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Abstract  

Satellite-based soil moisture data accuracies are of important concerns by hydrologists because 

they could significantly influence hydrological modelling uncertainty. Without proper 

quantification of their uncertainties, it is difficult to optimise the hydrological modelling system 

and make robust decisions. Currently, the satellite soil moisture data uncertainty has been 

limited to summary statistics with the validations mainly from the in-situ measurements. This 

study attempts to build the first error distribution model with additional higher order 

uncertainty modelling for satellite soil moisture observations. The methodology is 

demonstrated by a case study using SMOS (the Soil Moisture and Ocean Salinity) satellite soil 

moisture observations. The validation is based on soil moisture estimates from hydrological 

modelling which is more relevant to the intended data use than the in-situ measurements. Four 

probability distributions have been explored to find suitable error distribution curves using the 

statistical tests and bootstrapping resampling technique. General Extreme Value is identified 

as the most suitable one among all the curves. The error distribution model is still in its infant 

stage which ignores spatial and temporal correlations, and nonstationarity. Further 
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improvements should be carried out by the hydrological community by expanding the 

methodology to a wide range of satellite soil moisture data using different hydrological models. 

Keywords: error distribution model, uncertainty modelling, satellite soil moisture, 

hydrological modelling, Soil Moisture and Ocean Salinity (SMOS), Xinanjiang (XAJ) 

1 Introduction 

Soil moisture is crucial to the improvement of most water-related systems, including real-time 

hydrological modelling at catchment scales (Brocca et al., 2010; Guingla et al., 2012; Merlin 

et al., 2006; Ottlé and Vidal-Madjar, 1994). This is because real-time hydrological modelling 

suffers from the accumulation of errors in evapotranspiration and soil moisture. This 

shortcoming can often result in poor performance of flow prediction after some dry periods 

due to the inaccurate calculation of the antecedent soil moisture (Brocca et al., 2008; Ottlé and 

Vidal-Madjar, 1994). 

The in-situ measurements, remote sensing and land surface models are the main sources of soil 

moisture estimation for hydrological applications. Soil moisture has a high variability in both 

space and time, so it is difficult to estimate accurately (Walker et al., 2004; Wang and Qu, 

2009). The majority of the available ground-based soil moisture observations are sparsely 

distributed, and hence are not able to provide sufficient information at a catchment-scale (Al‐

Shrafany et al., 2013; Srivastava et al., 2013b). Another technique to obtain catchment-scale 

soil moisture relies on land surface modelling (e.g., Noah MP and VIC models) or utilising 

data assimilation to integrate land surface models with ground measurements. However model-

based soil moisture estimation tends to suffer from time drifts problem (e.g., error accumulation 

over times). Alternatively, remote sensing is a feasible way to monitor catchment-scale soil 

moisture information since it provides integrated estimation over pixel scales (Engman and 
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Chauhan, 1995). Optical and thermal infrared remote sensing (Hain et al., 2011; Hulley et al., 

2010), as well as passive and active microwave remote sensing techniques (Kerr et al., 2010; 

Sánchez-Ruiz et al., 2014) have been extensively used for soil moisture monitoring over 

various conditions of topography and vegetation. 

These data products have the potential to be used in real-time flood forecasting systems. 

However, those measurements can be affected by several error sources (e.g., algorithms, 

sensors, and physical processes) (Dorigo et al., 2010). Quantification of such uncertainties is 

particularly important for applying the soil moisture datasets in real-time flood forecasting 

systems (Brocca et al., 2010). More importantly, this is the foundation to the optimal modelling 

performance in using such soil moisture datasets. Since satellite soil moisture data are global 

and widely available, they are of great interest to the hydrological community.  Although there 

are many studies on exploring the uncertainty of satellite soil moisture estimates in 

hydrological applications, they are mainly represented as summary statistics (such as root mean 

square error (RMSE), correlation or Nash-Sutcliffe Efficiency (NSE)) (Al Bitar et al., 2012; 

Albergel et al., 2012; Albergel et al., 2011; Collow et al., 2012; Lacava et al., 2012b; Panciera 

et al., 2008; Piles et al., 2011; Srivastava et al., 2014; Srivastava et al., 2013a; Srivastava et al., 

2013b), and there is a lack of attention on the error distribution model (such as probability 

density function, spatial and temporal correlation, nonstationarity).  

It is recognised that due to the complexity of soil moisture in the field, no reference dataset can 

provide the absolute truth (Wagner, 2008) so it is important that the assessment of soil moisture 

products should be based on different benchmarks (such as in-situ measurements, modelled 

soil moisture data from land surface model or hydrological model, different sensors, etc.) 

according to their applications. Conventionally, satellite soil moisture data have been mainly 

validated using in-situ measurements, which are useful in many applications, but it should not 
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be considered as the only benchmark. For example, Dorigo et al. (2010) used three independent 

satellite soil moisture datasets to derive their error characterisations (albeit only summary 

statistics such as RMSE are derived) without using ground based estimates (the so called ‘triple 

collocation error estimation’). The reason is explained by the authors as ‘a spatially coherent 

assessment of the quality of the various globally available datasets is often hampered by the 

limited availability over space and time of reliable in-situ measurements.’ As Wagner, (2008) 

has explained that ‘there is no universal remote sensing method (= sensor + algorithm) that 

satisfies all user requirements’, an excellent performance of the soil moisture data in one 

application field may have a poor performance in another field. For example, in climate change 

modelling, the global climate models usually have spatial resolutions in hundreds of kilometres, 

so a soil moisture product suitable for such applications may not be optimal for studies in crop 

growth monitoring in agriculture, and vice versa. Since this study aims at hydrological 

modelling applications, the benchmark is based on the effective catchment soil moisture data 

estimated from a well-known operational hydrological model Xinanjiang (XAJ).  

In contrast to previous studies which have only focused on summary statistics, in this study we 

aim to build the first error distribution model of satellite soil moisture estimates. The SMOS 

(the Soil Moisture and Ocean Salinity) level-3 soil moisture product is used as a case study 

(Kerr et al., 2001). SMOS satellite is chosen because it is the first mission dedicated  to 

monitoring direct surface soil moisture on a global scale (Kerr et al., 2010) and owns a higher 

soil penetrating capability (~ 5 cm of soil surface at 1.4 GHz) due to its longer wavelength (L-

band). Another dedicated soil moisture satellite called SMAP (the Soil Moisture Active/Passive 

mission (1.20-1.41 GHz; (Entekhabi et al., 2010)) was only launched in early 2015 which is 

not suitable due to its short record. Long-term satellite and model datasets are processed (i.e., 

four consecutive years). Four traditional probability distributions are introduced to identify the 

optimal error distribution model(s) to describe the features of the SMOS soil moisture 
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uncertainty, by employing the statistical tests and bootstrapping resampling technique. The 

optional error distribution models are then quantified further by second-order error distribution 

modelling.  

2 Data, catchment and methodologies 

2.1 Study area and datasets 

The chosen catchment (Pontiac, 1500 km2) is a part of the Vermilion River situated in the 

central Illinois of the United States (U.S.) (40.878°N, 88.636°W). This region is influenced 

primarily by hot summer continental climate (Peel et al., 2007) and covered mainly by cropland 

(Bartholomé and Belward, 2005; Hansen, 1998) on Mollisols soil type (Webb et al., 2000). 

The average altitude of the catchment is 188 m above mean sea level and its average annual 

rainfall is 867 mm. The layout of the Pontiac catchment is shown in Fig. 1 along with the 

location of its flow gauge, the National Aeronautics and Space Administration (NASA) Land 

Data Assimilation Systems 2 (NLDAS-2) grids, and distribution of the river network.  

The NLDAS-2 (Mitchell et al., 2004) precipitation (P) and potential evapotranspiration (PET) 

at 0.125° spatial resolution and daily temporal resolution (converted from hourly resolution) 

are used to drive the XAJ model. More detail about the NLDAS-2 datasets can be found in Xia 

et al. (2012) and Zhuo et al. (2015b). Only the NLDAS-2 grid points within the catchment area 

are selected. As a result there are a total of 20 grid points covering the whole area. Furthermore 

the selected PET and P datasets have been converted into one catchment-scale dataset using 

the weighted average method for the usage in the lumped XAJ model. The U.S. Geological 

Survey daily flow data from January 2010 to April 2011 have been chosen for the calibration 

of the XAJ model and the period of May 2011 to December 2011 is used for the validation. 

The two year data restriction is due to the unavailability of the flow data in the catchment. 
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However, the short data length can still serve the purpose of this study due the reason as follows. 

The beauty of the XAJ model is that its calibration can be based on short data period. A study 

on calibration data selection of a XAJ like model (i.e., PDM) has shown that even a six-month 

data can be sufficient for excellent model calibration (Liu and Han, 2010). The reason is that 

the information content in the calibration data is a key factor instead of the length of the data 

period. As long as there is enough perturbation to model parameters, it is not necessary to have 

a much longer calibration time period. We have found that the one year calibration data has 

sufficient information to properly derive the effective model parameters, and the validation 

result has also demonstrated the effectiveness of the model. The level-3 SMOS soil moisture 

dataset is obtained from the SMOS Barcelona Expert Centre (SMOS-BEC, http://cp34-

bec.cmima.csic.es), and has been processed for the period from January 2010 to December 

2013. In addition, the soil moisture dataset under frozen condition has been removed (i.e., air 

temperature below zero). This is because SMOS is incapable of retrieving good quality soil 

moisture measurements under frozen weather (Al-Yaari et al., 2014; Lacava et al., 2012a; 

Wagner et al., 2014; Zhuo and Han, 2015). It has been further averaged into one catchment-

scale dataset by applying the weighted average method. The Matlab code has been used for all 

the modelling works carried out in this study. 

2.2 Uncertainty and its quantification methods 

In a hydrological model, the soil moisture input can be described by ensembles with stochastic 

elements and the usage of error distribution modelling allows us to better understand the system 

(Beven, 2006; Jain and Singh, 2003). By analysing the error distribution models of the input 

dataset, a decision can be made based on a range of possible outcomes instead of a fixed dataset; 

this is rather important in water resources management (Jain and Singh, 2003). 
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As aforementioned, there exist many error sources in satellite soil moisture measurements. 

However in real life, it is extremely difficult to investigate these error sources separately and 

discover their interdependencies. The statistical error distribution model of satellite soil 

moisture established with the assistance of hydrological model could be a practical and efficient 

solution. The error distribution model may change with time (i.e., nonstationarity), but it is 

more challenging to build such a model from the start. In this study, the model will be built by 

exploring the significant characteristics of satellite soil moisture errors from the long-time 

historical records without considering the nonstationarity. One of the simplest empirical based 

error distribution modelling is via the systematic error analysis. It collects the information of 

differences or ratios between satellite estimated and hydrological modelled soil moisture pairs. 

This methodology has been proven to be effective and time efficient in numerous studies 

(Anagnostou et al., 1998; Borga and Tonelli, 2000; Seo et al., 1999; Smith and Krajewski, 1991) 

and provides a fundamental framework for more complex error distribution models (Dai et al., 

2014b). 

In quantifying the uncertainty of SMOS soil moisture estimates, it is assumed that the ‘true’ 

soil moisture (ST) for assessing the observed satellite soil moisture (SS) is based on the XAJ soil 

moisture simulations (SX) which is used as the hydrological benchmark. The ‘true’ soil moisture 

can be described by the following equation:  

 SXT SSS                                                                                                                               (1) 

In another word, the probable true soil moisture corresponds to a realisation of the distribution 

of the XAJ soil moistures depending on the given satellite estimates. Based on this, the satellite 

soil moisture uncertainty can be shown as: 
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)()( SST SSMS                                                                                                                   (2) 

where )( SSM stands for the systematic errors of satellite estimates and )( SS represents the 

random error component. 

In this study, it is mainly focused on quantifying the total error observed when comparing 

SMOS and XAJ soil moisture values and optimising it with potential theoretical models, so 

that the main parameters and statistical characteristics of the observed error distribution model 

can be derived. Four commonly used probability distributions are explored to represent the 

error distribution of the SMOS soil moisture estimates.  

2.3 The SMOS soil moisture product 

The SMOS satellite was launched at the end of 2009 and has been providing soil moisture data 

for more than five years. SMOS acquires brightness temperature at the frequency of 1.4 GHz 

(near surface soil moisture (approximately 5 cm)). The spatial resolution of the SMOS products 

is 35-50 km (Kerr et al., 2010; Kerr et al., 2001) with soil moisture retrieval unit in m3/m3. 

SMOS offers a global coverage at the equator crossing the times of 6 am (local solar time (LST), 

ascending) and 6 pm (LST, descending) (Kerr et al., 2012).  

SMOS-BEC provides soil moisture measurements at various temporal resolutions: daily, 3-

days, 9-days, monthly and annually. The BEC soil moisture products comes in two formats: 

the ISEA 4H9 grid (Icosahedral Snyder Equal Area projection with aperture 4, resolution 9) 

with its shape of cells as hexagon (Pinori et al., 2008), and the EASE grid (Equal Area Scalable 

Earth grid) with a spatial resolution of ~25 km x 25 km. In this study the daily soil moisture 

dataset with the EASE grid is chosen, because it is more widely used. The main algorithms in 

generating the BEC level-3 surface soil moisture is the same as the one utilised by the European 
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Space Agency (ESA) for retrieving the standard level-2 soil moisture products (Kerr et al., 

2012). In this study only the descending SMOS data is used, because we have found that the 

performance of descending retrievals is much better than ascending’s in this catchment (Zhuo 

and Han, 2015; Zhuo et al., 2015a). This could be partly explained by the fact that this area is 

highly affected by radio frequency interference, which preferentially affects the ascending 

retrievals because of the SMOS antenna pattern (Collow et al., 2012).  

2.4 The XAJ hydrological model 

There are many hydrological models available globally and in this study, a widely used model 

called XAJ is employed. It is a fairly general conceptual lumped rainfall-runoff model, which 

is capable of simulating flows at a variety of catchment scales over the globe (Khan, 1993; 

Wang, 1991; Zhao, 1992; Zhao et al., 1995; Zhuo et al., 2014). Moreover its model concept 

and structure are representative to many typical conceptual hydrological models. It is able to 

account for soil water content in the system with a suitable time step and easy access of data 

inputs (i.e., P and PET only) (Peng et al., 2002). In hydrology, soil moisture deficit (SMD) or 

depletion is a significant indicator of soil water content, which stands for the amount of water 

to be added to a soil profile to bring it to the field capacity (Calder et al., 1983; Rushton et al., 

2006). It has been shown by considerable number of studies that the three-layer XAJ model is 

very effective in generating SMD from the hydrological forcing (Zhao, 1992; Zhao et al., 1995; 

Zhuo et al., 2014). The main concept of XAJ is the runoff generation on repletion of storage, 

which indicates that runoff is not emerged until the soil water content of its aeration zone 

reaches the field capacity. As shown in Fig. 2, the structure of the XAJ model comprises an 

evapotranspiration module, a runoff production module and a runoff routing module. The XAJ 

model has 16 parameters which are calibrated in this study by finding the optimal performance 

in flow simulation (Zhao, 1980; Zhao, 1992). The three-layer SMDs are estimated to determine 
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the effect of drying and wetting on the catchment soil storage, and in this study only the SMD 

from the surface layer is used because it is more scale-matched with the satellite surface soil 

moisture retrieval.  

2.5 Bootstrapping resampling  

Bootstrapping is a random sampling technique firstly presented in Efron, (1979), and a very 

informative and readable account is given by Efron and Tibshirani, (1986). It has been used 

widely in systematic and clinical studies (Hillis and Bull, 1993; Sauerbrei and Schumacher, 

1992). The reason for using bootstrapping is that it is able to provide an indirect way of 

assessing the characteristics of the distribution underlying the sample data (Adèr and 

Mellenbergh, 2008). Moreover bootstrapping is capable of controlling and checking the 

stability of the results, yet it only requires simple computing procedures. The general idea of 

bootstrapping is the usage of ‘sampling with replacement’ and more details regarding 

bootstrapping can be found in  Efron, (1979).  

2.6 Performance indicators 

NSE (Nash and Sutcliffe, 1970) is used to assess the performance of the XAJ model as well as 

to select the suitable error distribution curves during bootstrapping resampling process. NSE is 

the most common and important performance measure used in hydrology and it is calculated 

using the following equation: 
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where xi is the observed values and yi is the simulated values. n is the number of data pairs. 
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Chi-square test is a statistical test commonly used to compare the observed data (e.g., 

cumulative distribution function (CDF) of the observed error) with the data which would be 

expected to obtain according to a specific hypothesis (Mantel, 1963). The formula for 

calculating chi-square (χ2) is: 
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Pearson product moment correlation coefficient (r) is used to evaluate the linear relationship 

between two variables, which is defined as:   
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Spearman rank correlation coefficient (rsp) is a nonparametric method for evaluating the degree 

of correlation between two independent variables (Chen et al., 2013; Dai et al., 2014a). Due to 

its ability to cope with nonlinear correlation as well as linear correlation, it is used in addition 

to r to check the existence of nonlinearity between two sets of data. Its formula is: 
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where di is the difference between ranks for each data pair (xi, yi). 

3 Results 

3.1 SMD estimated from XAJ model 
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First, the surface SMD is simulated by driving the XAJ model. When running the XAJ model, 

the initial two thirds of the data from the period of January 2010 to December 2011 is used for 

model calibration while the rest one third of the data is utilised for validation; this is a common 

procedure used in hydrological modelling. Since the XAJ model has been proven as quite 

reliable (Zhao, 1992; Zhao et al., 1995), this allows us to confidently apply the model for the 

periods different from those used for calibration. The calibration procedure focuses especially 

on the modelling of three-layer SMDs and the distribution of the total runoff (e.g., surface 

runoff, interflow and groundwater), as well as a good agreement between the modelled flow 

and measured flow. The performance of the model is judged by the NSE indicator as its 

objective function. The optimal values of the XAJ parameters, along with their initialisation 

values used in this study are shown in Table 1. The overall performance shows a NSE value of 

0.806 for the calibration and 0.804 during the validation, which reveals that the model works 

very well. The time series plots of rainfall and flow during the calibration and validation periods 

are illustrated in Fig. 3. Further details on calibration and validation of the XAJ model in this 

catchment are discussed by Zhuo et al., (2015a). 

3.2 SMD derived from SMOS soil moisture  

In order to model the error distribution of the SMOS soil moisture estimates for hydrological 

applications, the four-year SMOS volumetric soil moisture dataset needs to be converted into 

the hydrological SMD initially. First the correlation between the SMOS volumetric soil 

moisture and the XAJ SMD is studied. As shown in Fig. 4(a), the Spearman rsp and Pearson r 

correlation statistics between the SMOS soil moisture estimates and XAJ SMD are calculated, 

which yield almost the same values, indicating that there is no strong nonlinearity. For this 

reason a linear fitting method is used for the derivation of SMOS SMD. As seen in Fig. 4(a), 

the upper part of the XAJ SMD represents the wilting point, while the lower range represents 
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the field capacity point of the soil. The values depend on the soil properties and vegetation 

cover. The comparison result between the derived SMOS SMD and the XAJ SMD is presented 

in Fig. 4(b), with NSE calculated as 0.492. It can be seen that there is an overestimation of the 

SMOS SMD when surface soil is relatively wetter (i.e., smaller XAJ SMD) and a slight 

underestimation when surface soil dries out (i.e., larger XAJ SMD). This observed error (i.e., 

the differences between the XAJ SMD and the SMOS SMD) is then investigated further by 

first-order and second-order uncertainty modelling. For the XAJ SMD, there is also an issue 

with the maximum ceiling at 0.047 where many points are concentrated. We will explore it in 

the discussion. 

3.3 First-order error distribution modelling 

This section is carried out to find the most representative curves to describe the observed 

discrepancy between the SMOS SMD and the XAJ SMD. Here the observed discrepancy is fit 

with four well known distributions in hydrology: Gaussian, Extreme Value (EV), General 

Extreme Value (GEV), and Logistic distributions. Distribution formulas together with their 

parameters are shown in Table 2. More details about these four distributions can be found in 

Walck, (2007). It can be seen that almost all the selected distributions are formed by two 

parameters: a scale parameter and a location parameter, except the GEV. The GEV introduces 

an additional parameter called the shape parameter, which is able to further describe the tail 

behaviour of a distribution. 

The fitted results of the four distributions can be observed from their histograms and CDFs 

plotted in Fig. 5. The skewness of the observed error is calculated as 0.339, so it is right-tailed. 

In Fig. 5(a), it is clear to see that EV is more left-skewed than others. For the simulation of 

peak occurrence, the Logistic shows the highest value, while the Gaussian and GEV give lower 
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peaks (but very close to each other). The CDF plots are also presented in Fig. 5(b). It shows 

that the Gaussian, Logistic and GEV curves are all very close to the observation; however it is 

difficult to judge which one is the best based on visual inspection. Therefore the chi-square test 

is implemented and the results are shown in Table 3. It is noted that a 5% level of statistical 

significance is adopted in this study and curves with chi-square p value bigger than 5% are 

acceptable (i.e., the observed error is truly from that distribution). It is noted that since a right-

tailed chi-square distribution is adopted, the larger the p value, the better the curve fits to the 

observation. In general, GEV achieves the best performance (p = 0.359), followed by Logistic 

(p = 0.165) and Gaussian (p = 0.129) curves.  This result may be partially explained by the 

number of parameters used in different curves, because GEV is controlled by three parameters 

while Logistic and Gaussian are only governed by two parameters.  

3.4 Error distribution modelling by bootstrapping resampling technique 

Although in previous section the GEV is found to be the optimal curve to describe the 

uncertainty of SMOS soil moisture, it is still necessary to check the reliability and stability of 

this outcome. Therefore the bootstrapping resampling technique is employed. The observed 

SMD errors are analysed by bootstrapping with 10,000 replicates. For each bootstrapping 

replicate, NSE is used to measure the agreement between the expected and the observed CDFs.  

The 10,000 curve fitting results of NSE using the bootstrapping technique is shown in Fig. 6(a). 

In addition, the CDFs of the NSE performances are also derived for a better visual inspection, 

as presented in Fig. 6(b). It is clear to see that although there are some overlaps of the NSE 

performance among the curves (e.g., the GEV curve is not always better than the Logistic 

curve), the GEV is generally the best curve. On the other hand, the performance of EV is the 

poorest, which also gives the widest NSE range. Moreover from the CDF plots it can be seen 
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that the performances of Gaussian, GEV and Logistic curves are again rather close. The 

statistical calculation of the overall NSE performance (Table 4) indicates that GEV is indeed 

the best and most stable error distribution model of all, which gives the highest NSE at 0.992, 

as well as the lowest standard deviation value (0.003). The NSE result for the Logistic and 

Gaussian curves are also acceptable (with the mean NSE of 0.987 and 0.982, respectively). The 

performance of EV is the poorest (mean NSE = 0.945).  

3.5 Second-order error distribution modelling 

From the above analysis, the GEV, Logistic and Gaussian are the preferred error distribution 

models to describe the uncertainty of the satellite observed soil moisture. However these 

models themselves are uncertain and it is important to estimate those uncertainties which are 

usually neglected in error distribution modelling. For example if a weather forecast reports 

there is 40% chance of rain, a question is how accurate is this 40% (e.g., maybe between 30% 

- 50%)? Therefore the uncertainty of the 40% chance is also important and should be 

questioned (Wagner and Gorelick, 1987). The uncertainty of the error distribution model is 

based on its parameters. Hence a second-order error distribution modelling is needed for each 

parameter of the error distribution models. The values of these parameters are calculated from 

each of the bootstrapping resampled dataset. As a result there are a total of 10,000 values for 

each of the error distribution model parameter. Furthermore the chi-square test is again used to 

statistically find the best models to describe the uncertainty of these parameters. The Gaussian, 

EV, GEV and Logistic curves are used for the fitting. 

The histograms together with the coefficients of skewness of the model parameter uncertainties 

are illustrated in Fig. 7. It is noted that all the distributions tend to be right-skewed slightly (i.e., 

positive skewness). Since the Logistic scale parameter s is proportional to the standard 

http://en.wikipedia.org/wiki/Standard_deviation
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deviation, it shows a very similar distribution to the Gaussian σ, but with smaller magnitude 

(about six times less). The chi-square test is calculated as shown in Table 5. It is not surprising 

to see that in almost all the cases, Gaussian is the only curve that passes the chi-square test 

(because all the calculated Gaussian p values are above the 5% level of statistical significance), 

except for the GEV scale parameter σ, where the GEV curve also fits. Generally speaking 

Gaussian is the most suitable curve for describing the second-order uncertainties for the 

selected Gaussian, Logistic and GEV error distribution models. This is different to the first-

order error distribution modelling where GEV is better than Gaussian.  

4 Discussion and conclusions 

Soil moisture is an essential variable in hydrological processes and plays a significant role in 

hydrological modelling. However, it is impractical to use in-situ sensors to obtain soil moisture 

over a catchment-scale. Remote sensing with its advantages of providing near-real-time global-

coverage soil moisture dataset has gradually been accepted as an important data source for 

hydrological applications. Since it measures soil moisture remotely and indirectly, the quality 

of its retrievals can be affected by several sources. Understanding its uncertainty can help the 

hydrological modelling community to better use the data in addressing other uncertainties of 

hydrological systems. A proper error distribution model beyond summary statistics is useful in 

generating input ensembles for Monte Carlo simulations in uncertainty analysis of hydrological 

modelling.  In this study we attempt to explore the uncertainty quantification of the SMOS soil 

moisture estimates hydrologically, at a medium-sized catchment in the central U.S. This study 

focuses on the satellite soil moisture products usage in hydrological modelling, therefore 

depending on the research purpose the XAJ estimated effective catchment soil moisture (i.e., 

SMD) is used as a hydrological benchmark.  

http://en.wikipedia.org/wiki/Standard_deviation
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In this study, four commonly used probability distributions (Gaussian, EV, GEV, and Logistic) 

are adopted to describe the uncertainties of satellite soil moisture data, which are extensively 

evaluated by using the chi-square statistical test and the bootstrapping resampling technique. 

From the analysed results, it can be concluded that GEV is the best curve in describing the 

uncertainty of the SMOS soil moisture estimates, without considering the complexity of its 

formation. In addition, the performances of the Logistic and Gaussian are also acceptable based 

on a 5% level of statistical significance. Since both Logistic and Gaussian only require two 

parameters, they have a clear advantage over the GEV in their simplicity. However, the extra 

usage of a shape parameter in the GEV may be significant when extreme soil moisture 

conditions are considered because it controls the tail behaviour (relevant to extreme 

hydrological events such as floods). During the second-order error distribution modelling, 

Gaussian is the most suitable curve for describing the uncertainty of the GEV error distribution 

model. This result is preferable, because Gaussian is a relatively simple probability distribution 

and could be easily applied in a hydrological model. However, it is debateable and still a 

research question on how to use the second-order error distribution model in hydrology (Pearl, 

1987). 

The uncertainty of a conceptual hydrological model is caused by three sources: model 

parameter uncertainties, model structure uncertainty, and input data uncertainty. To work out 

the impact of those uncertainty sources, a huge number of ensembles are required. However 

there are no commonly agreed methods for generating those ensembles because the 

perturbation of the model parameters depends on the PDF of individual parameters. Currently 

there are no practical and consensual ways to derive the model parameter PDFs. One of the 

popular methods is suggested by Keith Beven in his GLUE methodology which is not generally 

agreed and adopted by the community because it is based on the uniform perturbation of the 

model parameters using subjective criteria of behaviour model parameters. Furthermore, the 
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model structure uncertainty requires the utilisation of different hydrological models such as 

XAJ, PDM, VIC etc. However some models own common features, hence they duplicate 

results with restricted ensemble range. Ideally we want a large number of models which are 

distinct with a broad range of model structures. Currently, there are no convincing research 

publications to provide useful guidance on model structure uncertainty analysis. Therefore we 

focus on the third uncertainty as discussed in this study. 

Proper identification of satellite soil moisture uncertainty in runoff modelling is relevant for 

flow ensemble studies (e.g., error propagation). For example, if the observed flow falls outside 

the forecasted ensembles, then further revisions are required in the formulation of the 

hydrological model, its states or inputs. However if the chosen error distribution model is 

wrong (i.e., flow uncertainty bands become too wide or too narrow), it can lead to false 

conclusions regarding the adequacy of the input datasets, the hydrological model and its 

parameters. Furthermore understanding the uncertainty features of remote sensed soil moisture 

is also useful in controlling and correcting the soil moisture status in a hydrological model after 

dry periods, so that error accumulation impact can be reduced. Therefore error distribution 

modelling of satellite soil moisture measurements is vital to the data application in the 

hydrological community. This paper demonstrates the first attempt in modelling satellite soil 

moisture error distribution in hydrological applications, therefore, there are many rooms for 

improvements.  

For example, there is one clear issue with the current XAJ model’s maximum ceiling as shown 

in Fig 4. This shows the weakness with the XAJ model’s soil moisture accounting component. 

Such a problem is common in the current conceptual hydrological models and further work is 

needed in this area. However, the error distribution modelling is still useful despite such an 

issue because those hydrological models need ensemble inputs based on them for sensitivity 
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analysis and uncertainty analysis. In addition, more detailed studies such as the spatial and 

temporal dependence analysis should be conducted in the future. Studies are also needed to 

consider soil moisture information from other satellite missions over a wider range of 

catchment conditions with different hydrological models in order to find generalisation patterns 

of the error distribution models (this is especially important for ungauged catchments). 

However this is a huge task that cannot be achieved by a single study. The key mission for this 

paper is to attract attention by the hydrological community on this important issue which has 

been largely neglected, so that a great deal of hydrological models, satellite soil moisture 

observations and various catchments could be further explored by the community. We hope 

this study will raise the awareness on the importance of satellite soil moisture error distribution 

modelling so that such useful data source could be fully utilised in future hydrological 

modelling. 
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