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Abstract 

The impact of random noise on an existing two-dimensional method for separating incident 

and reflected wave spectra using an array of wave gauges is investigated using simulated time 

series with known wave amplitudes, reflection coefficients, and signal-to-noise ratios. Both 

the incident and reflected spectra are overestimated by a quantity that can exceed 100% for 

signal-to-noise ratios less than 1. Consequently, estimated reflection coefficients are also 

overestimated with larger errors occurring when the known reflection is low. Coherence 

decreases systematically with increasing noise and this trend is used to develop a 

mathematical function to correct for the observed bias and provide 95% confidence intervals 

for incident and reflected spectra and reflection coefficients. The correction technique is 

shown to be very effective in reducing error by up to ~90%. Field data from a natural beach 

are used to demonstrate the application of these results; corrected values suggest that 

reflection coefficients are frequently overestimated by over 50%. 
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1. Introduction 

Wave reflection is an important process influencing the hydro- and sediment dynamics in 

front of natural coastlines and man-made coastal structures. Therefore, understanding and 

accurately predicting the magnitude of wave reflection is essential for estimating potential 

storm damage, modelling shoreline change, and assessing the reflection performance of 

marine structures. 

 

Several methods exist to decompose a two-dimensional wave signal propagating over a 

horizontal bed into its incident and reflected components using cross-shore arrays of spatially 

separated wave gauges. These methods utilise the phase difference between pairs of wave 

gauges to provide information on the propagation of the incident and reflected waves. Early 

methods to calculate wave reflection typically use an array of only two wave gauges (e.g., 

Goda and Suzuki, 1976; Morden et al., 1976); however, these techniques suffer from 

singularities at a discrete number of critical frequencies where the distance between the two 

wave gauges is equal to an integer number of half the corresponding wavelength. To 

overcome this limitation and estimate wave reflection over a wider frequency range, several 

newer techniques have been developed that use the wave records from three or more wave 

gauges (e.g., Battjes et al., 2004; Gaillard et al., 1980; Mansard and Funke, 1980), thus 

providing a range of wave gauge pairs and separation distances for use in the analysis. 

 

An alternative method of calculating wave reflection is to use a co-located wave gauge and 

velocity sensor (e.g., Guza and Bowen, 1976; Sheremet et al., 2002), where the direction of 

wave propagation is estimated using information on the slope of the sea surface provided by 
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the cross-shore current. These methods have the advantage of estimating wave reflection at a 

singular cross-shore location, whereas the wave reflection estimate from an array method is 

the average value for the spatial extent of the array, which may be quite large. Additionally, 

methods that use a co-located wave gauge and velocity sensor are not affected by variations 

in the bathymetry. However, it is critically important to have the wave gauge and velocity 

sensor located at the same horizontal location as even a small spatial separation can have 

important effects on the resulting wave reflection estimates (Huntley et al., 1999). In many 

cases array methods remain the preferred approach as wave gauges are typically less intrusive 

to deploy in the field than current sensors and far more economical if wave reflection 

estimates are required at several cross-shore locations (Hughes, 1993). 

 

Most array methods used to separate incident and reflected waves are designed for two-

dimensional waves propagating over a horizontal bed and do not account for the effects of 

sloping bathymetry such as that of a natural beach. Therefore, depending on the wave 

conditions and bed slope, errors in the analysis are likely when used in such conditions. 

Baldock and Simmonds (1999) demonstrated that relatively simple modifications are required 

to adapt the separation method of Frigaard and Brorsen (1995) to account for shore-normal 

linear waves propagating over a bed with arbitrary bathymetry. Their analysis showed that 

neglecting the shoaling effects of waves can lead to large errors in the estimated reflection 

coefficient (the ratio of reflected to incident wave energy) in cases of low wave reflection. 

Furthermore, accounting for bathymetry variations was found to be crucial to avoid 

significant errors (up to 90%) in estimating the incident and reflected wave amplitudes. 

 

An additional source of error that may impact wave reflection estimates, present in both 

laboratory and field data, is that of noise. Potential sources of signal noise include water 
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surface variability that is unrelated to wave motion, proximity to standing wave nodes, and 

electronic noise. Using simulated time series of surface elevation and velocity with known 

true reflection coefficients and added uncorrelated noise, Huntley et al. (1999) show that the 

presence of noise in the data can introduce a significant positive bias to the reflection 

coefficients estimated from co-located wave gauge and velocity sensor methods. In an 

attempt to overcome this, Tatavarti et al. (1988) developed a method using principal 

component analysis to separate the elevation and velocity time series into orthogonal 

eigenvector combinations, thus allowing the correlated parts of the two time series to be 

separated from undesired noise. This technique was validated by Huntley et al. (1999) who 

also demonstrate that the bias in reflection coefficients estimated using other co-located wave 

gauge and velocity sensor methods can be corrected for by using the estimated reflection 

coefficient itself and the coherence between the estimated incident and reflected waves. A 

similar investigation into the effect of noise on wave reflection estimates using array methods 

is currently lacking. 

 

The aim of this paper is to use simulated time series of water surface elevation to investigate 

the impact of noise on wave reflection estimates using the array method of Gaillard et al. 

(1980). A mathematical function is developed to provide a correction for the observed bias in 

incident and reflected spectra and corresponding reflection coefficients. This function is 

applied to field data to demonstrate its value. The results presented in this paper are 

principally applicable to the array method of Gaillard et al. (1980) which was chosen for its 

relatively simple approach that directly returns incident and reflected spectra from which to 

assess the noise impact. However, the procedure outlined in the following section could 

equally be used to assess the impact of noise on other two-dimensional array methods. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2. Methodology 

The water surface elevation   at two cross-shore locations,    and   , separated by     is 

given by linear wave theory as 

 

                                             (1) 

                                                   (2) 

 

where   is time,   is wave amplitude,   is wave angular frequency (   , where   is 

frequency),   is wavenumber (    , where   is wavelength),   is phase, and subscript   and 

  denote incident and reflected waves, respectively. The signs of the terms are for an 

onshore-directed x-axis. Eqs. (1) and (2) show that between cross-shore locations    and   , 

the incident and reflected waves are phase shifted by      and    , respectively. Eqs. (1) 

and (2) are used to generate simultaneous time series of water surface elevation at three 

cross-shore locations on a horizontal bed. 

 

For the purpose of the simulations, wave amplitudes    and    are independent of frequency 

and all waves travel at the shallow water wave speed. A range of simulations were performed 

with incident wave amplitudes between 1 and 10 m, known reflection coefficients between 0 

and 1, and with normally distributed, random noise added to the time series at known signal-

to-noise ratios (SNR). While the use of constant wave amplitudes and reflection coefficients 

across all frequencies is not representative of real field data, each frequency provides an 

independent estimate of the incident and reflected spectra for any particular SNR, wave 

amplitude and true reflection coefficient. This allows mean values of error, and confidence 

intervals on these estimates, to be calculated for particular frequency ranges. By running a 

range of simulations with different wave amplitudes and noise levels, errors and 
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corresponding confidence intervals can be predicted for each frequency bin in a measured 

spectrum. 

 

Synthetic time series were generated with 4096 data points and a sampling frequency of 4 Hz. 

Smooth spectral estimates were computed using a 50% overlapping Hanning window, giving 

a frequency resolution of 0.0039 Hz and 12 degrees of freedom (Nutall, 1971). The spectra 

are then separated into incident    and reflected    components using the first order formulae 

of Gaillard et al. (1980) as 

 

      
        

   
           (3) 

      
        

   
          (4) 

 

where 

 

                 (5) 

                                                 (6) 

                                                 (7) 

 

and 

 

                                         (8) 

 

where S, C and Q represent the auto-, co-, and quadrature-spectra respectively,    is sensor 

spacing, and subscript numbers denote sensor location ( ) or sensor pair ( , ,  ). Co- and 
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quadrature-spectra are calculated as the real and imaginary parts of the cross-spectrum, 

respectively. The incident and reflected spectra are then used to estimate reflection 

coefficients   by 

 

      
  

  
           (9) 

 

The purpose of using an array method with three wave gauges is to avoid singularities 

occurring at a discrete number of critical frequencies. However, gauge triplets must be 

chosen intelligently with spatial separations that mitigate the coincidence of critical 

frequencies, otherwise these frequencies will suffer similar effects to those from using a two 

gauge array. This paper will focus on the frequency range 0.01-0.33 Hz. The low frequency 

cut-off of 0.01 Hz was chosen to avoid any adverse effects radiating from the singularity that 

always occurs at 0 Hz, regardless of whether two of three wave gauges are used. The high 

frequency cut-off of 0.33 Hz was chosen as it coincides with the upper limit of the frequency 

range commonly used to define ‘short’ waves (e.g., Ruessink, 1998). Furthermore, wave 

reflection from natural coastlines has been found to be negligible at higher frequencies, 

particularly on dissipative beaches. The use of this frequency range allows for spectral 

estimates at 82 discrete frequencies. To avoid the influence of singularities across the entire 

frequency range of interest, three different array set-ups are used in the simulations to satisfy 

frequency ranges 0.01-0.05 Hz, 0.05-0.20 Hz, and 0.20-0.33 Hz, respectively. The full range 

of simulations was performed for each array set-up and spectral estimates for the 

corresponding three frequency ranges were concatenated providing the full spectrum of 

interest for each combination of simulation parameters. 

 

3. Results 
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For each simulation scenario an assessment is made of the accuracy to which the incident and 

reflected spectra, and corresponding reflection coefficients, are reproduced by the 

decomposition method of Gaillard et al. (1980). Mean coherence between the three synthetic 

time series is calculated to investigate the extent to which coherence can be used as a proxy 

for SNR. By averaging the coherence between the three pairs of time series, fluctuations due 

to standing wave nodes and antinodes are removed. Throughout this section, target values for 

incident and reflected spectra and reflection coefficients (i.e., those fixed in the simulations) 

are denoted by   ,   , and  , respectively. Estimated values are differentiated from target 

values by the following overbar symbol  , and corrected estimates are represented by an 

additional subscript  . Error in the estimated values is always positive and is therefore 

referred to as a bias. 

 

3.1 Noise correction 

 

Fig. 1 shows    ,    , coherence, and    for a wave amplitude of 2 m,   = 0.3, and four different 

SNRs. With no noise added to the time series,     and     are estimated accurately with mean 

values within 3% of their respective target values.    is also estimated with reasonable 

accuracy with a mean value of 0.31. The absence of noise is reflected in a mean coherence 

value of 0.98. A similar accuracy can be found across all simulations where no noise has been 

added to the time series, thus providing confidence in the method. For SNR = 2.5, both     and 

    are positively biased by 12.2% and 11.7% of    respectively, and mean coherence is 

reduced to 0.72. With     and     being biased by practically the same amount, the difference 

in magnitude between     and     is largely unchanged but becomes smaller relative to the 

overall magnitudes, thus introducing a positive bias to    which has a mean value of 0.43. 

This is further demonstrated by a SNR of 1.7, which creates a bias in     and     of 25.8% and 
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26.3% of the    magnitude respectively and increases the mean    value to 0.50. A SNR of 0.7 

causes     and     to be biased by 137.4% and 136.0% of    respectively which raises the mean 

   from 0.3 to 0.78. However, this is somewhat of an extreme case and coherence values for 

this simulation are below the 95% confidence threshold and therefore would not be 

considered significant if found in real data. 

 

Whilst the bias in     and     is dependant only on the wave amplitude and SNR, the bias in    

becomes more significant for lower values of true reflection. This is because, while     and     

are biased by the same amount, as the true reflection coefficient decreases from 1 the bias 

becomes increasingly larger relative to    than   . For a given SNR, the bias in     and     

increases linearly with increasing wave amplitude. Therefore, normalising by     conveniently 

removes the dependency of bias on wave amplitude, allowing the bias from all simulations to 

be investigated simultaneously as a function of coherence. This is shown in Fig. 2 where the 

data have been band-averaged across frequencies thus providing one estimate for each 

simulation scenario. The frequency smoothing, which increases the degrees of freedom of the 

estimates from 12 to 984, is performed to provide the best possible estimates from which to 

predict the expected bias in real data. 

 

The normalised bias    is shown to decrease exponentially with increasing coherence and an 

exponential regression function is fit to the data with excellent agreement and a correlation 

coefficient    of 0.99 (all    values reported herein are significant at the 95% level). This 

function allows for a prediction of the bias    by 

 

              
                  (10) 
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where   is coherence. Corrected incident       and reflected       spectra can then be calculated 

as 

 

                       (11) 

                       (12) 

 

and corrected reflection coefficients     as 

 

     
     

     
           (13) 

 

3.2 Confidence intervals 

 

Reducing the amount of frequency smoothing and degrees of freedom shown in Fig. 2 

increases the amount of scatter around the exponential regression function, yet no frequency 

smoothing and 12 degrees of freedom still yields an    of 0.93. Regardless of the level of 

frequency smoothing, values of    remain normally distributed (according to the Shapiro-Wilk 

normality test) around the exponential regression function. This allows 95% confidence 

intervals on    to be calculated for different levels of coherence and degrees of freedom using 

the t-distribution. These are shown in Fig. 3a for coherence bins of 0.1 and degrees of 

freedom between 12 and 984 as a result of averaging over particular frequency ranges in the 

spectrum. Confidence intervals are shown to increase with decreasing coherence and the rate 

of this increase is steeper for lower degrees of freedom. For example, for 12 degrees of 

freedom, 95% confidence intervals are ± 0.085 and ± 0.026 for coherence values between 0.5 

and 0.6, and 0.9 and 1.0, respectively. Whereas the same confidence intervals for 120 degrees 
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of freedom (equivalent to averaging over the infragravity band) are ± 0.037 and ± 0.010, 

respectively. Note that confidence intervals are not calculated for coherence bins that include 

values below the 95% confidence threshold for the respective degrees of freedom. The rate of 

change in the confidence intervals with coherence is relatively constant and linear regression 

models yield    between 0.81 and 0.99 for the different degrees of freedom. Figs. 3b and 3c 

show that the slope   and intercept   from the linear regressions can be predicted accurately 

(   = 0.97 and 0.98, respectively) using exponential regression functions and the degrees of 

freedom. This allows 95% confidence intervals on corrected spectra      to be calculated as 

 

                   
                                                  (14) 

 

where   is degrees of freedom. Using the standard propagation of errors,      is used to 

calculate 95% confidence intervals on estimated reflection coefficients      as 

 

              
    

     
 
 

  
    

     
 
 

         (15) 

 

3.3 Application to simulated data 

 

The correction technique outlined in Eqs. (10)-(15) is demonstrated in Fig. 4 on simulated 

data with an incident wave amplitude of 3 m and   = 0.5. For clarity, only incident spectra 

are shown in Fig. 4a-c. The same bias correction is applied to     but percentage deviations of 

      from the target value are determined by    With a SNR of 5.0,     is overestimated by an 

average of 6.56%, whereas the mean absolute error on       is 1.78%.     is 0.49 which is an 
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improvement on the    estimate of 0.54. Corrected values are similarly accurate for a SNR of 

2.5 with a mean error on       of 1.83%, compared to 16.11% on    , and a mean      0.50. A 

SNR of 1.7 causes     to be overestimated by 31.66%, whilst       has a mean error of 2.44%; a 

decrease in error magnitude of  > 90%. Table 1 gives a summary of the errors and 95% 

confidence intervals depicted in Fig. 4, and for additional SNRs. 

 

SNRs less than 1 (not shown) produce biases of > 100% in    , but the accuracy of the 

correction technique for these simulations remains in a reasonable range, typically less than 

15%, albeit with larger confidence intervals. However, for SNRs less than ~1.5, coherence 

falls below the 95% confidence threshold for 12 degrees of freedom. Nevertheless, degrees of 

freedom can be increased by frequency smoothing and/or increasing the number of segments 

when calculating the spectra, which would reduce the 95% confidence threshold for 

coherence. Therefore, it is beneficial to know that the correction technique is robust at 

withstanding extreme levels of noise. 
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Table 1. Summary of mean errors in estimated and corrected incident spectra and reflection 

coefficients for a wave amplitude of 3 m, known reflection coefficient of 0.5, and SNRs 

between infinity and 1. Errors in the estimated and corrected incident spectra, and 95% 

confidence intervals on corrected incident spectra, are given in terms of percentage of the 

target value   . 

SNR         

% 

       

% 

95%       

% 

       95%     

Inf 0.94 3.52 2.06 ± 2.27 0.50 0.47 ± 0.03 

10.0 0.92 4.41 1.93 ± 2.61 0.51 0.47 ± 0.03 

5.0 0.85 6.56 1.78 ± 3.64 0.54 0.49 ± 0.04 

3.3 0.76 10.52 1.48 ± 5.14 0.55 0.49 ± 0.05 

2.5 0.66 16.11 1.83 ± 6.91 0.58 0.50 ± 0.07 

2 0.56 22.67 2.41 ± 8.75 0.61 0.50 ± 0.09 

1.7 0.49 31.66 2.44 ± 10.72 0.65 0.50 ± 0.11 

1.43 0.42 43.06 3.40 ± 12.86 0.68 0.49 ± 0.13 

1.25 0.37 53.32 3.94 ± 14.89 0.71 0.49 ± 0.16 

1.11 0.33 67.93 4.91 ± 17.24 0.74 0.48 ± 0.19 

1 0.29 82.30 6.03 ± 19.62 0.76 0.46 ± 0.23 

SNR = signal-to-noise ratio,    = mean coherence,      = mean percentage error on the 

estimated incident spectra,        = mean percentage error on the corrected incident spectra, 95% 

      = mean 95% confidence intervals on corrected incident spectra,    = mean estimated 

reflection coefficient,     = mean corrected reflection coefficient, 95%     = mean 95% 

confidence intervals on corrected reflection coefficients. 

 

3.4 Wave angle and directional spreading 
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The main assumption of array methods for calculating wave reflection is that waves are 

unidirectional and shore-normal. Additional numerical simulations using oblique waves 

reveal that the Gaillard et al. (1980) method, and consequently the noise correction, is fairly 

robust to wave angle with additional errors occurring only when the wave angle exceeds ~40° 

relative to shore-normal and only becoming significant (> 10%) for angles exceeding ~60°. 

Nevertheless, these additional errors can be reduced slightly if the Gaillard et al. (1980) 

method is modified to account for wave refraction effects when applied to field data. 

 

The consequence of directionally spread waves is that the mean coherence between the 

sensors will decrease without the presence of noise. This could result in an unnecessary 

correction being applied to the incident and reflected spectra. For this to be significant, the 

majority of wave energy would need to pass through the array at a highly oblique angle (> 

60°). This is unlikely for data collected close to shore or in the study of infragravity waves 

due to their strong refraction properties. However, one should be aware of the potential 

consequences of directionally spread waves when applying the noise correction to field data 

and ensure that the sensor array is aligned as close to the dominant wave direction as possible. 

 

4. Application to field data 

To illustrate the application of the results to field data, measurements are used from 

Perranporth Beach, Cornwall, UK. Perranporth is a macrotidal, dissipative beach composed 

of medium sand and exposed to both Atlantic swell and locally generated wind-sea. Data 

were collected during a field experiment in November 2014 using a cross-shore array of 15 

pressure transducers logging at 4 Hz. The pressure data were converted to water surface 

elevation with a depth correction using linear wave theory. Spectra were calculated as with 
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the simulated data outlined in section 2 and separated into incident and reflected components 

using the Gaillard et al. (1980) array method with modifications for wave shoaling analogous 

to those implemented by Baldock and Simmonds (1999). The data presented here were 

collected in the inner surf zone (mean water depth    = 1.5 m) during a single tide with an 

offshore significant wave height    of 1.85 m and a spectral peak period    of 10.8 s. The 

focus of the field study was infragravity (0.005-0.05 Hz) waves and so the array set-up was 

optimised (avoiding singularities) for estimating wave reflection in this frequency range. 

Therefore, only infragravity data are presented here with a low frequency cut-off of 0.01 Hz 

as with the simulated data. The analysis of co-located pressure and velocity data from a rig 

deployed during the field experiment shows that water motion at infragravity frequencies was 

predominantly cross-shore. 

 

The general trend shown in Fig. 5a is of higher magnitudes of     and     at lower frequencies 

than higher frequencies with a spectral peak at   = 0.016 Hz; a trend which is preserved in 

      and      . The largest correction in terms of spectral density occurs at the spectral peak 

where       and       are reduced by 17.5% and 36.2% of     and    , respectively. Larger 

magnitudes of both       and       in the low frequency portion of the infragravity band yield 

higher     estimates with smaller corrections and confidence intervals than higher frequencies. 

For example, at   = 0.020 Hz,     is 0.67 (± 0.06) which is only 0.06 less than   . In contrast, 

at   = 0.043 Hz, the     value of 0.25 (± 0.15) is significantly less than the    estimate of 0.43. 

The mean infragravity    is 0.61 but this is reduced in      to 0.54 (± 0.02). Whilst it isn’t 

strictly appropriate to average over the infragravity band given the frequency dependence 

shown in the data, it does demonstrate the reduction in confidence intervals as a result of 

more degrees of freedom. 
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The frequency dependence of infragravity wave reflection, with high levels of reflection 

limited to low frequencies, is well-documented in the literature (e.g., De Bakker et al., 2014; 

Guedes et al., 2013). The results presented here suggest that, in failing to correct for bias,    

values at high infragravity frequencies where wave reflection is low, and indeed at short 

wave frequencies where reflection tends to be even more minimal, can be overestimated by 

more than 50%. This is likely to have impacted wave reflection estimates reported previously 

in the literature where wave gauge arrays have been used. 

 

5. Conclusion 

An existing two-dimensional method for separating incident and reflected wave spectra using 

an array of wave gauges is investigated for its sensitivity to random noise. Linear wave 

theory is used to generate simulated time series of water surface elevation at three cross-shore 

locations with varying wave amplitudes, known reflection coefficients, and signal-to-noise 

ratios. Both the incident and reflected spectra are shown to be positively biased by noise and 

in turn this causes reflection coefficients to be overestimated. The magnitude of the bias is 

found to be dependent on wave amplitude, but not on the true reflection coefficient. Utilizing 

the systematic change in coherence with noise, a relatively simple and easy to apply method 

to correct for the observed bias is developed. This correction technique can be applied across 

all frequencies and is considerably accurate with residual error on corrected incident spectra 

estimates typically in the region of 2-3% for significant coherence levels; an improvement of 

over 90% for low signal-to-noise ratios. Applying the correction to field data implies that 

reflection coefficients can be overestimated by at least 50%. Consequently, if accurate 

estimates of incident and reflected spectra and corresponding reflection coefficients are 

required, then potential signal noise must be acknowledged and accounted for. 
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Figure captions 

 

Fig. 1. Estimated incident     and reflected     spectra (a-d), coherence (e-h), and estimated 

reflection coefficients    (i-l) for SNR = Inf, 2.5, 1.7, and 0.7 as stated on the figure. Dashed 

lines in a-d are the target incident    and reflected    spectra. Red dashed line in e-h is the 

95% confidence threshold on coherence of 0.45 for 12 degrees of freedom (Shumway and 

Stoffer, 2000). Red dashed line in (i-l) is the target reflection coefficient   of 0.3. Wave 

amplitude is 2 m. 

 

Fig. 2. Normalised bias    (     , where   is bias) versus coherence for all wave amplitudes, 

true reflection coefficients, and SNRs. Data have been smoothed providing one estimate per 

simulation and 984 degrees of freedom. Solid red line is an exponential regression function 

with coefficients and accuracy given on the figure. 

 

Fig. 3. (a) 95% confidence intervals on normalised bias     for various degrees of freedom 

versus coherence. Solid lines are linear regression lines fit to the data of the corresponding 

colour. (b) Slopes   and (c) intercepts   from the linear regression lines shown in (a) versus 

degrees of freedom. Solid red lines in (b) and (c) are exponential regression functions with 

coefficients and accuracy given on the figure. 

 

Fig. 4. (a-c) Deviation (%) of uncorrected     and corrected       incident spectra from the 

target value   . Shaded areas are 95% confidence intervals on      . (d-f) Coherence, and (g-i) 

uncorrected    and corrected     reflection coefficients. Shaded areas are 95% confidence 

intervals on    . SNRs are 5.0, 2.5, and 1.7 as stated on the figure. Red dashed line in (d-f) is 

the 95% confidence threshold on coherence of 0.45 for 12 degrees of freedom (Shumway and 

Figure captions



Stoffer, 2000). Red dashed line in (g-i) is the target reflection coefficient   of 0.5. Wave 

amplitude is 3 m. 

 

Fig. 5. Data from the inner surf zone of Perranporth Beach, UK (   = 1.85 m,    = 10.8 s). 

(a) Corrected incident        and reflected       spectra, and uncorrected incident     and 

reflected     spectra. Shaded areas are 95% confidence intervals on       and      . (b) 

Coherence and (c) corrected     and uncorrected    estimated reflection coefficients. Shaded 

areas are 95% confidence intervals on    . Red dashed line in (b) is the 95% confidence 

threshold on coherence of 0.45 for 12 degrees of freedom (Shumway and Stoffer, 2000). 
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