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Abstract.
This paper discusses several aspects of mathematical modelling relevant to the flight

dynamics of insect flight in the context of insect-like flapping wing micro air vehicles (MAVs).
MAVs are defined as flying vehicles ca six inch in size (hand-held) and are developed to
reconnoitre in confined spaces (inside buildings, tunnels etc). This requires power-efficient,
highly-manoeuvrable, low-speed flight with stable hover. All of these attributes are present in
insect flight and hence the focus of reproducing the functionality of insect flight by engineering
means. This can only be achieved if qualitative insight is accompanied by appropriate
quantitative analysis, especially in the context of flight dynamics, as flight dynamics underpin
the desirable manoeuvrability.

We consider two aspects of mathematical modelling for insect flight dynamics.
The first one is theoretical (computational), as opposed to empirical, generation of the

aerodynamic data required for the six-degrees-of-freedom equations of motion. For these
purposes we first explain insect wing kinematics and the salient features of the corresponding
flow. In this context, we show that aerodynamic modelling is a feasible option for certain flight
regimes, focussing on a successful example of modelling hover. Such modelling progresses
from first principles of fluid mechanics, but relies on simplifications justified by the known
flow phenomenology and/or geometric and kinematic symmetries. In particular, this is relevant
to six types of fundamental manoeuvres, which we define as those steady flight conditions for
which only one component of both the translational and rotational body velocities is non-zero
(and constant).

The second aspect of mathematical modelling for insect flight dynamics addressed here
deals with the periodic character of the aerodynamic force and moment production. This
leads to consideration of the types of solutions of nonlinear equations forced by nonlinear
oscillations. In particular, the existence of non-periodic solutions of equations of motion is of
practical interest, since this allows steady recitilinear flight.

Progress in both aspects of mathematical modelling for insect flight will require further
advances in aerodynamics of insect-like flapping. Improved aerodynamic modelling and
computational fluid dynamics (CFD) calculations are required. These theoretical advances
must be accompanied by further flow visualisation and measurement to validate both the
aerodynamic modelling and CFD predictions.

† Principal Research Officer
‡ Post-Doctoral Research Officer
§ Head, Aeromechanical Systems Group

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cranfield CERES

https://core.ac.uk/display/77602537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On mathematical modelling of insect flight dynamics 2

1. Introduction

Micro air vehicles (MAVs) are defined as flying vehicles ca six inch in size (hand-held)
and are developed to reconnoitre in confined spaces (inside buildings, tunnels etc). This
requires power-efficient, highly-manoeuvrable, low-speed flight with stable hover. Such
performance is routinely exhibited by flying insects and hence the focus on emulating insect-
like flapping by engineering means. A detailed discussion of the future utility of MAVs
and the advantages of considering insect-like flapping wing propulsion has been presented
elsewhere (̇Zbikowski 1999a, Żbikowski 1999b). One key aspect is excellent manoeuvrability
of insects which calls for examination of their flight dynamics and is the focus of the present
paper. Our work on insect-like flapping wing MAVs has advanced the aeromechanics of
hover through aerodynamics modelling (Pedersen 2003, Ansari 2004) and also design and
manufacture of flapping mechanisms on the MAV scale (Żbikowski et al. 2004,̇Zbikowski
et al. 2005, Galínski & Żbikowski 2005). While these studies are being extended to flight
regimes other than hover, the existing knowledge already allows us to throw some light on
the flight dynamics questions involved. The main purpose of this paper is to elucidate the
consequent mathematical modelling problems and suggest some approaches to address these
problems.

The aim here is to apply insights into insect flight dynamics to MAV design, so the
starting point must be investigation of the mechanisms employed by insects to achieve
their remarkable performance. Investigating the flight dynamics and control of insects, as
opposed to man-made vehicles, poses its own unique problems, limiting applicability of a
large body of the relevant aeronautical knowledge. The first and foremost difficulties are
experimental in nature, exacerbated by the fact that insects are small and fragile (Taylor &
Thomas 2003). However, the key issue is that neither wind tunnel, nor free-flight testing
can be done satisfactorily with the present state-of-the-art, especially from the point of view
of meaningful aerodynamic force and moment measurement. In standard aeronautical wind
tunnel testing, a model is mounted on a force balance which, in turn, is placed on a moving
platform, thus allowing direct force and moment measurement, while controlling the model’s
orientation with respect to the tunnel’s airflow. There are two difficulties with this standard
aeronautical set-up in the context of insect flight. Firstly, one cannot make a distinction
between the pilot and the airframe—the insect flight control system cannot be switched off
to investigate open-loop dynamics. Secondly, insect flight behaviour is influenced by many
of its sensory modalities, including vision (Żbikowski 2004), and it is difficult to provide
artificial stimulation that faithfully reproduces all forms of natural excitation at the same time.
In free-flight testing the second difficulty is mitigated, but at the price of losing the possibility
of direct force/moment measurement.

These experimental challenges have counter-intuitive consequences for theoretical
analysis. It is not unreasonable to represent the insect flight dynamics by the standard six-
degrees-of-freedom (6dof) equations of motion, so the fundamental question is then: “What
do these equations represent?”. Since it is impossible to switch off the insect’s flight control
system, the conventional approach of deriving the open-loop dynamics, then postulating a
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feedback control law and closing the loop is unfeasible. Moreover, unless all of the sensory
modalities are artificially stimulated in a manner consistent with natural flight, the insect’s
control system may be confused. Indeed, the animal will beat its wings as it would normally
do in free flight, but some of the expected flight dynamic effects will not be detected by
the sensors. Hence, the physiologically intact muscles-wings-sensors loop is broken by the
constraints of the experiments and what is observed is neither open- nor closed-loop dynamics,
but “broken dynamics” (Taylor &Żbikowski 2005). A new generation of experiments is
likely to overcome this problem and will then provide useful data for semi-empirical models.
What we want to discuss here is a mathematical approach in which the required data are
effectively computed using aerodynamic modelling, thus producing theoretical models from
first principles. Such models would be of use in their own right, especially for MAV
performance prediction and design. They would also complement semi-empirical models
and benefit from validation by the associated experiments.

The remainder of this paper is organised as follows. Section 2 summarises the basics of
insect flight, emphasising its unique features both in the wing kinematics employed (Section
2.1) and occurring aerodynamic phenomena (Section 2.2). Based on these aeromechanical
fundamentals, Section 3 discusses how these features could be modelled mathematically
within the framework of 6dof equations of motion, pointing out the need for an aerodynamic
model, suitable for these purposes. Such a state-of-the-art aerodynamic model for hover is
then briefly presented in Section 4, followed by conclusions in Section 5.

2. Basics of Insect-like Flapping Flight

Insect flight is based on specific wing kinematics, summarised in Section 2.1, and these special
wing motions produce rather unique aerodynamic phenomena, briefly described in Section
2.2.

2.1. Wing Kinematics

The availability of high-speed photography has enabled basic descriptions of the kinematics
of insect wings (Ellington 1984, Ennos 1989b, Dickinson et al. 1999). Insects have either one
or two pairs of wings. We restrict ourselves to one pair of wings, inspired by observations
of two-winged flies (Diptera), and the description that follows is for such an insect. The
overall flapping motion is similar to the sculling motion of the oars on a rowboat, consisting
essentially of three component motions: sweeping (fore and aft motion), heaving (up and
down motion) and pitching (varying incidence). The motions may not be identical for each
wing and are defined by time histories of the angles:ψl = ψl (t), θl = θl (t), αl = αl (t) for the
sweeping, heaving and pitching of the left wing, and similarly for the right wing:ψr = ψr (t),
θr = θr (t), αr = αr (t). Flapping frequency is typically in the range 5–200 Hz.

The wing motion can be divided broadly into two phases—translationalandrotational.
The translational phase consists of two halfstrokes—thedownstrokeand theupstroke(see
Figure 1). The downstroke refers to the motion of the wing from its rearmost position to
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Figure 1. Top view of insect-like flapping

its foremost position, relative to the body. The upstroke describes the return cycle. At
either end of the halfstrokes, the rotational phases come into play—stroke reversaloccurs,
whereby the wing rotates rapidly and reverses direction for the subsequent halfstroke. Stroke-
reversal speeds are typically of the order of hundreds of radians per second (Dickinson 1994)
and occupy about 10–20% of the flapping cycle (Ellington 1984). During this process, the
morphological lower surface becomes the upper surface and the leading edge always leads
(Figure 1).
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Figure 2. Side view of insect-like flapping

The path traced out by the wing tip (relative to the body) during the wing stroke is similar
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to a figure-of-eight on a spherical surface (see Figure 2) as the wing semi-span is constant. The
wing flaps back and forth about a roughly constant plane called thestroke plane(analogous to
the tip-path-plane for rotorcraft). The stroke plane is inclined to the horizontal at thestroke-
plane angleβs (Figure 2). The angle swept by the wing during a halfstroke is termed the
stroke amplitude.

Since each half-cycle starts from rest and comes to a stop, the temporal evolution of
velocity of the flapping wing is non-uniform making the resulting airflow complex. It is also
unsteady, i.e. the aerodynamic force varies in amplitude and direction during each wingbeat
cycle. The variability of the force is compounded by the influence of the viscosity of air (due
to the small scale) and significant interaction of the wing with its own wake, especially in
hover.

2.2. Aerodynamic Phenomena

The flow associated with insect flapping flight (and scales pertaining to micro air vehicles) is
incompressible, laminar, unsteady and occurs at low Reynolds numbers. Despite their short
stroke lengths and small Reynolds numbers¶, insect wings generate forces much higher than
their quasi-steady equivalents. Dudley & Ellington (1990) found that for bumblebees, the
quasi-steady estimates of lift and power requirements fail at all flight speeds. In a similar study
by Wakeling & Ellington (1997), the mean lift coefficient required for flight for the dragonfly
Sympetrum sanguineum and the damselflyCalopteryx splendens was “reverse-engineered”,
and in both cases, was found to exceed the maximum possible under quasi-steady conditions.

The motion of a flapping wing differs from conventional aeroplane and rotorcraft wings
in that it starts from rest, accelerates to some roughly constant speed and then decelerates to
rest again. Stroke reversal occurs and the cycle is repeated. The angle of attack of the wings
also changes dramatically during each cycle. The nonlinear nature of this flapping motion
and the ability to generate high forces is strongly suggestive of the presence of unsteady
aerodynamic phenomena. These are discussed here.

Insect flapping-wing flow is now understood to comprise two components—attached
and separatedflow (Żbikowski 2002). The attached flow refers to thefreestreamflow on
the aerofoil as well as that due to itsunsteady motion(sweeping, heaving and pitching). For
insect-like flapping wings, flow-separation is usually observed at both leading and trailing
edges—theleading-edge vortexwhich is bound to the wing for most of the duration of each
halfstroke and thetrailing-edge wakethat leaves smoothly off the trailing edge (see Figure 3).
Flow is more or less attached in the remaining regions of the wing.

The leading-edge vortex is now believed to be responsible for the augmented forces
observed (Ellington et al. 1996, Liu et al. 1998). It starts close to the wing root and spirals
towards the tip where it coalesces with the tip vortex and convects into the trailing wake
(Ellington et al. 1996). The overall structure of the leading-edge vortex has been likened to
that observed on low-aspect-ratio delta wings (Martin & Carpenter 1977, van den Berg &

¶ Reynolds numberReis defined asRe= ρVl/µ, whereρ is fluid density,l is a characteristic length (usually
wing mean chord),V is a characteristic velocity (usually mean wing-tip speed) andµ is fluid viscosity.
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Ellington 1997); it is produced and fed by a leading-edge separation.

Figure 3. Comparison of flow-visualisation results between theory (Ansari 2004) and
experiment (Dickinson & Götz 1993). The numbers 1 through 4 refer to the number of chord
lengths travelled since impulsive start

From the literature, it would be appear that the spanwise spiralling nature of the leading-
edge vortex is a more pronounced feature in larger insects (Ellington et al. 1996, Willmott
et al. 1997) that operate at higher Reynolds numbers (Re ∼ 5000). In their experiments
on a dynamically scaled-up model of the much smaller fruit-flyDrosophila melanogaster
(Re ∼ 200), Birch & Dickinson (2001) and Sane & Dickinson (2001) have also observed a
strong leading-edge vortex but with weak spanwise flow.

In hover and slow forward flight, flapping wings are also likely to be affected by the
returning wakefrom previous wingbeats (Dickinson 1994, Dickinson et al. 1999). The
importance of this “wake capture” has also been noted by Grodnitsky & Morozov (1993) who
suggested that insects and birds have special mechanisms whereby they extract energy back
from their near vortex wake. A similar view was expressed by Ennos (1989a) who speculated
that in flies, the kinematics were helped by the aerodynamics.

3. Flapping flight dynamics modelling

This section presents mathematical modelling issues for flapping flight within the framework
of 6dof equations of motion. We begin with the basics of flight dynamics in the context of
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insect flight in Section 3.1 and pointing out unique problems arising in the insect context. This
is followed by showing, in Section 3.2, the relevance of bifurcation analysis, a state-of-the-art
aeronautical technique for manoeuvrable aircraft. By contrast, Section 3.3 focuses on special
mathematical tools whose utility for insect flight dynamics is motivated by the periodic nature
of aerodynamic force generated by flapping wings.

3.1. Basics

Flight dynamics arise because the insect trajectory cannot change instantaneously in response
to the aerodynamic force and moment generated by flapping wings. This is due to complex
interactions of the inertia of the insect’s body with the airflow around the body. Assuming that
the body is rigid and longitudinally symmetric, the interactions are quantified by the equations
of motion (Roskam 1995, Etkin & Reid 1996):

m(u̇ − vr + wq) = mgx + X (1)

m(v̇ + ur − wp) = mgy + Y (2)

m(ẇ − uq + vp) = mgz + Z (3)

Ixx ṗ + (Izz− I yy)qr − Ixz(ṙ + pq) = L (4)

I yyq̇ − (Izz− Ixx)pr + Ixz(p
2
− r 2) = M (5)

Izzṙ + (I yy − Ixx)pq − Ixz( ṗ − qr) = N. (6)

For an insect of massm and inertia tensorI the coordinate system is fixed to its body at
the centre of gravity, see Figure 4. The translational velocity isV = (u, v, w) and the
angular velocity isω = (p,q, r ). Also, the aerodynamic force is given byF = (X,Y, Z),
the aerodynamic moment byM = (L ,M, N), and the gravity vector is resolved asg =

(gx, gy, gz). Equations (1)–(6) can be rewritten in terms of the sideslip angleβ = sin−1(v/V)
and the angle of attackα = sin−1(u/V cosβ), whereV =

√
u2 + v2 + w2 is the speed. Note

thatα andβ here refer to the angles between the body axes and the body velocity vectorV .
They should be distinguished from the angles defining the wingbeat kinematics, especially
the pitching anglesαl andαr , and also from the stroke plane angleβs.

It is convenient to have a short-hand for (1)–(6) in the form:

ẋ = fo(x, u) (7)

with the statex = (u, v, w, p,q, r ) and the control inputu = (X,Y, Z, L ,M, N). The key
to successful flight is purposeful generation of the control inputu, i.e. aerodynamic forceF
and momentM . The insect controls their production by modulating the flapping of its wings,
comparing the actual and required trajectory, so that a feedback loop is formed to follow the
required trajectory. Since in equation (7) the controlu is not specified as a function ofx,
i.e. the feedback loop has not been defined, it is called open-loop dynamics.

For piloted aircraft, the required trajectoryr is known from the aircraft mission and/or
flight manual. Similarly, the feedback lawφ is also known, as it was specified when the
aircraft was designed. In a manoeuvre, aircraft flight dynamics arise from substituting
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Figure 4. Coordinate system and notation for insect flight dynamics equations.

u(t) = φ(r (t), x(t), t) in (7) to obtain the closed-loop dynamics:

ẋ = fo(x, u)|u=φ(r ,x,t) = fc(x, t). (8)

The distinction between the “pilot” and the “aircraft” cannot be made for an insect,
and the mission (or “flight manual”) can only be speculated about. Hence, the open-loop
description (7) cannot be obtained experimentally. However, it may still be possible to deduce
the closed-loop descriptionfc to gain conceptual, functional and physical insights into flight
dynamics of free-flying, manoeuvrable insects. The types of experiments which are possible
and/or desirable are discussed in (Taylor &Żbikowski 2005). Here, we want to discuss
an approach which, to some extent, could be an alternative to the challenging experiments
required for investigating insect flight dynamics.

The key difficulty in flight dynamics modelling is finding a correct and tractable
relationship between the aerodynamic forceF and momentM and their effects on the body
kinematicsx. In the flapping context,F and M are produced by the wingbeat kinematics
which, in turn, depend on the body kinematics. Since the insect body lift does not seem to
contribute much,F and M are largely produced by the airflow around the flapping wings,
resulting from the combined effects of the wingbeat and body kinematics.

In hover, V = 0 and ω = 0, so that the coupling between the wingbeat and body
kinematics is absent. Then it is possible to derive, from first principles of aerodynamics, how
the force and moment are produced. In other words, it is possible to findF andM as functions
of wingbeat kinematics under the assumption of wingbeat symmetry:ψl = ψr , ψhover,
θl = θr , θhover, αl = αr , αhover, i.e. effectively to obtainF = F(ψhover, θhover, αhover)

and M = M (ψhover, θhover, αhover). A summary of such an aerodynamic model is given in
Section 4.
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For flight regimes other than hover, i.e. whenV 6= 0 or ω 6= 0, the situation is more
complex. For example, steady forward flight is defined byV = (u,0,0), with u = const, and
ω = 0. While the wingbeat kinematics will be symmetricψl = ψr , ψ f f , θl = θr , θ f f ,
αl = αr , α f f , the force and moment will now be affected by the presence of incident flow on
the flapping wings, so thatF = F(ψ f f , θ f f , α f f ; u) and M = M (ψ f f , θ f f , α f f ; u). This
situation is more involved than hover, but still results in a steady flight condition, because
V̇ = 0 andω̇ = 0. Also, only one component of both the translational and rotational body
velocities affects the flow generated by flapping wings, so that the resulting aerodynamic
model will be a limited extension of hover.

These observations about steady forward flight suggest that, within the 6dof framework,
there are certain flight modes for which aerodynamic modelling of flapping wings can be
obtained by a limited extension of the modelling of hover. We call these flight modes
fundamental manoeuvreswhich are defined as steady flight conditions, i.e.V̇ = 0 andω̇ = 0,
where only one component of both the translational and rotational body velocities is non-zero
(and constant). There are six types of fundamental manoeuvres:

(i) three pure translations:

(a) V = (u,0,0), with u = const, andω = 0
(b) V = (0, v,0), with v = const, andω = 0
(c) V = (0,0, w), with w = const, andω = 0

(ii) three pure rotations:

(a) ω = (p,0,0), with p = const, andV = 0
(b) ω = (0,q,0), with q = const, andV = 0
(c) ω = (0,0, r ), with r = const, andV = 0

Their theoretical significance stems not only from the simplification of aerodynamic
modelling, but also from the reduced form of the equations of motion (1)–(6). Finally, it is
interesting to note that some species of Diptera seem to perform most of their manoeuvres in a
stereotyped way by flying trajectories composed from fragments of pure translation followed
by pure rotation.

Manoeuvres which entail more than one non-zero component of both the translational
and rotational body velocities and/or non-zero accelerations have more complex effects on
the flow generated by flapping wings. The resulting interdependence of body and wingbeat
kinematics is not likely to be amenable to aerodynamic modelling methods of the type
outlined in Section 4. However, it is possible, in principle, to calculate the resultingF andM
at a finite number of points on the flight envelope using computational fluid dynamics (CFD)
and interpolate between the points.

Thus, either by aerodynamic modelling, or by CFD one can obtaintheoretically a
representation ofF and M as functions of body and wingbeat kinematics over a reasonable
flight envelope. We now proceed to explain how such information can be used to analyse the
resulting flight dynamics.



On mathematical modelling of insect flight dynamics 10

3.2. Bifurcation analysis

When the aerodynamic force and moment are balanced by the insect’s weight, the insect will
be in steady flight. Linearisation of equations (1)–(6) around the steady flight trajectoryx̄
approximates (8) with

δ ẋ = Acδx, (9)

where the variableδx = x − x̄ is a perturbation of the trajectorȳx. For a constant trajectory,
x̄(t) ≡ const,Ac is a constant matrix. If the steady flight is periodic,x̄(t + T) = x̄(t), then
the matrix is periodic (time-varying),Ac(t + T) = Ac(t). Both cases are mathematically
tractable (Yakubovich & Starzhinskii 1975).

In contrast to steady flight, manoeuvres entail the nonlinear, dynamic phenomena of: (i)
inertial coupling (Etkin & Reid 1996), see equations (4)–(6), (ii) aerodynamic cross-coupling
(Orlik-Rückemann 1983), i.e. interdependence among the components ofF andM , and (iii)
unsteady aerodynamics (Hancock 1995). Linearisation (9) simplifies away (i) and (ii), but the
effects of (iii) can be included, albeit in an approximate fashion, as is now explained using the
example of the pitching momentM for longitudinal dynamics (sideslip angleβ = 0).

The pitching momentM in (9) is assumed to depend linearly on the current value of the
angle of attackα, i.e. M(t) = Mαα(t), whereMα is a constant. In manoeuvre, the pitching
moment will not change instantaneously in response to changes in the angle of attack, due to
the effect of the wake. This dependence of time history (Tobak & Schiff 1978) is the essence
of unsteady aerodynamics and in this example is related to the Wagner effect (Wagner 1925),
relevant to insect flight (̇Zbikowski 2002). The coefficientMα will not be a constant, but a
function of time according to the linear integral equation:

Mα(t) = M∞

α

(
K (t)α(t0)+

∫ t

t0
K (t − τ)α′(τ )dτ

)
, (10)

whereM∞
α is the steady value. Assuming that the kernelK is known, substitution of (10)

into (9) will result in an integro-differential equation and the analysis becomes involved.
However, only the recent time history has significant influence, so it is feasible (Tobak
et al. 1984, Thomas 1984) to approximate (10) as

Mα(t) ≈ Mαα(t)+ Mα̇α̇(t), (11)

where both coefficientsMα andMα̇ are constant.
Inclusion of approximate unsteady effects, as in (11), leads to representingX, Y, Z in

(1)–(3) andL, M , N in (4)–(6) as linear combinations ofδx andδ ẋ, so that (9) becomes

Eδ ẋ = Acδx. (12)

Here the matrixE has constant entries and is invertible, so that both sides of (12) can be
multiplied by E−1 and the result is mathematically no more involved than (9).

Formulae (10) and (11) are valid for small values ofα. In severe manoeuvres (McCune
et al. 1990), the integral equation corresponding to (10) is nonlinear, so thatMα and Mα̇ in
(11) depend onα andα̇,

Mα = Mα(α, α̇)
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Mα̇ = Mα̇(α, α̇), (13)

rather than being constant. Such relationships can be established empirically, but in the insect
case the associated experiments are more involved than in a conventional set-up. As explained
before, this not only due to the smallness and fragility of insects, but—above all—due to the
difficulties of accounting for active flight control applied by the insect during the experiment.

The main thrust of this paper is the proposition that an attractive alternative to the
experiment is to derive relationships of type (13) theoretically either by aerodynamic
modelling or computational fluid dynamics (CFD). If this can be done from first principles,
the experimental difficulties of obtaining the aerodynamic data of type (13), required for flight
dynamics equations of motion (1)–(6), are avoided.

If relationships of type (13) are available, either from experiment or from theory, a useful
approach is to combine the fully nonlinear description (8) with an exhaustive collection of
its linear approximations (12), so that both nonlinear and unsteady aspects are captured in
a mathematically tractable way. This alternative is realised by bifurcation analysis, a state-
of-the-art approach to nonlinear aircraft dynamics (Goman et al. 1997). The validity and
usefulness of this approach has been extensively verified over the last twenty years on real
data from manoeuvring fighter aircraft: the F-8 (Liaw & Song 2001, Liaw et al. 2003), the F-
4 (Carroll & Mehra 1982, Lowenberg & Champneys 1998), the F-14 (Jahnke & Culick 1994),
the F-16 (Avanzini & de Matteis 1997) and the research configurations of their modern
successors: the F-18/HARV (Gránásy & Thomasson 1998, Sinha 2002), HIRM (Patel &
Littleboy 1998, Lowenberg & Patel 2000).

The first step in bifurcation analysis (Carroll & Mehra 1982, Jahnke & Culick 1994) is to
calculate all the steady states of the system by settingfc(x, t) ≡ 0 in (8). Then, local stability
of each steady state is investigated by examining the eigenvalues of the matrixE−1Ac in (12):
negative eigenvalues mean that the steady state is stable, positive that it is unstable. Transition
from a stable to unstable steady state (orvice versa) means that some eigenvalues will
continuously pass through zero. Changes in the stability of a steady state are manifestations
of nonlinearity and lead to qualitative changes of dynamic behaviour which are called
bifurcations. Such qualitative changes can be analysed by the well-developed mathematics
of bifurcation theory (Chow & Hale 1982, Arnol’d et al. 1999, Demazure 2000), together
with the associated numerical and software tools (Allgower & Georg 1990, Govaerts 2000).

The essence of the proposed modelling approach to insect flight dynamics is: (i) to obtain
theoretically a nonlinear, unsteady model (8) with dynamic stability derivatives (13), and (ii)
apply bifurcation analysis to the resulting model.

3.3. Specialised mathematical tools

In Taylor & Żbikowski (2005), a semi-empirical nonlinear time-periodic (NLTP) model of
the longitudinal flight dynamics of the desert locust was derived. It was based on reduction of
equations (1)–(6) to thexz-plane while noting that both the aerodynamic force and moment
components are periodic. Mathematically, this can be interpreted as a nonlinear system forced
by nonlinear oscillations and raises a few questions of theoretical and practical importance.
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Some of these are considered in the discussion section of Taylor &Żbikowski (2005),
especially §§6.5–6.6 (pages 218–220), where conjectures about (i) limit cycle control, (ii)
orbital stability and (iii) asymptotically autonomous systems are proposed. Below we consider
some new aspects of (i), see Section 3.3.1, and also point out some tools relevant to (iii), see
Section 3.3.2.

3.3.1. SynchronisationThe NLTP model (Taylor &Żbikowski 2005) is novel, especially
in the context of insect flight dynamics, but at the same time belongs to the large subject
of Nonlinear Oscillations. Interestingly, there are at least three issues here that are seldom
considered together in the Theory of Oscillations, namely:

(i) when will the solutions be oscillatory?

(ii) when will the solutionsnot be oscillatory?

(iii) how can (i) and/or (ii) be effected by a limit cycle control scheme?

There are many mathematical results which throw light on each of these questions
separately, but it does not seem immediately obvious how the disparate mathematical
techniques involved could be used in an integrated way. An interesting alternative is to go
back to the physical and engineering origins of nonlinear oscillations where an integrated
approach was a necessity. This alternative goes under the name of “synchronisation”, e.g. see
(Pikovsky et al. 2001, Fradkov & Pogromsky 1998, Huijberts & Nijmeijer 2001). There has
been a resurgence of interest in the subject due to the recent interest in chaos theory, but this
aspect is not relevant to insect flight dynamics.

Systems as diverse as coupled clocks, flashing fireflies, cardiac pacemakers, firing
neurons, and applauding audiences exhibit a tendency to operate in synchrony, i.e. by tuning
and retuning their nonlinear oscillations. A precise definition of synchronisation in general
is usually either too restrictive or too broad, but includes phase locking and frequency
entrainment, periodic forcing or interaction of periodic oscillators and noise-influenced
synchronisation. In all cases, the dynamical system splits into subsystems that affect each
other by interaction, and the problem is to understand how the interaction determines the
dynamics of the system as a whole. In the context of the NLTP model of insect flight
dynamics, the phenomena of interest are:

(i) synchronisation of a periodic oscillator by external force

(ii) suppression of oscillations

As for (i), this entails both phase and frequency locking and can be achieved by applying
a weak force, i.e. asmallamplitude oscillation. In particular, entrainment can be effected by a
weak pulse train. This seems a plausible scheme for the direct muscles actuating insect wings
for flight control. Indeed, it is compatible with the limit cycle control hypothesis and also
consistent with the asymptotically autonomous character of the control proposed by Taylor &
Żbikowski (2005). This can be explained as follows. The wing-thorax system of the insect
oscillates with frequencyω0 and the wings are controlled by direct muscles which are much
smaller (weaker) than the thoracic muscles. If the direct muscles act on the wings with a
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weak, periodic force (amplitudeε and frequencyω), they can retune the wing-thorax system
to a new oscillating frequency wing-thorax�. In general, this new frequency is different
from the old one and the forcing one as well,� 6= ω0 and� 6= ω. The larger the detuning
1ω = ω0 −ω, the larger the amplitudeε must be to achieve this new�. This can be captured
precisely and illustrated graphically by the entrainment region in theω-ε plane through the
so-called Arnol’d tongues (triangle-like regions with vertex atω = ω0, widening upwards for
increasing values ofε). Also worth noting, is that this theory is still applicable under random
fluctuations, when frequency diffusion is observed, a phenomenon consistent with a range of
flapping frequencies (described in §4.2 of Taylor &Żbikowski 2005).

As for (ii), a weak impulse train can be used to suppress oscillations. This means forcing
the system off a limit cycle to a neighbouring point equilibrium, in effect a controlled Hopf
bifurcation. Indeed, in both synchronisation and suppression, the Poincaré map (stroboscopic
observation of nonlinear oscillations) of bifurcation analysis is a tool of choice.

Finally, it is worth mentioning that synchronisation issues are related to the observer
theory of nonlinear control (Huijberts & Nijmeijer 2001). The link is through the
Reconstruction Theorem of bifurcation analysis (Sauer et al. 1991) which is a result
formalising reconstruction of attractors from data, hence providing a link between nonlinear
theory and practical experiment.

3.3.2. Limiting equations It was argued in §6.4 of (Taylor &̇Zbikowski 2005) that, while the
NLTP model is explicitly time-varying, it must—in effect—be asymptotically autonomous
(time-invariant). As mentioned in the paper, the idea goes back to Markus (Markus 1956),
but there has been important progress in this area (Strauss & Yorke 1967, Wu 1995). In
particular, stability theory has been worked on with some success, e.g. see the appendix of
(LaSalle 1976). More broadly, the method of limiting equations has emerged as a technique,
rather than an idea (Kato et al. 1996).

The main idea can be illustrated beginning with a non-autonomous ordinary differential
equation

ẋ = f (t, x), t ≥ t0, (14)

where the right-hand side is defined forx in some open subset ofRn. Suppose that there is a
sequencetk → ∞ such thatf (t + tk, x) → g(t, x) in the compact-open topology. Then

ẋ = g(t, x) (15)

is a limiting system of (14). Various properties of the solutions of (14), e.g., boundedness and
stability, can be deduced if the class of limiting systems (15) satisfies appropriate conditions.
Of particular interest is the case when the limiting equation is itself autonomous, i.e. the right-
hand sideg in (15) does not explicitly depend on timet , g = g(x). For example,

ẋ1 = x2

ẋ2 = x1 + x2 + x1 sin
√

t (16)

has as its limiting equation

ẋ1 = x2
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ẋ2 = µx1 + x2, (17)

whereµ ∈ [0,2]. More interestingly,

ẋ = g(x)+ h(t, x) (18)

is asymptotically autonomous if for every sequenceuk of functions uk: [a,b] → Rn,
continuous on[a,b] and converging tou0,∫ b

a
h(tk + s, uk(s))ds → 0.

There are two kinds of results on stability. The first kind deduces stability properties
of (14) from stability properties of (15) by constructing a Lyapunov function for (15). The
second kind uses a scalar comparison equation for (14). It is assumed that the comparison
equation admits a Lyapunov function. A main point is that a Lyapunov-type function is only
assumed to exist for the comparison equation; on the other hand, the limiting comparison
systems are assumed to have non-positive right-hand sides.

Finally, there are a few (but not many) results pertaining to the feedback control problem.
Here the issue is whether a feedback control law designed for (15) will also work for (14). In
general, this is a difficult question, but some results on stabilising control can be derived.

4. Nonlinear, unsteady aerodynamic model of hover

By virtue of the complex kinematics (see §2.1), the wake of a flapping wing is nonlinear and
cannot be represented adequately by Wagner’s (1925) linear kernel in Equation 10. Whereas
in conventional aircraft control the wake function may be truncated to include only the recent
past (Equation 11), such an assumption is not tenable in insect flight since a significant amount
of shed wake is still in the vicinity of the wing, especially during hover. A more advanced
model that obviates this truncation while also capturing the nonlinearity of the problem is,
therefore, required.

With a view to addressing this problem, Ansari et al. (2006a) developed an analytical,
unsteady aerodynamic model that captures the most important aerodynamic phenomena
pertaining to insect flapping flight (see §2.2) and, in doing so, accounts for the nonlinearity in
the problem (for full details, see Ansari 2004). The model is circulation-based (Żbikowski
2002) and develops broadly on the seminal work of von Kármán & Sears (1938), with
refinements along the lines of McCune et al. (1990) and McCune & Tavares (1993), albeit
introduced with several significant extensions.

4.1. Modelling methodology

The model is quasi-three-dimensional—strip theory is used to divide the wing spanwise into
chordwise sections that are treated essentially as two-dimensional. Division of the wing into
sections requires closer attention. As also noted by Ansari et al. (2003), the low aspect
ratio and high solidity‖of insect wings requires thatradial chordsbe used instead of normal

‖ Solidity refers to the ratio of wing planform area to area swept by the wing.
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(straight) chords (see Figure 5). This is necessary because each wing section would otherwise
‘see’ a curved (and significant) incidence velocity. A consequence of this is that each wing
section resides in a radial cross-plane which is then unwrapped flat and the flow is solved
as a planar two-dimensional problem. The overall contribution of the wing is obtained by
integrating along the span.

+

centre of
rotation

motion
sweeping

Figure 5. Radial chord representation of a fruit-fly wing

In each 2-D section, the aerofoil is represented by a continuous distribution of bound
vorticity and the zero-through-flow condition is enforced on its surface. As noted in §2.2
above, insect flight kinematics cause separation from both leading and trailing edges so
that the flow may be represented as a combination of attached and separated flows. In the
aerodynamic model, therefore, two wakes are shed in the form of free vortex sheets—one
each from the leading and trailing edges—which are also continuous distributions of vorticity.

A number of simplifying assumptions are made in the process. Potential-flow (inviscid)
methods are used and flow-separation from both leading and trailing edges is modelled by
enforcing the Kutta-Joukowksi condition at these points of wake-inception. Further, the flow
is assumed to be irrotational (except at solid boundaries and discontinuities in the wake).
Although viscosity is generally ignored, its effects are included indirectly in the form of the
Kutta-Joukowksi condition and in the formation and shedding of vortices. The wing is taken to
be a rigid, flat plate and three-dimensional effects, due to tip vortices or interactions between
adjacent wing sections, are ignored. Finally, on the basis of the linearity of the underlying
Laplace’s equation, the superposition principle is used to calculate the combined effect of the
attached and separated flows.

The flow is solved by satisfying the kinematic boundary conditions at the wing surface,
the Kutta-Joukowski conditions at the leading and trailing edges and by requiring that the total
circulation in a control volume enclosing the system is conserved (Kelvin’s law). Conformal
transformation is used and all calculations are performed in the circle plane.

As a result, the problem is divided into two distinct components: a wake-free (quasi-
steady) element and a wake-induced (unsteady) one. By giving the wing six degrees of
freedom in terms of displacements and rates of displacement of sweep, heave and pitch,
a rather complex kinematic boundary condition is derived. This is then used to derive an
expression for the quasi-steady circulation around each wing section.

The effect of the two wakes is then incorporated by computing the additional vorticity
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required to reestablish the boundary conditions described above. What finally results are two
coupled, nonlinear, wake integral equations. The first is a generalised and nonlinear form
of the original Wagner wake integral equation (Wagner 1925), incorporating the effects of
both a nonlinear trailing-edge wake and a leading-edge vortex. It arises from enforcing the
Kutta-Joukowski condition at the trailing-edge and is given by

00(t) = −

[ ∮
wake

<

(
Zwake+ R

Zwake− R

)
γwakedZwake+

∮
lev

<

(
Zlev + R

Zlev − R

)
γlev dZlev

]
(19)

where00 is quasi-steady bound circulation,γ is shed vorticity,Z refers to the coordinates of
the shed wakes (in the circle plane),R is the radius of the circle representing the aerofoil,<

implies the ‘real part of’, and where the subscriptswake andlev refer to the trailing-edge wake
and leading-edge vortex, respectively. As is evident from Equation 19 above, the complex
variable is used extensively throughout. The second equation is also similar to the one above
but results from requiring stagnation at the leading edge. These two novel equations form the
basis upon which this work stands.

The kernel in Wagner’s wake integral (K in Equation 10) is linear owing to the flat shed
wake. By contrast, in Equation 19, nonlinearity is expressed not only by the form of the kernel
but also due to the nonlinear shed wake. The nonlinearity is further reinforced by the presence
of twowake integrals instead of one (cf. Equations 10 and 19).

Forces are computed by Kelvin’s method of impulses (Thomson 1910, von Kármán
& Sears 1938, Wu 1981). The bound and shed vortices constitute vortex pairs that impart
impulses between them. The combined time-rate-of-change of impulse of all vortex pairs is
a measure of the force on the wing (since only the bound vortices sustain Kutta-Joukowski
forces). Moment is computed similarly from the time-rate-of-change of moment of impulse.
For hover, the aerodynamic moment about the wing pitching axis (described in the physical
plane) is given by

M =
d

dt

(
ρ

2

∮
|ζ |2 γ dζ

)
− =

(
U0 · ıρ

∮
ζγ dζ

)
(20)

whereρ is fluid density,ζ is the coordinate of a generic (bound, trailing-edge or leading-edge)
vortex relative to the wing pitch axis,γ is the vorticity associated with the generic vortex,U0

is the complex conjugate of the complex velocity of the wing pitch axis relative to an inertial
coordinate system, and= implies the ‘imaginary part of’. Comparison of Equation 20 with
Equation 10 again impresses the nonlinearity captured by the current unsteady aerodynamic
model.

4.2. Computational implementation

The governing equations developed above are exact (within the limits of the assumptions
made) but nonlinear and, as such, do not have a closed-form solution. Solutions are, therefore,
found numerically using the discrete vortex method (Ansari et al. 2006b) whereby point
vortices are used as the Lagrangian markers for the integrals (for full details, see Ansari 2004).
Motion begins from rest when there is no wake, i.e. total circulation is zero. The approach is
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formulated as an initial-value problem using these initial conditions and the flow is solved for
all subsequent times using a time-marching algorithm.

The aerofoil is represented by a distribution of discrete point vortices, as are the leading-
edge vortex and the trailing-edge wake. At each time-step, the quasi-steady bound circulation
is computed for smooth flow at the trailing edge. Two new vortices are then released, one
each from the leading and trailing edges, and placed such that they follow the trace left by the
previous shed vortex. The above nonlinear equations are then solved simultaneously for the
circulation strengths of the two new vortices.

At the end of the time-step, the solution is marched forward in time by convecting the
shed vortices in the wake using a forward Euler scheme. Convection is governed by a discrete
form of the Rott-Birkhoff equation (Rott 1956, Birkhoff 1962). These vortices move with the
local fluid velocity because they are ‘free’, and hence, cannot sustain Kutta-Joukowski forces.
During the more acute phases of the flapping cycle (e.g. stroke reversals), the time-steps are
subdivided into finer sub-time-steps to give better resolution but at the cost of increased CPU
flops. A spin-off of this method is that flow-visualisation is automatically generated (see
Figure 3).

4.3. Results from aerodynamic model

The validity of the aerodynamic model was established by comparing with existing
experimental data. Comparisons were, therefore, drawn with both flow-visualisation and
force data. Flowfield comparison was made with the experiments of Dickinson & Götz (1993)
where a wing at high angle of attack was impulsively started and subsequently moved with
constant speed atRe≈ 200, and good agreement was found (see Figure 3).

Comparison of force data was made with a later set of experiments by Dickinson
(priv. comm.) on hisRobofly—a mechanical, scaled-up fruit-fly wing executing insect-like
kinematics in a tank of mineral oil atRe≈ 160 (see also Birch & Dickinson 2003). Both lift
and drag predictions were found again to be consistent with experimental data (see Figure 6).
In addition to showing the unsteadiness of the flow, the figure also demonstrates the periodic
nature of the forces generated. This observation is of particular relevance to the discussion of
oscillatory solutions earlier (§3.3.1).

4.4. Relevance to flight dynamics

The aerodynamic model of insect-like hover presented here provides theoretical means of
producing, from first principles, a representation of the aerodynamic moment, see (20), as
in the longitudinal pitching moment example considered on page 10. Integral equation (10)
considered there was linear and could be approximated with (11) with both coefficientsMα

and Mα̇ constant. By contrast, the aerodynamic model described here results in a nonlinear
integral equation, see 20), and thus its approximation suitable for flight dynamic purposes
should follow (13), i.e. withMα andMα̇ in (11) depending onα andα̇.

In practice, the force and moment equations defining the aerodynamic model for hover
are solved numerically, see Section 4.2. For a given time history of body kinematics, the
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Figure 6. Comparison between lift prediction from aerodynamic model (Ansari 2004) and
that obtained through experiment (Dickinson priv. comm.)

corresponding time history ofF(t) and M (t) is calculated. From the calculated results one
can tabulate the values ofM (t) against the values ofα(t) and α̇(t) and obtain (through
interpolation) a relationship of the type (13). Of course, in the case of hover such relationships
are trivial, as the body kinematics is zero. However, for fundamental manoeuvres, see page
9, and/or mild transitions between fundamental manoeuvres, the relationships will be non-
trivial, as the body kinematics will be non-zero. Then an appropriate aerodynamic model
(extended from hover) will yield the required relationships from first principles. This way,
the aerodynamic data required for flight dynamics equations of motion will be generated
theoretically, without recourse to challenging experiments.

5. Conclusions

Flight dynamics of insect flight can be described by the standard six-degrees-of-freedom
equations of motion in which the components of the aerodynamic force and moment are
periodic. The key issue is obtaining relationships between these components and the body
kinematics for the flight regimes of interest. In conventional aeronautics this usually is done
empirically, but in the context of insects the experimental difficulties are much greater. This is
not only due to the smallness and fragility of insects, but—above all—due to the difficulties of
accounting for active flight control applied by the insect during the experiment. Therefore, an
attractive alternative is to consider ways of producing the required aerodynamic data from first
principles either by aerodynamic modelling or through computational fluid dynamics (CFD).

Aerodynamic modelling progresses from first principles, but introduces several
simplifications to the basic equations of fluid mechanics, justified by the known flow
phenomenology and/or geometric and kinematic symmetries. Such justifiable simplifications
are present in special flight regimes, most notably hover, and distinguish these regimes by
tractability of the associated aerodynamics. This led us to define six types of fundamental



On mathematical modelling of insect flight dynamics 19

manoeuvres, i.e. those steady flight conditions for which only one component of both the
translational and rotational body velocities is non-zero (and constant). We believe that
for these flight regimes it is feasible to derive aerodynamic models by extension of the
model for hover briefly presented here. For more complicated flight regimes, a recourse to
computational fluid dynamics (CFD) will be needed in order theoretically to generate the
aerodynamic data required for the flight dynamics equations of motion.

Since the aerodynamic force and moment production in insects is periodic, it is relevant
to consider specialised mathematical tools which deal with nonlinear differential equations
forced by nonlinear oscillations. In particular, the existence (or otherwise) of periodic
solutions has direct meaning in the flight dynamics context. Indeed, if all solutions of the
equations of motion were periodic, straight line flight (observed in insects) would not be
possible. On the other hand, butterflies often fly “erratically” which may mean that they
employ quasi-periodic (or even chaotic) solutions in order to avoid capture by predators.

Computational generation of the aerodynamic data for the purposes of flight dynamics
equations, and also deeper analysis of periodic solutions of the equations, require further
progress in aerodynamic or CFD modelling of insect flapping. It should be emphasised that
while this calls largely for theoretical progress, the resulting fluid dynamic predictions must
be verified by flow visualisation and measurement. Even proceeding from first principles
of fluid mechanics must be accompanied by empirical verifications if only to check that the
mathematical assumptions made indeed reflect the physical realities of the flow.
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Ansari, S. A.,Żbikowski, R. & Knowles, K. (2006a), A nonlinear unsteady aerodynamic model for insect-like
flapping wings in the hover: Part I. Methodology and analysis. Accepted for publication in IMechE
Journal of Aerospace Engineering: Part G.
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