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ISOLATING SOME NON-TRIVIAL ZEROS OF ZETA

DAVID J. PLATT

Abstract. We describe a rigorous algorithm to compute Riemann’s zeta func-
tion on the half line and its use to isolate the non-trivial zeros of zeta with

imaginary part ≤ 30, 610, 046, 000 to an absolute precision of ±2−102. In the

process, we provide an independent verification of the Riemann Hypothesis to
this height.

1. Introduction

Riemann’s zeta function is defined initially for <s > 1 by

ζ(s) :=

∞∑
n=1

1

ns
.

It has analytic continuation to the entire complex plane with the exception of a
simple pole at s = 1 with residue 1 and we have the following functional equation

π−
s
2 Γ

(
s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Since neither ζ nor Γ have poles to the right of s = 1, the simple poles of Γ
(
s
2

)
for s ∈ {−2,−4, . . .} correspond to simple zeros of ζ. In addition to these “trivial”
zeros, ζ has an infinite number of zeros with real part in the interval (0, 1). The
conjecture that all of these non-trivial zeros have real part exactly 1

2 is the Riemann
Hypothesis (RH).

1.1. Why isolate non-trivial zeros? Many applications in Number Theory in-
volve sums over the non-trivial zeros of ζ. Examples include computing π(x) via the
Lagarias-Odlyzko analytic method [14][20] and locating sign changes for π(x)−li(x)
[26] and θ(x)− x [23]. For our research, we determined we would need about 1011

zeros, those to a height of t ≈ 3× 1010, isolated rigorously to an absolute precision
of 100 bits or so. Tools such as Rubinstein’s ’lcalc’ [25] and Johansson et al’s ’mp-
math’ package for Python [13] rely on the Riemann-Siegel algorithm (see below)
and therefore become unwieldy as t increases. Some databases of pre-computed
zeros do exist. For example, Odlyzko’s web page [17] provides, inter alia, the first
2, 001, 052 zeros to ±4 × 10−9 (about 30 bits), but again we required both more
height and more precision. We therefore turned to isolating those zeros ourselves.
This then requires an efficient method of computing ζ on the half line, i.e. at points
s = 1/2 + it with t ∈ R.
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2 DAVID J. PLATT

1.2. Existing methods. Many algorithms have been described for the evaluation
of ζ on the half line. These divide naturally into those for evaluating ζ(1/2 + it)
for single values of t and those which examine many values of t simultaneously.

Examples of the former include Euler-Maclaurin (see e.g. [3]), Riemann-Siegel
[8] and Berry-Keating [4]. The algorithm exploiting Euler-Maclaurin has time com-

plexity O(t) whereas Riemann-Siegel achieves O
(
t1/2

)
. The distributed ZetaGrid

computations of Wedeniwski were achieved using “vanilla” Riemann-Siegel [30].
Heath-Brown and Hiary have described ways to compute the main sum that bring
the exponent down further to 1/3 + o(1) and 4/13 + o(1) respectively [12].

When one is interested in computing many values of ζ, algorithms which amor-
tise computations over many function evaluations become attractive. That due to

Odlyzko and Schönhage [19] computes O
(
t1/2+ε

)
values in time O

(
t1/2+ε

)
and

space O
(
t1/2+ε

)
. This algorithm has been used for the large scale computations

of Odlyzko [18] and Gourdon [10]. Booker’s algorithm for generic L-functions is
described in [6]. When applied to ζ, it has the same asymptotic time complexity
as Odlyzko-Schönhage but requires space O(t). Its main advantage is that it is
straightforward to make rigorous and in such a rigorous form, it has been applied
by Booker to Artin L-functions and by the author to Dirichlet L-functions [21].
We will describe a windowed version of Booker’s algorithm, specialised to ζ that
reduces its space requirement whilst retaining its rigorous numerics and efficiency.

We will proceed first with some notation, then we will describe how we compute
ζ(1/2 + it) at regularly spaced points up the half line. We will then discuss the
techniques used to isolate zeros using these data points and the final section will
provide some details on its implementation.

2. Notation

We will write e(x) for exp(2πix) and define the Fourier Transform of f(t) to be

F (x) :=

∞∫
−∞

f(t)e(−tx) dt

where this integral exists. The Discrete Fourier Transform of N ∈ Z>0 complex
values X0 . . . XN−1 results in N values Y0 . . . YN−1 where

Yj =

N−1∑
k=0

Xke

(
−jk
N

)
.

To obtain the inverse (Discrete) Fourier Transform we change the sign in the com-
plex exponential.

3. The Algorithm

The algorithm we will now describe is essentially a windowed version of that of
Booker, specialised to ζ.

We start by defining

Λ(t) = π−
it
2 Γ

(
1
2 + it

2

)
ζ

(
1

2
+ it

)
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which, by the functional equation for ζ, is real-valued. We will work with a win-
dowed version of Λ centred around t0 > 0 defined for h > 0 by

(3.1) f(t) := Λ(t+ t0) exp

(
π(t+ t0)

4
− t2

2h2

)
.

The exp
(
π(t+t0)

4

)
term is inserted for computational expedience and serves to

counteract the decay of the Gamma function.
We proceed as follows:

(1) Select t0, h > 0, K ∈ Z≥0 and A,B > 0 such that N = AB ∈ 2Z>0. For

n = −N2 . . .
N
2 − 1 and k = 0, 1, . . . ,K compute g

(
n
A ; k

)
where g(t; k) is

defined by

g(t; k) := Γ

(
1
2 + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)
(−2πit)k.

(2) Use each value of g
(
n
A ; k

)
to approximate

g̃(n; k) :=
∑
l∈Z

g

(
n

A
+ lB; k

)
.

(3) Use discrete Fourier transforms to compute

G̃(k)(m) :=
∑
l∈Z

G(k)

(
m

B
+ lA

)
,

where

G(u) :=

∞∫
−∞

g(t; 0)e(−tu) dt.

(4) Use each value of G̃(k)(m) to approximate G(k)
(
m
B

)
.

(5) Use a series of convolutions to sum terms involving G
(
m
B

)
and its deriva-

tives to approximate F
(
m
B

)
, where

F (x) :=

∞∫
−∞

f(t)e(−tx) dt.

(6) Use values of F
(
m
B

)
as an approximation to F̃ (m) where

F̃ (m) :=
∑
l∈Z

F

(
m

B
+ lA

)
.

(7) Now use another discrete Fourier transform to compute

f̃(n) :=
∑
l∈Z

f

(
n

A
+ lB

)
.

(8) Finally, use f̃(n) as an approximation to f
(
n
A

)
.

The only issue in step (1) is the rigorous computation of log Γ and we use Olver’s
bound (see (4.1) of [11]) for the error in truncating Stirling’s approximation.
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For steps (2), (4), (6) and (8) we need rigorous bounds for (respectively)∣∣∣∣∣∣
∑
l∈Z6=0

g

(
n

A
+ lB; k

)∣∣∣∣∣∣ ,∣∣∣∣∣∣
∑
l∈Z6=0

G(k)

(
m

B
+ lA

)∣∣∣∣∣∣ ,∣∣∣∣∣∣
∑
l∈Z6=0

F

(
m

B
+ lA

)∣∣∣∣∣∣
and ∣∣∣∣∣∣

∑
l∈Z 6=0

f

(
n

A
+ lB

)∣∣∣∣∣∣ .
Booker provides bounds for these quantities for the general (non-windowed) L-

function case in [6]. However, we must accommodate the inclusion of the Gaussian
and we can also exploit our knowledge of the specific analytic properties of ζ. In
the interests of readability, we defer the necessary Lemmas to appendix A.

Steps (3) and (7) rely on the following Lemma.

Lemma 3.1. Let f(t) be a function in the Schwartz space with Fourier transform
F (x). Let N = AB with A,B > 0 and define

f̃(n) :=
∑
l∈Z

f

(
n

A
+ lB

)
and

F̃ (m) :=
∑
l∈Z

F

(
m

B
+ lA

)
.

Then, up to a constant factor, f̃ and F̃ form a Discrete Fourier Transform pair of
length N .

Proof. By Poisson summation we have∑
l∈Z

f(t+ lB) =
1

B

∑
l∈Z

F

(
l

B

)
e

(
lt

B

)
f̃(n) =

1

B

∑
l∈Z

F

(
l

B

)
e

(
ln

N

)
.

We now write l = l
′
N +m to get

f̃(n) =
1

B

N−1∑
m=0

∑
l′∈Z

F

(
l
′
N +m

B

)
e

(
(l
′
N +m)n

N

)

=
1

B

N−1∑
m=0

e

(
mn

N

)
F̃ (m).

This is, by definition, an inverse Discrete Fourier Transform. �
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We note that by choosing N = AB to be a power of two, the Discrete Fourier
Transform can be computed with time complexity O(N logN) via any Fast Fourier
Transform algorithm1.

The meat of step (5) is the following two Lemmas.

Lemma 3.2. Let F be the Fourier transform of f . Then∣∣∣∣∣F (x) −
∞∑
j=1

1√
j

(
j
√
π
)−it0

G

(
x+

log
(
j
√
π
)

2π

)∣∣∣∣∣
= 2π

5
4 exp

(
1

8h2
− t20

2h2
− πx

)
.

Proof. We start with F (x) =
∞∫
−∞

f(t)e(−tx) dt and substitute s = 1
2 + i(t+ t0). We

then shift the line of integration right to <(s) = σ > 1 picking up the simple pole
of ζ(s) with residue 1 at s = 1. Now write ζ(s) as a sum (over j), interchange the
sum and integral and move the line of integration back to 1

2 . �

Lemma 3.3.

(3.2) F (x) =

∞∑
k=0

∑
m

G(k)(x+ um)

k!
S(k)
m

where S
(k)
m is defined for ξ = 1

2B via

S(k)
m :=

∑
log(j

√
π)

2π ∈[um−ξ,um+ξ)

1√
j

(
j
√
π
)−it0 ( log

(
j
√
π
)

2π
− um

)k
.

Proof. This is a simple application of Taylor’s theorem. �

Now for each k, (3.2) is a discrete convolution which we can evaluate with three
DFT’s. Computing F

(
m
B

)
is then achieved by summing the output of such convo-

lutions.
Rigorous estimates for the error in truncating the Taylor expansion after K terms

and the sum over j after J terms can both be found in Appendix B.

4. Isolating Zeros

Armed with values of f(ti) for regularly spaced ti ∈ [T, T + h], each change in
sign between ti and ti+1 indicates the presence of at least one non-trivial zero of ζ.
We now need to able to achieve three things:-

• We need to determine how many zeros there are in the rectangle <z ∈ (0, 1),
=z ∈ [T, T + h].
• If we don’t have enough sign changes to account for these expected zeros,

we need a means of increasing our sample rate until we do2.
• For each sign change, we need a way of “zooming in” to isolate the zero to

high precision.

1This complexity can actually be achieved for any N , even prime, but the implied constants

are larger.
2If RH does not hold, our algorithm will not halt.
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In the (rare) event that we did not have enough sign changes, we simply re-ran
the above algorithm having changed the parameters to achieve an increased sample
rate. The other two requirements are the subject of the next two sub-sections.

4.1. Turing’s Method. Providing a reference to confirm that all the non-trivial
zeros have been accounted for was addressed in Turing’s last publication [28] and
subsequently corrected and improved by Lehman [15] and further improved by
Trudgian [27]. Specifically, we have the following two Theorems.

Theorem 4.1. For t not the ordinate of a zero nor a pole of ζ, define

(4.1) S(t) :=
1

π
=

1
2∫
∞

ζ ′

ζ
(σ + it) dσ,

and when t is a zero or a pole, define

S(t) := lim
ε→0+

S(t+ ε).

Now for t not the ordinate of a zero of ζ, define N(t) to be the number of zeros of
ζ(s) with <s ∈ (0, 1) and =s ∈ [0, t]. Then

(4.2) N(t) =
1

π

= log Γ

(
1
2 + it

2

)
− t log π

2

+ 1 + S(t).

Proof. See, for example, page 128 of Edwards [9]. �

Theorem 4.2 (Trudgian). For t2 > t1 > 168π with S(t) defined as above, we have∣∣∣∣∣∣∣
t2∫
t1

S(t) dt

∣∣∣∣∣∣∣ ≤ 2.067 + 0.059 log t2.

Proof. This is Theorem 2.2 of [27]. �

To exploit these results, assume we have 168π < t1 < t2 < t3 and we have
located some zeros in [t1, t3]. We use these zeros to estimate

Icomp =

t3∫
t1

N(t) dt = N(t1)(t3 − t1) +

t3∫
t1

N(t)−N(t1) dt.

Note that even though we do not know N(t1) a priori, we know it to be an integer
and Theorem 4.2 will allow us to determine which one.

We now compute

Imax = 2.067 + 0.059 log t3 +

t3∫
t1

1

π

= log Γ

(
1
2 + it

2

)
− t log π

2

+ 1 dt

and compare it with Icomp. Suppose Imax − Icomp = ∆ and ∆ < t3 − t2, then we
have accounted for all the zeros in [t1, t2]. If not, we look again with a finer lattice
of values.
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4.2. Isolating Zeros. At this point, we have a lattice of values of f at points ti
and we have two adjacent points where f changes sign. We use a rigorous version of
Whittaker-Shannon up-sampling to allow us to compute f at intermediate points.

Theorem 4.3 (Whittaker-Shannon Sampling). Let f(t) be a continuous, real val-
ued function with Fourier Transform F (x) such that F (x) = 0 for |x| > B > 0
(i.e. f(t) is band-limited with bandwidth B). Also, define

sinc(x) :=
sin(πx)

πx
.

Then

f(t) =
∑
n∈Z

f

(
n

2B

)
sinc

(
2B

(
n

2B
− t
))

,

when this sum converges.

Proof. See [29]. �

Now, if our function is not strictly band-limited, all is not lost. We can appeal
to the following Theorem due to Weiss.

Theorem 4.4 (Weiss). Let f(t) be a real valued function with Fourier Transform
F (x) such that

(1)
∞∫
−∞
|F (x)|dx <∞

(2) F (x) is of bounded variation on R
(3) when F has a jump discontinuity at x, then F (x) = lim

ε→0+

F (x−ε)+F (x+ε)
2 .

Then ∣∣∣∣∣∣f(t)−
∑
n∈Z

f

(
n

2B

)
sinc

(
2B

(
n

2B
− t
))∣∣∣∣∣∣ ≤ 4

∞∫
B

∣∣F (x)
∣∣ dx.

Proof. See for example [7]. �

We will work with the function

W (t) = Λ(t) exp

(
πt

4
− (t− t0)2

2H2

)
which is close enough to being band-limited for our purposes. Note that the H
in the Gaussian here can be chosen independently of the h in 3.1. We defer the
detailed error bounds which allow us to exploit the above Theorems to Appendix C.
To apply them, we (non-rigorously) estimate the location of the zero by Newton-
Raphson and do a final check with two rigorous computations, one either side of
the conjectured sign change.

5. Implementing the Algorithm

We set out to isolate the non-trivial zeros of ζ to a height of 3 × 1010 to an
absolute precision of ±2−102. This implies results accurate to more than 135 bits
and a working precision significantly higher. Typical IEEE compliant hardware
floating point uses a 53 bit mantissa so we are forced to use software multiple
precision despite the performance penalty (perhaps a factor of 50 to 100) that
implies. In addition, we chose to manage the accumulation of rounding error using
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interval arithmetic (see, for example, [16]) and this introduces a further overhead,
although much smaller in comparison (less than a factor of 4 in our experience). We
used the ’C’ programming language and for multiple precision interval arithmetic,
the MPFI package [24]. We extended MPFI in the obvious way to handle complex
valued intervals as rectangles and our working precision was 300 bits. For steps (1)
to (6) we used N = 215 with B = 5, 476 as the width of our window and A = N/B.
However, by exploiting Whittaker-Shannon up-sampling once again we can increase
N to 220 during the Discrete Fourier Transform at stage (6), almost for free, keeping
B the same. At this point our sampling rate A is a little over 190. The remaining
parameters (determined largely empirically) were h = 176,431

2,048 , J = 104, 0003 and

K = 44 being the Gaussian width, the number of terms to sum when computing
F (x) and the number of differentials of G to carry respectively.

When up-sampling, we set H = 2089.0/16384.0 and used 70 points either side
of t0 using every 5th one in the sum.

We used up to 32 nodes of the University of Bristol Bluecrystal II cluster [2] (each
node comprising two 4 core Intel R© Xeon R© running at 2.8GHz) and we performed
approximately 6×1012 high precision evaluations of ζ and isolated 103, 800, 788, 359
zeros with 0 < =s < 30, 610, 046, 000 to ±2−102. Turing’s method confirms that
these are the only zeros in that range, so we have;

Theorem 5.1. Let ρ be a non-trivial zero of the Riemann zeta function with |=ρ| ≤
3.0610046× 1010. Then ρ is simple and <ρ = 1

2 .

The imaginary parts of these zeros (13 bytes each so occupying a total of 1.3
Tbytes) have been stored and made available by Bober via the LMFDB project [5].
Researchers are invited to contact the author if they require copies of some or all
of this data for their own purposes.

Appendix A. Bounds for Steps 2, 4, 6 and 8.

We now give bounds for the error terms implicit in steps (2), (4), (6) and (8).
We will first state some preparatory Lemmas.

Lemma A.1. Define the incomplete Gamma function for <s > 0 by [1]

Γ(s, x) :=

∞∫
x

ts−1e−t dt.

Then, given κ > −1 and x, h > 0, we have
∞∫
x

wκ exp

(
−w2

2h2

)
dw = 2

κ−1
2 hκ+1Γ

(
κ+ 1

2
,
x2

2h2

)
.

Proof. We use the substitution t = w2

2h2 to get

∞∫
x

wκ exp

(
−w2

2h2

)
dw =

∞∫
x2

2h2

2
k−1
2 hk+1t

k−1
2 e−t dt

and the result follows from the definition. �

3Lemmas A.3 and B.1 below imply that we need J = O(t
1
2
0 ) and it is this that dictates the

space required to implement the algorithm efficiently.
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Lemma A.2. Let t ≥ σ ≥ 1. Then we have∣∣∣∣∣Γ
(
σ + it

2

)∣∣∣∣∣ exp

(
πt

4

)
< 2

3−σ
4
√
πt

σ−1
2 exp

(
1 + 2

√
2

6t

)
.

Proof. By Stirling’s approximation we have,

< log Γ

(
σ + it

2

)
=

<

[
σ + it

2
log

(
σ + it

2

)
− σ

2
+

1

2
log

(
4π

σ + it

)
+

1

6(σ + it)

]
+ E

where, since σ/2 + it/2 is in the right half plane, Olver’s bound [11] applies again,
so

|E| <
√

2(σ + t)

6(σ2 + t2)
<

√
2

3t
.

We now write

<σ + it

2
log

(
σ + it

2

)
=
σ

2
log

(√
σ2 + t2

2

)
− t

2
arctan

(
t

σ

)
We now use t > σ > 1 so that

πt

4
− t

2
arctan

(
t

σ

)
− σ

2
< 0

and this, together with

σ

2
log

(√
σ2 + t2

2

)
+

1

2
log

(
4π√
σ2 + t2

)
= log

(
21−

σ
2
√
π(σ2 + t2)

σ−1
4

)
< log

(
21−

σ
2 +σ−1

4
√
πt

σ−1
2

)
proves the proposition. �

Lemma A.3. For h > 0, k ∈ Z≥0, and σ ∈ 2Z>0 + 1 with σ + 1
2 ≤ t0 define

C(σ, t0, h, k) :=

(2π)k
∞∫
−∞

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k∣∣∣∣∣∣dt
and

X :=

σ−1
2∑
l=0

(σ−1
2

l

)
2
k+l−1

2 hk+l+1t
σ−1
2 −l

0 Γ

(
k + l + 1

2
,

(σ + 1
2 )2

2h2

)
.

Then

C(σ, t0, h, k) < 2
6k+5−σ

4 πke
1+2
√

2
6t0

(
σ +

1

2

)k (
σ +

1

2
+ t0

)σ−1
2

h

+ 2
6k+7−σ

4 π
2k−1

2 e
1+2
√

2
6t0 X.
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Proof. Since σ ≥ 3 we have

2kπk
∞∫
−∞

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k∣∣∣∣∣∣dt
< 2k+1πk

∞∫
0

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k∣∣∣∣∣∣dt.
We now split the integral into two parts.

For t ∈ [0, σ + 1
2 ], we apply Lemma A.2 to get

2k+1πk

σ+ 1
2∫

0

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)(
1

2
+ σ − it

)k∣∣∣∣∣∣ dt
< 2

4k+7−σ
4 π

2k+1
2

σ+ 1
2∫

0

(t+ t0)
σ−1
2 exp

(
1 + 2

√
2

6(t+ t0)
− t2

2h2

)∣∣∣∣∣
(

1

2
+ σ − it

)∣∣∣∣∣
k

dt

< 2
6k+7−σ

4 π
2k−1

2

(
σ +

1

2

)k (
σ +

1

2
+ t0

)σ−1
2

exp

(
1 + 2

√
2

6t0

) ∞∫
0

e−
t2

2h2 dt

= 2
6k+5−σ

4 πk
(
σ +

1

2

)k (
σ +

1

2
+ t0

)σ−1
2

exp

(
1 + 2

√
2

6t0

)
h.

Using Lemma A.2 again, we bound the integral for t ≥ σ + 1
2 as follows

2k+1πk
∞∫

σ+ 1
2

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)(
σ +

1

2
− it

)k∣∣∣∣∣∣dt
< 2

4k+7−σ
4 π

2k+1
2

∞∫
σ+ 1

2

(t+ t0)
σ−1
2 exp

(
1 + 2

√
2

6(t+ t0)
− t2

2h2

)∣∣∣∣∣
(

1

2
+ σ − it

)∣∣∣∣∣
k

dt

< 2
6k+7−σ

4 π
2k+1

2 exp

(
1 + 2

√
2

6t0

) ∞∫
σ+ 1

2

(t+ t0)
σ−1
2 tk exp

(
− t2

2h2

)
dt

= 2
6k+7−σ

4 π
2k+1

2 exp

(
1 + 2

√
2

6t0

) σ−1
2∑
l=0

(σ−1
2

l

)
t
σ−1
2 −l

0

∞∫
σ+ 1

2

tk+l exp

(
− t2

2h2

)
dt

and our result follows from Lemma A.1.
�

We wish to bound the error introduced at step (2) by taking g
(
n
A ; k

)
as an

approximation for g̃(n; k). We start with a bound for |g(t; k)|.
Lemma A.4. For k ∈ Z≥0, t ∈ R and t0, h > 0, recall that we define g by

g(t; k) := Γ

(
1
2 + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)
(−2πit)k.
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Then ∣∣g(t; k)
∣∣ ≤ 4(2π|t|)k exp

(
−t2

2h2

)
.

Proof. We have∣∣∣∣∣∣Γ
(

1
2 + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)
(−2πit)k

∣∣∣∣∣∣
< (2π|t|)k exp

(
− t2

2h2

)∣∣∣∣∣∣Γ
(

1
2 + i(t+ t0)

2

)
exp

(
π(t+ t0)

4

)∣∣∣∣∣∣
and the result follows from the trivial bound

∣∣∣∣Γ( 1
2+ix

2

)
e
πx
4

∣∣∣∣ < 4. �

Now we can derive the following bound for the approximation implied at step
(2).

Lemma A.5. Let n ∈
[
−N2 ,

N
2 − 1

]
and B > h

√
k. Then∣∣∣∣∣∣

∑
l∈Z6=0

g

(
n

A
+ lB; k

)∣∣∣∣∣∣ ≤
8(πB)k

exp

(
−B2

8h2

)
+ 2

3k−1
2

(
h

B

)k+1

Γ

(
k + 1

2
,
B2

8h2

) .
Proof. We consider the right tail from n = −N2 . The first term missing is g

(
B
2 ; k

)
and B

2 is sufficiently large that our bound for g(t; k) (Lemma A.4) is decreasing.
Thus we can split off the first term and majorise the balance with an integral. This
process results in

2

∣∣∣∣∣g
(
B

2
; k

)∣∣∣∣∣+

∞∫
1

4(πB(2w − 1))k exp

(
−(2w − 1)2B2

8h2

)
dw

 .
Now by Lemma A.4 we have∣∣∣∣∣g

(
B

2
; k

)∣∣∣∣∣ < 4(πB)k exp

(
− B

2

8h2

)
.

Using the substitution t = (2w−1)2B2

8h2 the integral becomes

∞∫
B2

8h2

8πk

B
8
k−1
2 hk+1t

k−1
2 e−t dt

so we can apply Lemma A.1 and the result follows. �

At step (4), we use G(k)
(
m
B

)
as an approximation to G̃(k)(m). To enable us to

bound the error this introduces, we first derive a bound for |G(k)(u)|.
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Lemma A.6. Let σ ∈ 2Z>0 + 1. Then G(k)(u) is bounded in absolute terms by

C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− (2σ − 1)π|u|

)
+

2k+2πk+1 exp

(
−t20
2h2

) σ−1
2∑
l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
− (4l + 1)π|u|

)
.

Proof. First we consider u ≥ 0. We write

∣∣∣G(k)(u)
∣∣∣ =

∣∣∣∣∣∣∣
∞∫
−∞

Γ

(
1
2 + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)
(−2πit)ke(−tu) dt

∣∣∣∣∣∣∣ .
Substituting s = 1

2 + i(t+ t0), we now move the line of integration right to <(s) = σ
giving

(A.1)

∣∣∣G(k)(u)
∣∣∣ ≤ exp

(
(2σ − 1)2

8h2
− πu(2σ − 1)

)
(2π)k×

∞∫
−∞

∣∣∣∣∣∣Γ
(
σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4

)
exp

(
−t2

2h2

)(
1

2
− σ − it

)k∣∣∣∣∣∣dt.
For u < 0, we move the line of integration left to <(s) = −σ, picking up the poles
of Γ

(
s
2

)
at s = 0,−2, . . . , 1− σ. These give a contribution bounded by

2k+2πk+1 exp

(
−t20
2h2

) σ−1
2∑
l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
+ (4l + 1)πu

)
.

The integral which remains is now

(2π)k exp

(
(2σ + 1)2

8h2
+ (2σ + 1)πu

)
×

∞∫
−∞

∣∣∣∣∣∣Γ
(
−σ + i(t+ t0)

2

)
exp

(
π(t+ t0)

4
− t2

2h2

)
(σ +

1

2
− it)k

∣∣∣∣∣∣ dt.
Finally, for our range of σ and for t ∈ R, we have |Γ(−σ/2 + it)| < |Γ(σ/2 + it)|
and the result follows. �

Now we can obtain a bound for the error introduced at step (4).

Lemma A.7. Let m ∈ [0, N/2] and σ ∈ 2Z>0 + 1. Then we have∣∣∣∣∣ ∑
l∈Z6=0

G(k)

(
m

B
+ lA

) ∣∣∣∣∣ ≤ 2k+3πk+1 exp

(
−t20
2h2

)
S+

2

(
1 +

1

Aπ(2σ − 1)

)
C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− Aπ(2σ − 1)

2

)
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where S is the sum
σ−1
2∑
l=0

(
1 +

1

Aπ(4l + 1)

)
((2l + 1/2)2 + t20)

k
2

l!
exp

(
(4l + 1)2

8h2
− Aπ(4l + 1)

2

)
.

Proof. The left tail from m = N
2 majorises every case. The first term missing is

G(k)
(
−A2

)
which we can bound using Lemma A.6 by

C(σ, t0, h, k) exp

(
(σ + 1)2

8h2
− Aπ(2σ − 1)

2

)

+ 2k+2πk+1 exp

(
− t20

2h2

) σ−1
2∑
l=0

((
2l + 1

2

)2
+ t20

) k
2

l!
exp

(
(4l + 1)2

8h2
− Aπ(4l + 1)

2

)
.

Our bound for |G(k)(u)| is decreasing over the remainder of the left tail so we
can bound it with the integral

∞∫
1

[
C(σ, t0, h, k) exp

(
(2σ + 1)2

8h2
− Aπ(2n− 1)(2σ − 1)

2

)
+

2k+2πk+1 exp

(
−t20
2h2

)
×

σ−1
2∑
l=0

((2l + 1/2)2 + t20)
k
2

l!
exp

(
(4l + 1)2

8h2
− Aπ(2n− 1)(4l + 1)

2

)]
dn

and the result follows on evaluating this integral. �

We now want to bound the error introduced at step (6) by approximating F̃ (n)
with F

(
n
B

)
. We will need a bound for F .

Lemma A.8. Let σ ∈ 2Z + 1 and 1 < σ < t0. Then we have∣∣F (x)
∣∣ ≤ζ(σ)π

1−2σ
4 C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2
− π|x|(2σ − 1)

)

+ 2π
5
4 exp

(
1

8h2
− π|x| − t20

2h2

)
.

Proof. Since f(t) is real, its Fourier Transform F (x) has the property F (−x) = F (x)
so we need only consider x ≥ 0. We write s = 1

2 + i(t + t0) and shift the line of
integration right to <(s) = σ encountering the pole of ζ(s) at s = 1. This yields a
residue smaller in absolute terms than

2π
5
4 exp

(
1

8h2
− πx− t20

2h2

)
.

The remaining integral is then bounded in exactly the same fashion as in Lemma
A.6 using |ζ(σ + it)| ≤ |ζ(σ)| for σ > 1 and t ∈ R. �

Now we can deduce the following bound for step (6).
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Lemma A.9. For n ∈ [0, N2 ] we have∣∣∣∣∣F̃ (n)− F
(
n

B

)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
l∈Z6=0

F

(
n

B
+ lA

)∣∣∣∣∣∣ ≤
2ζ(σ)π

1−2σ
4 C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2
− Aπ(2σ − 1)

2

)(
1 +

1

Aπ(2σ − 1)

)

+ 4π
5
4 exp

(
1− 4t20

8h2
− Aπ

2

)(
1 +

1

Aπ

)
.

Proof. The left tail from n = N/2 majorises all other cases. The first term missing

is F
(
−A
2

)
which we can bound in absolute terms using Lemma A.8 with

ζ(σ)π
1−2σ

4 C(σ, t0, h, 0) exp

(
−πA(2σ − 1)

2

)
+ 2π

5
4 exp

(
1− 4t20

8h2
− Aπ

2

)
The same bound gives a decreasing sequence for the remaining terms which we

can therefore estimate with the integral

∞∫
1

[
ζ(σ)π

1−2σ
4 C(σ, t0, h, 0) exp

(
−πA(2σ − 1)(2n− 1)

2

)

+2π
5
4 exp

(
1− 4t20

8h2
− Aπ(2n− 1)

2

)dn.

Again, our result follows on evaluating this integral. �

Finally, we turn to the error introduced at step (8) by taking f
(
n
A

)
as an ap-

proximation to f̃(n). We start with a bound for |f(t).

Lemma A.10. Let f(t) be as defined at 3.1, take t ≥ 0, t0 > exp(e) and set

β = 1
6 + log log t0

log t0
. Then

|f(t)| ≤ 3(t+ t0)β exp

(
− t2

2h2

)
.

Proof. From the definition, we have

|f(t)| =

∣∣∣∣∣∣π−it2 Γ

(
1
2 + i(t+ t0)

2

)
exp

(
πt

4
− t2

2h2

)
ζ

(
1

2
+ i(t+ t0)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣Γ
(

1
2 + i(t+ t0)

2

)
exp

(
πt

4

)
ζ

(
1

2
+ i(t+ t0)

)∣∣∣∣∣∣ exp

(
− t2

2h2

)
.

Now by [22] we have for t+ t0 > 2

(A.2)

∣∣∣∣∣ζ
(

1

2
+ i(t+ t0)

)∣∣∣∣∣ ≤ 0.732(t+ t0)
1
6 log(t+ t0)
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and with (t+ t0) > exp(e) and β defined as above

(t+ t0)
1
6 log(t+ t0) ≤ (t+ t0)β .

We bound the Gamma factor trivially again with 4 and round 2.928 up to 3. �

Using the above, we can now bound the error implicit in step (8) of our algorithm.

Lemma A.11. For t ≥ 0 and t0 > exp(e) set β = 1
6 + log log t0

log t0
. Then providing

βh2

t0
≤ B

2 ≤ t0 and n ∈ [0, N − 1] we have∣∣∣∣∣∣
∑
l∈Z6=0

f

(
n−N/2

A
+ lB

)∣∣∣∣∣∣ ≤ 6(X +
2βh

B
(Y + Z)),

where

X =

(
B

2
+ t0

)β
exp

(
− B

2

8h2

)
,

Y = 2−
1
2 tβ0Γ

(
1

2
,
B2

8h2

)
and

Z = 2
β−1
2 hβΓ

(
β + 1

2
,
t20

2h2

)
.

Proof. The lower bound on B ensures that the bound of Lemma A.10 is decreasing
for t ≥ B

2 . The worst case is when n = 0 and for any n, the right tail majorises

the left. The first missing term to the right is f
(
B
2

)
and the remaining terms are

majorised by ∣∣∣∣∣∣∣∣3
∞∫
0

(
(2w + 1)B

2
+ t0

)β
exp

−
(

(2w+1)B
2

)2
2h2

dw

∣∣∣∣∣∣∣∣ ≤
3

B

∣∣∣∣∣∣∣∣
t0∫
B
2

(2t0)β exp

(
−t2

2h2

)
dt+

∞∫
t0

(2t)β exp

(
−t2

2h2

)
dt

∣∣∣∣∣∣∣∣ .
The result follows from Lemma A.1. �

Appendix B. Bounds for the Error Computing F (x) at step (5).

There are two sources of error in step (5). The following two Lemmas give us
explicit bounds for both.

Lemma B.1. Let x ≥ 0. Then∣∣∣∣∣∑
j>J

1√
j

(
j
√
π
)−it0

G

(
x+

log
(
j
√
π
)

2π

)∣∣∣∣∣
≤ C(σ, t0, h, 0) exp

(
(2σ − 1)2

8h2

)
π

1−2σ
4

J1−σ

σ − 1
.
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Proof. Take x = 0 and apply Equation A.1 of Lemma A.6. �

Lemma B.2. Let w ∈ [−ξ, ξ]. Then we have∣∣∣∣∣∣
∞∑
k=K

G(k)(u)wk

k!

∣∣∣∣∣∣ ≤ 2
K+5

2 πK+ 1
2hK+1ξK

Γ
(
K+2
2

) .

Proof. ∣∣∣∣∣∣
∞∑
k=K

G(k)(u)wk

k!

∣∣∣∣∣∣ ≤ sup
u′∈(u−ξ,u+ξ]

∣∣∣∣∣G(K)(u′)ξK

K!

∣∣∣∣∣
≤ sup
u′∈(u−ξ,u+ξ]

∣∣∣∣∣∣∣
∞∫
−∞

g(t; k)ξKe(−u′t)
K!

dt

∣∣∣∣∣∣∣
≤ 8

∞∫
0

(2πtξ)K

K!
exp

(
−t2

2h2

)
dt

=
2

3K+5
2 πKξKhK+1Γ

(
K+1
2

)
Γ(K + 1)

and the result follows from the duplication formula for Γ. �

Since this error term occurs J times in Equation 3.2, weighted by 1√
j

each time,

we multiply it by 2
√
J − 1.

Appendix C. Bounds Related to Up-sampling

Recall that we defined the function W : R→ R

W (t) := Λ(t) exp

(
πt

4
− (t− t0)2

2H2

)
.

We aim to estimate W (t0) from our samples using Theorems 4.3 (Whittaker-
Shannon) and 4.4. The following Lemmas provide the necessary rigorous bounds.

Lemma C.1. Define I by

I := 4

∞∫
A
2

∣∣∣∣∣∣∣
∞∫
−∞

W (t)e(−xt) dt

∣∣∣∣∣∣∣ dx.
Then we have

I ≤ 4ζ(σ)

2σ − 1
π
−3−2σ

4 C(σ, t0, H, 0) exp

(
(2σ − 1)2

8H2
− πA(2σ − 1)

2

)

+ 8π
1
4 exp

(
1− 4t20

8H2
− πA

2

)
.

Proof. Using the substitution t → t + t0 the inner integral looks exactly like the
definition of F (x) with H taking the place of h. We bound this using Lemma A.8
and the outer integral is then trivial. �
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Lemma C.2. Let t ≥ e and β = 1
6 + log log t

log t . Then we have

∣∣W (t)
∣∣ ≤ 3tβ exp

(
−(t− t0)2

2H2

)
.

Proof. The proof is almost identical to that of Lemma A.10. �

Lemma C.3. Let t0 > exp(e) and β = 1
6 + log log t0

log t0
. Then given Ns ∈ Z>0 with

Ns ≤ t0A we have∣∣∣∣∣∣∣∣
∑

∣∣∣n− t0A ∣∣∣>Ns
W

(
n

A

)
sinc

(
A

(
n

A
− t0

))∣∣∣∣∣∣∣∣ ≤
6A

πNs
(X + Y + Z),

where

X =

(
t0 +

Ns
A

)β
exp

(
− N2

s

2A2h2

)
,

Y = 2
2β−1

2 (t0)βA ·H · Γ

(
1

2
,

N2
s

2A2H2

)
and

Z = 2
3β−1

2 A ·Hβ+1Γ

(
β + 1

2
,
t20

2H2

)
.

Proof. The right tail majorises the left and the first term missing is less in absolute
terms than ∣∣∣∣∣W

(
t0 +

Ns
A

)
sinc

(
Ns
A

)∣∣∣∣∣
which is less then

3A

πNs

(
t0 +

Ns
A

)β
exp

(
− N2

s

2A2H2

)
.

Now, since our bound for W is decreasing, we can majorise the rest of the tail
with the integral

3A

πNs

∞∫
Ns

(
t0 +

n

A

)β
exp

(
− n2

2A2H2

)
dn

<
3A

πNs

∞∫
Ns

2βtβ0 exp

(
− n2

2A2H2

)
dn+

3A

πNs

∞∫
t0A

2β
(
n

A

)β
exp

(
− n2

2A2H2

)
dn

=
3A

πNs

2
2β−1

2 tβ0A ·H · Γ

(
1

2
,

N2
s

2A2H2

)
+ 2

3β−1
2 A ·Hβ+1Γ

(
β + 1

2
,
t20

2H2

) .
�
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