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Abstract. To understand the influence of corona ion emission on the atmospheric electrical 

field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill 

recorded the atmospheric electric field over one year. Meteorological measurements were also 

taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; 

zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that 

reason it is used as a reference against Z1 and Z2, which are strongly influenced by this 

phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-

Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral 

response of the aforementioned zones. Only frequencies above 1 minute are considered.  

1.  Introduction 

The atmosphere is weakly conducting due to the natural presence of atmospheric air-ions, which are 

produced by cosmic ray ionisation and ground based radioactive decay (such as Radon) near the 

ground. Thunderstorm activity moves charge from the ground to the ionosphere, a conducting layer of 

the atmosphere, which dissipates back to ground through the atmosphere completing the Global 

Electric Circuit [1]. The difference in potential between the ionosphere and the ground (VI) cause a 

Potential Gradient
1
 (PG) that can be measured at the Earth’s surface using electric field mills [2]. 

The Earth’s PG can be modified by changes in air conductivity: reduction of air ions caused by 

increased aerosol concentration [3]; charged clouds overhead [4] and local sources of space charge, 

such as high voltage power lines (HVPL) [5]. HVPL can produce so-called ‘corona ions’ when the 

electric field surrounding the cable is large enough to cause acceleration of ions leading to corona 

avalanching. On a 50-Hz cable, these ions largely oscillate around the cable, but some can escape in a 

cross wind, both positive and negative ions can be released into the environment [6].  

To measure the effect of HVPL on the electrical environment over a full year, a fixed site 

monitoring station (FSMS) was set up in South Gloucestershire, UK, to monitor changes in PG. PG 

was measured at 1 Hz using a JCI 131 electric field meter at 2 m height, and local weather conditions 

were monitored and recorded as 10 minute averages [5].   

                                                      
1
 PG is defined as dVI/dz and the vertical component of atmospheric electric field is related with this variable 

through Ez = PG. 
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Discontinuities on the line such as dirt or raindrops can enhance the field on the surface of the line 

and increase the amount of ions produced; hence weather conditions can significantly affect the 

amount of ions released by the line, with higher and more negative fields being seen in wet conditions 

[7]. If a predominance of one polarity of ions is observed then the ions carried overhead cause 

significant regions of space charge that can be observed as fluctuations of electric field at ground 

level. As the cloud of space charge is affected by local meteorology, the time of day also has an effect 

on the electric field, with fluctuating fields being more seen during the day [8].   

2.  Data analysis 

Previous analysis of data from the FSMS have looked at 10 minute averages and SD of the PG, and 

information within the finer structure at 1 minute has not been considered yet. This analysis looks at 

the data average to 1 minute to investigate the finer structure and spectral content. 

As with previous research [5, 7, 8], the analysis is undertaken on four different data sets dependent 

on wind direction: all data, i.e. whole zones (Z0); zone 1 (Z1) from SSW to WNW, 175 m downwind 

of 400 kV HVPL; zone 2 (Z2) from ESE to S, 750 m downwind of 275 kV HVPL; zone 3 (Z3) from 

NW to E, upwind of both HVPL. The last zone, Z3, is the least affected by space charge produced by 

HVPL (as it is upwind the power-line) and is used as a reference for Z1 and Z2. A full discussion of the 

sources of aerosol and predominance of a particular weather by wind direction is given elsewhere [5] 

but it is important to note that stronger winds and more clouds come from the south west (influencing 

Z1) than other zones and that there is a source of aerosol in the M48 motorway, also to the south west. 

Winds in Z2 are the least present and, for that reason, less data is available for this zone and this will 

have consequences in the results shown below. Data from the FSMS were averaged into 1-minute 

samples and wind directions attributed accordingly (assuming that the wind add the same direction the 

10 minutes before). Data were further divided into all weather and dry days. By dry days we mean 

days in which no rain was measured in our weather station. This is distinct from the usual ‘fair 

weather days’ encountered in studies regarding atmospheric electricity, as charged clouds may still be 

present. 

The daily average was found for each zone to see the daily cycle. As the PG was been divided into 

3 zones according to wind direction, and as some data was removed due to equipment failure, each of 

the sub-set of PG is a non-continuous time series, and therefore frequency analysis using typical 

Fourier analysis is not possible. The Lomb-Scargle Spectra (LSS) technique was developed for 

interrupted data sets in astrophysics [9, 10], and has been used in atmospheric electricity [3]. The LSS 

is similar to the Fourier transform, but it estimates the frequency spectrum based on a least squares fit 

of the sinusoids; the LSS spectrum converges to Fourier transform spectrum in the limit of evenly 

spaced observations. We use MATLAB to implement the LSS [11]. The following parameters were 

used hifac=1 (that defines the frequency limit as hifac times the average Nyquist frequency), ofac=4 

(oversampling factor). It is worthwhile to mention that the resulting spectra depends on the amount of 

data used, for a times-series with many discontinuities the LSS will only have access to lower 

frequencies as it loses the high frequency resolution. This is the case of Z2 time-series and for that 

reason less attention will be given to this zone. 

3.  Results and discussion 

Figure 1a shows the daily average for zones Z1, Z2 and Z3 at a 1-minute resolution. These data have 

previously been presented as 1 hour averages where the negative values of PG overnight in Z1 were 

attributed to the typical increase in humidity increasing negative corona production [6]. However, the 

previous analyses had a much lower temporal resolution. Z2 shows a very noisy behaviour oscillating 

from negative to positive, though the noise may be an artefact of lower sample numbers from this 

wind sector. Z3, despite the noise, shows a 24 hour cycle similar to the Carnegie curve, the global 

background atmospheric electric field  [1]. This is consistent with measurements in a typical rural 

background electric field profile. Figure 1b shows that the spectra for all zones. Z1 and Z3 have a peak 

at the daily cycle consistent with the daily behaviour shown in Figure 1a. There is not a clear signal for 
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the weekly cycle in any of the zones, which is indicative of urban pollution. Nevertheless, Z3 

evidences a small half-day cycle characteristic of pollution from traffic [12] and could be a result of 

nearby roads. As usual in spectral analysis the n-exponent is determined for each zone (above the 

threshold frequency of 1 day
1

). This exponent is defined from the asymptotic spectral amplitude, S, 

with the frequency, f, usually written as 𝑆 ~ 𝑓−𝑛 [3]. The values found are: ~1.54, ~1.05, ~0.48 and 

~1.01 for Z0, Z1, Z2, and Z3, respectively. These are relatively similar values, as compared with ones 

for spectra calculated from hourly values [3]. It is observed that the values found for Z1 (more affected 

by the HVPL) are similar to Z3 (least affected by the HVPL). This is an indication that rainy weather 

masks the impact that HVPL have in the PG spectral response reducing its response to higher 

frequencies. This becomes clearer when considering the results from dry days below. The spectrum of 

Z2 is much smaller than the other two, not because of a physical reason, but because this zone has less 

observations and the LSS algorithm cannot access lower frequencies, as mentioned above. 

 

 

 

 

 

 

 

Figure 1. a) Daily behaviour for 1-minute average data in all weather conditions; b) Lomb-Scargle Spectra for 

all weather conditions. The grey lines represent the fit to the asymptotic spectral amplitude, S.  
 

Figure 2a shows the daily average time series of the three zones but for dry days. The results are 

similar to those for all weather but exhibit less noise. This indicates that the increase in noise in Figure 

1a can be attributed to the increase in PG fluctuations caused on rainy days [7]. Z1 seems to present a 

clear feature every approximately half-hour. This periodicity appears in the LSS and can be tentatively 

attributed to the effect of HVPL. Z2 shows oscillating/noisy negative-positive values from 00:00 until 

08:00 returning to a normal behaviour after that. Z3 shows a daily behaviour similar to the Carnegie 

curve [1] confirming that this is the zone least affected by the HVPL. However, a peak is observed 

around 22:00 in this zone that coincides with strong oscillations in Z1, this may be due to extreme 

weather outliers. Figure 2b shows the LSS for dry days. The n-exponent values, in this case, are: 

~0.78, ~0.81, ~0.87 and ~1.09 for Z0, Z1, Z2, and Z3, respectively. Zones 1 and 2 have similar values 

and could be an indication of HVPL effect, despite Z2 having less data. This means that the HVPL 

would increase the PG response to higher frequencies with a slight tendency to flatten the spectra. This 

is a consequence of the dispersion of the spectral energy to higher frequencies and could be another 

result of HVPL activity. It should be noted that the n-exponent for Z1 is reduced to values around ~0.8 

while Z3 shows more or less the same value compared with the spectra in Figure 1b. This could be an 

indication that rainy days mask the spectral dispersion as mentioned above. Z1 exhibits an increase in 

amplitude at a half-hour periodicity that is not present in Z3 and is suppressed in the all-weather Figure 

1b. This could correspond to the features observed in Figure 2a. 
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Figure 2. a) Daily behaviour for 1-minute average data for dry days only. b) Lomb-Scargle Spectra for dry 

days only. The grey lines represent the fit to the asymptotic spectral amplitude, S. 

4.  Conclusions 

The effect of HVPL is studied with 1-minute resolution of PG measured in a FSMS.  Several features 

are seen. Comparison between all weather and dry days only is made. All zones evidence a daily cycle 

for both conditions. It is seen that rainy days tend to increase noise in all zones and reduce the high 

frequency response of Z1. There is evidence that rain masks the effect of HVPL has in the LSS of Z1, 

while for dry days the presence of the HVPL tend to flatten the spectra promoting the dispersion of 

spectral energy for higher frequencies. The spectra for Z3 is almost unaffected by weather conditions 

and present a half-day periodicity tentatively attributed to traffic pollution. Finally, a clear perturbation 

is observed in the daily behaviours of Z1 and Z3 for dry days only at around 22:00, which may be due 

to extreme weather outliers.  
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