximation of the condition J = 1 is mainly affected by the choice of the penalty parameter
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(a) κ = 4.0 · 106 dyn / cm2 (b) κ = 9.0 · 106 dyn / cm2

Figure 15: Volume ratio J for different values of the penalization parameter κ for the SVK model at the pressure ∆P = 150
mmHg.
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Figure 16: Volume ratio J for different meshes of the computational domain.

κ.
The numerical validation of the isotropic and anisotropic constitutive models for the me-

chanical characterization of healthy cerebral arterial tissue has highlighted both modeling and
numerical aspects that should be considered when simulating the arterial wall mechanics. From
the modeling point of view, the least squares approximation and the numerical results suggest
that, according to the range of transmural pressures of interest, a suitably calibrated isotropic
model (as e.g. EXP1 or EXP2) can lead, in terms of the data fitting quality, to equivalent re-
sults than an anisotropic one, i.e. the (EXP1, EXP2-RC) model. In addition, the possibility of
modeling the recruitment of the collagen fibers at finite strains (EXP1, EXP2-MM) instead of at
zero strains leads to either a better approximation of the experimental measurements with a good
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Figure 17: Representation of the weakened portion of the computational domain.

agreement of the numerical results. Moreover, the numerical results obtained using the EXP1,
EXP2, (EXP1, EXP2-RC) and (EXP1, EXP2-MM) indicate that when experimental observations
of the characteristic directions of collagen fibers are not available on human specimen of arteries,
an isotropic model can be a viable alternative to a anisotropic model; this has the advantage of
reducing the number of material parameters that need to be estimated and the computational cost
of the assembling of the tangent matrix of the first Piola-Kirchhoff tensor.

4.2. Inflation tests on unhealthy cerebral tissue

We now address the numerical simulation of unhealthy cerebral arteries by using the isotropic
U-EXP2 and the anisotropic (U-EXP1, EXP2-RC) and (U-EXP1, EXP2-MM) laws. Among the
isotropic models, the choice of U-EXP2 is motivated by the good data fitting and agreement
between the curve T (λr) and the numerical results showed in Fig. 9(c).

We assumed that the weakening of the material properties occurs in a limited portion of the
domain, also referred as weakened region, that has been obtained from the intersection of the
computational domain with a sphere of radius rs = 0.095 cm and center C = (0, 0.09, 1.0), as
indicated in Fig. 17.

Figs. 18 and 19 show the displacement field on the deformed mesh for ∆Pre f = 110 mmHg
for Case 1 and Case 2 (Sec. 2.5). In Figs. 18 and 19 the mesh has been deformed according to the
displacement field at the reference transmural pressure. We first notice that, for each of the two
cases under consideration, the maximum value of the displacement magnitude is similar for all
the constitutive models. This proves the correct calibration of the weakening parameter D both
for Case 1 and Case 2. We also observe that, in both cases the pattern of the displacement fields
is affected by the choice of the arterial wall model. The extension and shape of the area where the
displacement field is influenced by the weakened region varies with the constitutive model and
the weakening parameter D. We observe that in Case 2, where the weakening parameter D for
the U-EXP2 and (U-EXP1, EXP2-RC) models is higher than in Case 1, the extension of the area
where the displacement field is influenced by the weakened region becomes larger than in Case
1. In particular, for the (U-EXP1, EXP2-RC) model, it reaches the lower part of the cylinder and
the displacement field is higher that the one reported for the U-EXP2 model. The displacement
field reported in Figs. 18 and 19 indicate the formation of a bulge corresponding to the weakened
region of the domain.

Figs. 20 and 21 report the volume ratio J at z = 1 at the reference transmural pressure for Case
1 and 2. As already reported in Fig. 14, the approach used in this work to describe the nearly-
incompressible behavior of arteries leads to an acceptable approximation of the incompressibility
constraint.
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(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 18: Case 1: displacement field [cm] at the internal and external surfaces of the computational domain at ∆Pre f =

110 mmHg.

(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 19: Case 2: displacement field [cm] at the internal and external surfaces of the computational domain at ∆Pre f =

110 mmHg.

Figs. 22, 23, and 24 show the spatial distribution of the Von Mises stress σV M(Holzapfel,
2000) in a central portion of the computational domain for Case 1 and Case 2. In this work,
residual stresses related to the opening angle of the arterial wall have not been considered, as
done e.g. in (Li and Robertson, 2009; Dalong et al., 2012). Indeed, to the best of our knowledge,
experimental observations of the opening angle of cerebral arteries are not available. In addition,
residual stresses are not considered here since the analysis presented in (Williamson et al., 2003)
highlights the fact that the spatial distribution of the mechanical stresses inside the vessel wall
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(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 20: Case 1: Volume ratio J at ∆P = 110 mmHg.

(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 21: Case 2: Volume ratio J at ∆P = 110 mmHg.

(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP2, EXP2-RC)

Figure 22: Case 1: Von Mises stress field [dyn/cm2] at the internal and external surfaces of the computational domain at
∆Pre f = 110 mmHg. The deformation of the vessel wall has been amplified of a factor 1.5 for graphical purposes

is affected principally by the choice of the constitutive model rather than by the introduction of
residual stresses. The Von Mises stress σV M is presented in Fig. 22 only for Case 1 since similar
spatial distributions of σV M have been obtained in both cases under consideration. We remark
that in Fig. 22, the Von Mises stress for the three models under consideration has been rescaled
in order to show the main qualitative aspects of its spatial distribution. For Case 1, σV M varies
between 3.5 · 105 and 1.5 · 106 dyn/cm2 and, as expected, the largest value occurs at the internal
surface of the cylinder, where the radial displacement is higher. We observe that for Case 1 the
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(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 23: Case 1: Von Mises stress [dyn/cm2] on the undeformed cross section at z = 1 cm and ∆P = 110 mmHg.

(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 24: Case 2: Von Mises stress [dyn/cm2] on the undeformed cross section at z = 1 cm and ∆P = 110 mmHg.

Von Mises stress on the internal and external surfaces of the cylinder does not present a strong
variability with respect to the constitutive model. This is related to the fact that the displacement
field on the internal and external surfaces in Case 1 does not present a strong variability with
respect to the constitutive model (as presented in Fig. 18), due to the calibration procedure de-
scribed in Sec. 2.5. However, we highlight a significant dependency of the distribution of the Von
Mises stress through the thickness of the vessel wall on the constitutive model, as presented in
Figs. 23 and 24. In Case 2, the Von Mises stress presents a strong dependency on the constitutive
model. More specifically, the different displacement fields in Fig. 19 result in the different pat-
tern of the Von Mises stress. Fig. 24 indicates that for high levels of mechanical weakening, the
variations of the Von Mises stress through the thickness of the vessel wall are strongly affected
by the choice of the constitutive model. To conclude, Figs. 23 and 24 highlight the relevance of
carefully choosing the constitutive model to represent the unhealthy arterial tissue.

4.3. Numerical simulation on a physiological geometry of cerebral artery

We now present and discuss some numerical results obtained on a physiological geometry of
a cerebral aneurysm reconstructed from MRI images. Although our results have been obtained
from a fluid-structure interaction numerical simulation, we only present the results concerning
the mechanical part observed during one heart beat to highlight the influence of the mathematical
model for the vessel wall on the numerical results. In this section, for the sake of brevity, we do
not address the mathematical formulation of a fluid-structure interaction (FSI) problem, neither
we detail the set of initial and boundary conditions considered in this case; in this respect, we
refer the interested reader to (Formaggia et al., 2009) and more specifically to (Tricerri, 2014)
and references therein for the detailed description of the mathematical formulation, numerical
approximation, initial and boundary conditions for the FSI problem.
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(a) Reconstructed vasculature from (b) Region of mechanical weakening
MRI images (the portion of interest in the aneurysm dome

is colored in red)

Figure 25: Representation of the vascular network in the neck and of the portion of interest

The geometry of the patient-specific cerebral aneurysm under consideration is presented in
Fig. 25-(a). The vascular network reconstructed from the acquired MRI images and the diameter
of the parent vessel suggest that the aneurysm in Fig. 25-(a) has occurred on the vertebral artery
(Tricerri, 2014; Gambaruto and João, 2012; Nichols and O’Rourke, 1998). The blood is modeled
as a Newtonian fluid with density ρ f and dynamic viscosity µ f equal to ρ f = 1.0 g/cm3 and
µ f = 0.035 g / (cm·s), respectively, while the density of the arterial wall is ρs = 1.2 g/cm3.
The fluid velocity and pressure are discretized by means of P1Bubble-P1 finite elements while
linear elements are employed to describe the vessel wall displacement in the structural dynamics
problem, as for the static inflation tests. The vessel lumen, i.e. the fluid domain, is composed
of 1, 013, 977 tetrahedral elements while the vessel wall, i.e. the solid domain, is composed of
452, 196 tetrahedra. The portion of the solid domain that is considered as mechanically weakened
by imposing the constant weakening parameter D reported in Tab. 4, with respect to the parent
vessel which is instead mechanically intact, is detailed in Fig. 25-(b). It can be observed that the
weakened region in the solid domain corresponds only to the aneurysm dome to take into account
the lower mechanical strength of the aneurysmal tissue located at the fundus with respect to the
tissue composing the neck of the aneurysm (Humphrey and Canham, 2000).

In our simulations, the vessel wall is modeled by two isotropic models, namely the first
(U-EXP1) and second (U-EXP2) order exponential ones in Eqs. (12) and (13). The choice of
these two isotropic models is motivated by the facts that no experimental observations on the
spatial distribution and orientation of the collagen fibers for the anisotropic models of Sec. 2.2.4
are available for the geometry under consideration and that, among the isotropic constitutive
models described in Sec. 2.2.3, two exponential laws are able to capture the stiffening effect with
increasing stress in arteries as reported in Fig. 3. The material parameters for the U-EXP1 and U-
EXP2 isotropic models for the healthy parent vessel and aneurysm walls are provided in Tab. 4.

33



Constitutive Material parameters Weakening Material parameters
model for healthy tissue parameter D for weakened tissue

U-EXP2 α2 = 5.811 · 106, γ2 = 4.080 0.25 α2 = 4.410 · 106, γ2 = 4.080

U-EXP1 α1 = 4.470 · 105, γ1 = 8.35 0.15 α1 = 3.799 · 105, γ1 = 8.350

Table 4: Parameters for the U-EXP1 and U-EXP2 models used for the healthy arterial tissue, weakening parameter D,
and parameters for the weakened tissue
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Figure 26: Stress-strain relations for the U-EXP1 and U-EXP2 models

The material parameters for the U-EXP1 law describing healthy arterial tissue have been taken
from (Delfino et al., 1997) for the carotid artery, whose diameter is similar to the one of vertebral
arteries (Nichols and O’Rourke, 1998). We assume that the constitutive stress-strain relation
characterizing the mechanical response of the healthy tissue has the same form T = T (λr) as in
Eq. (26) for a vessel of undeformed internal radius of r0 = 0.2 cm. Prior to setting the weakening
parameters for the two isotropic models under consideration, the second order exponential EXP2
law for the healthy tissue must be adequately calibrated. In this work, the material parameters
for the healthy tissue described by the EXP2 law have been determined such that the stress-strain
relations TU−EXP1 (λr) and TU−EXP2 (λr) intersect at the values of internal pressures of 40 and 100
mmHg. Afterwards, we determine the weakening parameters DEXP1 = 0.15 and DEXP2 = 0.25
following the same approach described in Sec. 2.5 and the corresponding presents the stress-
strain relations are presented in Fig. 26; we observe that the two curves predict a very similar
mechanical response on the range of internal pressures of interest, i.e. p ∈ [60, 110] mmHg, that
is the physiological one.

Arteries deform under the action of the hemodynamical loads due to the blood flow. In
order to model a physiological blood flow inside the vessel lumen, at the inlet surface of the
fluid domain, a parabolic velocity profile centered with respect to its center is imposed along
the inward directed normal unit vector. The time evolution (represented in Fig. 27) of the peak
velocity of the parabolic profile is computed from a physiological blood flow profile measured on
an Internal Carotid Artery (ICA) (Baek et al., 2010). More in detail, this physiological blood flow
has been rescaled with respect to the cross section area of the geometry under consideration. It
is worth pointing out that the velocity values of the inlet profile reported in Fig. 27 are consistent
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Figure 27: Peak velocity of the inlet parabolic profile imposed on the inlet boundary of the fluid domain; taken from
(Baek et al., 2010)

with the experimental measurements available in literature for the cerebral vasculature (Hart and
Haluszkiewicz, 2000; Matsuo et al., 2011; Ogoh et al., 2005).

The vessel wall displacement of the entire solid domain at the time t = 0.2 s is shown in
Fig. 28. The arterial wall displacement is presented only for the U-EXP2 law since the same
qualitative behavior for both constitutive laws was observed. The vessel wall displacement in
the aneurysm dome is higher with respect to the one measured for the parent vessel due to the
combined effect of the mechanical weakening. Moreover, the wall displacement in the parent
vessel is directed mainly along the local radial direction, namely the direction perpendicular to
the center line of the vessel (Faggiano and Antiga, 2014). Fig. 28-(c) shows the vessel wall dis-
placement at one point of the internal surface of the considered cross section with respect to the
undeformed radius. We observe that a variation of 2.5% of the undeformed radius is reported
during the heart beat; this result is consistent with the experimental measurements of the varia-
tion of the diameter for cerebral arteries presented in (Giller et al., 1993; Golemati et al., 2003)
for the vertebral and internal carotid artery. Indeed, in (Giller et al., 1993) a variation of less than
4% of the arterial radius is reported for the vertebral artery while a minimum variation of 6%
is measured in (Golemati et al., 2003) for the carotid artery, whose internal radius is similar to
the one of the vessel under consideration. By comparing the results presented in Fig. 28-(c), we
notice that the deformations predicted by the two constitutive models are similar during the heart
beat; indeed, the maximum displacement at the time t = 0.239 s predicted by the U-EXP2 law
is 6% higher than the one measured for the U-EXP1 model at the same time. Figs. 29 and 30
show the displacement of the aneurysm dome during the systole and the diastole. As previously
mentioned, it can be observed that the displacement in the parent vessel is mainly directed along
the radial direction and that the maximum values are attained in the aneurysm dome where the
mechanical weakening occurs. Despite the small quantitative differences among the numerical
results, we remark the different qualitative behavior of the two numerical solutions. Indeed, for
the entire heart beat, the U-EXP2 model predicts higher displacements than the ones measured
with the U-EXP1 law in the whole aneurysm dome. This is of particular interest when consid-
ering the influence of the deformations on the progressive mechanical weakening of the arterial
tissue and on the development of cerebral aneuryms, as done in (Robertson et al., 2011). When
studying cerebral aneurysms and the factors that may lead to rupture, an important indicator that

35



1

0 0.2 0.4 0.6 0.8

3

4

5

·10�2

Time [s]

kdk
/

R
0

[-]

U-EXP1
U-EXP2

1

(a) Displacement at time t = 0.2 s (b) Cross section (c) Relative radial displacement with
for the model U-EXP2 respect to the undeformed radius R0

Figure 28: Vessel wall displacement: (a) snapshot at time t = 0.2 s; (b) location of the cross section for the evaluation
of the relative vessel wall displacement; (c) relative parent vessel displacement on the internal surface with respect to the
internal radius R0. Blood flow is right to left.

1

Model: U-EXP1 Model: U-EXP2

Figure 29: Vessel wall displacement in the aneurysm dome at the time t = 0.239 s. The grey overlay represents the
undeformed geometry. The deformations are magnified by a factor 3

1

Model: U-EXP1 Model: U-EXP2

Figure 30: Vessel wall displacement in the aneurysm dome at the time t = 0.6 s. The gray overlay represents the
undeformed geometry. The deformations are magnified by a factor 3

is evaluated is the dome pulsatility in order to measure the variations of the aneurysm size during
the heart beat (Oubel et al., 2010). The pulsatility index is a dimensionless quantity defined in
(Oubel et al., 2010) as

µ =
|max{D̂1, D̂2} − Â|

D0
, (37)
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Figure 31: Changes in aneurysmal dome diameters; (a) Diameter definition; (b) Relative variations of D1 with respect to
the undeformed diameter D1 (red line); (c) Relative variations of D2 with respect to the undeformed diameter D2 (blue
line)

where D̂1 and D̂2 are the peak-to-peak amplitude of the variations of two characteristic diameters
of the aneurysm (D1 and D2 in Fig. 31-(a)), Â is the amplitude of variation of the parent vessel
diameter during the heart beat, and D0 is the artery diameter. In this work, D1 and D2 have
been chosen in order to capture the highest dome displacements along the transverse and parallel
directions to the blood flow, while D0 = 0.41 cm close to the dome. The index µ measures the
difference in pulsation between the aneurysm and the artery and expresses it as a fraction of the
artery diameter. As pointed out in (Oubel et al., 2010), the normalization with respect to the
artery diameter was added to compare aneurysms at different locations, since the same absolute
difference in pulsation changes for arteries of different size. Figs. 31-(b) and 31-(c) show the
variations of the two diameters depicted in Fig. 31-(a) during the heart beat. We remark that, as
previously commented for Figs. 29 and 30, the highest dilatation occurs for the diameter that
is oriented transversely with respect to the direction of the blood flow in the parent vessel. We
remark that the pulsatility index µ is around 3.3%, which is consistent with the measurements
reported in (Oubel et al., 2010) for unruptured aneurysms.

Fig. 32 presents the Von Mises stress inside the aneurysm dome at the time corresponding
to the largest displacement. We observe that, although the maximum value of Von Mises stress
is very similar in both cases, for the U-EXP1 model the region of high stresses is larger than
the one obtained with the U-EXP2 law. In particular, the two color scales highlight the different
values obtained. As reported in Fig. 32, high values of Von Mises stresses are measured at the
downstream apex of the aneurysm dome where, as discussed in (Tricerri, 2014), the blood flow
impinges the vessel wall, while it decreases inside the dome. The analysis of the Von Mises stress
inside the aneurysm dome in Fig. 32, indicates the relevance of considering both indicators when
describing the progression of the mechanical degradation of the properties of the arterial tissue
that occurs in cerebral aneurysms. Indeed, the high and low Von Mises stress regions in the
dome can be explained by considering the deformations of the dome during the cardiac cycle,
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(a) Model: U-EXP1 (b) Model: U-EXP2

Figure 32: Von Mises stress in the aneurysm dome at the time t = 0.239 s

represented in Fig. 29. We conclude that the larger the deformations, the higher the Von Mises
stress.

5. Conclusions

In this paper we have presented and discussed different hyperelastic constitutive models,
both for isotropic and anisotropic bodies within the context of continua, in particular for cere-
bral arterial tissue. An in-depth description of the cerebral vasculature and associated diseases
is presented, detailing the problem setup and highlighting the sophistication required to accu-
rately simulate such complex problems. The results of the simulations are critically compared
to experimental data available in the literature, showing good agreement. While the results and
discussion in this work are related to the cardiovascular system, the study is naturally relevant
and applicable to a wide set of problems. In particular, our approach for setting the parameters
that characterize the constitutive mechanical models, can be used as well in other contexts for
modeling complex materials with a limited (and at times contradicting) set of experimental data.

In choosing coefficients and parameters, we find that the isotropic exponential type laws and
the models for anisotropic bodies adequately fit the experimental data. The numerical results
showed good agreement with the data fitting; moreover, they highlighted the fact that isotropic
models can be considered appropriate for arterial tissue when experimental observations of the
directions of the collagen fibers in the tissue are not available. Subsequently, the influence of the
modeling choice for the unhealthy cerebral arterial tissue on the results of numerical simulations
of static inflation tests and fluid-structure interaction simulation on the physiological geometry
of a cerebral aneurysm were analyzed. Different levels of mechanical weakening were consid-
ered for the vessel wall, employing a dimensionless weakening parameter D both for the static
inflation tests and to model the mechanical weakening of the arterial tissue occurring in cerebral
aneurysms.
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All our numerical simulations have shown that the choice of the type of constitutive model
(i.e. isotropic or anisotropic) plays a key role in the spatial distribution of the mechanical stresses
through the thickness of the vessel wall. This highlights the relevance of properly selecting
the constitutive model when addressing the study of unhealthy conditions of the arterial tis-
sues. However, further numerical validation is necessary to address more complex mechanical
tests than the one considered in the present work, and possibly in vivo measurements of the
stress-strain relation of arteries. Concerning the anisotropic multi-mechanism model, specifi-
cally proposed for cerebral arteries, we have shown that it leads to the best approximation of the
experimental measurements.
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Brinkhues, S., Klawonn, A., Rheinbach, O., Schröder, J., 2013. Augmented Lagrange methods for quasi-incompressible
material-Applications to soft biological tissue. International Journal for Numerical Methods in Biomedical Engineer-
ing 29, 332–350.

Brown, A., 2001. A step-by-step guide to nonlinear regression analysis of experimental data using microsoft Excel
spreadsheet. Computer Methods and Programs in Biomedicine 65, 191–200.

Burton, A., 1954. Relation of structure to function of the tissue of the wall of blood vessels. Physiological Reviews 34,
619–642.
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