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ABSTRACT 

Grain size and sorting represent two key parameters when characterising sediments or 

modelling beach morphology and sediment transport. Traditionally, an average value for 

grain size or sorting is often assumed for the entire area, determined from only a few 

sediment samples, ignoring any spatial (or temporal) variability in sediment characteristics. 

This contribution uses a data set of physical surface sediment samples from 53 beach 

locations around the south-west peninsula of the United Kingdom, in addition to bi-monthly, 

high spatial resolution (mean 240 samples) digital grain-size surveys from a high-energy, 

oceanic, sandy beach (Perranporth, North Cornwall). Systematic spatial variations in grain 

size and sorting were consistently observed in the seaward direction across the intertidal 

zone of sandy beaches, with grain sizes coarsening and sorting improving by up to 51.7% 

and 64.3%, respectively. This variability was deterministically related to the time-averaged, 

antecedent-adjusted energy dissipated by breaking waves, with the observed maximum 

grain sizes and sorting values correlating with the location of peak wave energy dissipation 

(r2 = 0.998, p < 0.01). 

 

Keywords: Coastal sediments, digital grain size, energy dissipation, intertidal grain size, 

sandy beaches, sorting 

 

1. INTRODUCTION 

It has been well-documented that variability in beach sediments has an impact upon a 

number of nearshore processes, including sediment transport and morphological evolution. 

However, due to the time-consuming nature of sediment sampling and the subsequent 

laboratory analysis, it is often assumed that sediments remain spatially and temporally 

homogenous. This is despite a number of studies showing that beach sediments can vary 
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over a number of scales; Bagnold (1941) found that the ripple crests were significantly 

coarser and better sorted than the troughs, which was supported by Doucette (2002) and 

Trembanis et al. (2004). On larger spatial scales, Abuodha (2003) found an increase in grain 

size between the dune and intertidal systems, with Warrick et al. (2009a) finding that the low 

tide terrace could be up to 70% coarser and considerably better sorted than the upper 

beach. Thornton et al. (2007) correlated an alongshore increase in wave height to increases 

in grain size and measurements made by Thorpe et al. (2014) described sediments found in 

active rip channels that were significantly coarser than those found on an adjacent intertidal 

bar.  

When applying coastal models, the variability shown by these studies is often omitted and 

a grain size and sorting for the entire cross and alongshore extent of a beach is inferred from 

just one single sample. Although, modern advances to coastal models [for example, Xbeach 

(Roelvink et al., 2009) or Telemac (Hervouet & Bates, 2000)] have enabled a degree of 

either spatial (or temporal) sediment tracking modules, the computational costs are often so 

expensive they are seldom enabled for modelling timescales longer than a few hours to 

days. Therefore, a quantifiable understanding of the variability exhibited by sandy sediments 

in a response to changes in the hydrodynamic conditions can aid these modelling efforts.  

In order to improve the spatial resolution of sediment studies, traditionally demanding 

methods of collecting and analysing physical sediment samples are being replaced by 

advancements in semi-autonomous image processing to extract a grain size and sorting 

value from digital photographs of the beach surface. Gallagher et al. (2011) used the spatial 

autocorrelation method proposed by Rubin (2004) for estimating grain size and collected ca 

1000 samples from a meso-tidal, high-energy beach at Truc Vert, France. These authors 

observed a general seaward increase in grain size across the intertidal zone, with sediments 

on the lower beach up to 0.24 mm (58%) coarser than the upper beach sediments; and also 

found localised coarsening in channels related to the faster flow speeds of rip currents. 

Gallagher et al. (2016) also found the same increase in grain size with increasing seaward 
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distance across the intertidal zone at Duck, North Carolina. Additionally, using a similar 

imaging set-up, Reniers et al. (2013) found that coarse sediments on a steep, micro-tidal 

beach (Monterey, California) correlated well with the position of the shore break, and 

although these predictions only covered a ten-day hindcast these authors were able to 

successfully model their observations. These studies all showed that sediment grain size is 

not homogenous, with significant variability possible across spatial scales from only a few 

millimetres up to kilometre scales. Thus far, studies of beach sediment characteristics have 

focussed on micro-tidal and meso-tidal coasts, with a lack of repeat field observations on 

macro-tidal beaches. Therefore, this paper investigates the observed spatial variability in 

sediment grain size and sorting using the high-energy, predominantly macro-tidal beaches 

around the south-west coast of the UK. This variability is related to the prevailing 

hydrodynamics and morphodynamics using a wave energy dissipation model.  

 

2. METHODOLOGY 

Physical sediment samples were collected from 53 separate beach sites around the south-

west peninsula of the UK (Fig. 1) in April 2014. Samples were collected from the surface at 

three cross-shore positions that related to mean spring high, mid and low tide, alongside a 

RTK-GPS (accurate to ±0.03m) beach profile. If the samples contained no clasts larger than 

0.02 m, the grain-size distributions were obtained using a settling tube approach. Sediment 

fall velocity, output from the settling tube, was converted to median grain size (D50) using the 

Ferguson & Church (2004) equation, where D50 is the median particle size by mass and 

sediment sorting is the standard deviation or spread of grain sizes around this median value, 

where: 

    
        

 
   

       

   
       Equation (1) 
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here,   is the sediment sorting and    is the grain diameter (in phi units) at the cumulative 

percentile value of x. Each sample was passed through the settling tube on three occasions, 

with a D50 value resulting from the average of these three tests. Samples containing clasts 

larger than 0.02 m were too large to be removed from the bottom of the settling tube and so 

were dried, passed through decreasing quarter-phi scale sieves by shaking for 15 minutes 

and then weighed, with grain-size statistics calculated using the logarithmic Folk & Ward 

(1957) graphical measures.  

Using physical samples, the spatial coverage is often limited to a few locations due to the 

time-consuming nature of dry sieving or settling. Therefore, a digital grain size (DGS) 

collection method was undertaken every other month (nine in total, mean interval 59 days) at 

Perranporth (Fig. 1, Red Square) on spring low tides from June 2014 to November 2015, 

with a minimum of 118, maximum of 302 and mean of 223 digital samples (surface 

photographs) collected each visit. Two digital cameras capable of capturing still images at 

12 mega pixel resolution were mounted onto an RTK-GPS survey pole, one 0.02 m above 

the bed and one 0.15 m above the bed. Each camera was located inside a waterproof 

housing fitted with a macro-lens and LED lighting. The use of two cameras at different 

heights allowed both the sandy and any larger gravel/shell fractions (if present) to be 

sufficiently captured, with each image recorded with an associated GPS position (accurate 

to ±0.03m). The geometric distortion caused by the addition of a macro lens was corrected 

using the standard Photoshop CC 2015 filter package (Evening, 2015). The digital samples 

had an average cross-shore spacing of 20 m and an average longshore spacing of 100 m, 

covering an area of 550 m by 1200 m. This study uses a DGS technique based upon the 

transferable wavelet method proposed by Buscombe (2013), rather than the more traditional 

spatial autocorrelation process (Barnard et al., 2007; Rubin et al., 2007; Warrick et al., 

2009b). Before using the DGS in the field, a validation was performed by comparing digital 

estimates of grain size and sorting for 63 separate samples against results obtained by 

settling the same samples (Fig. 2). This validation included using one to twenty-five images 
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of the same samples, with only minor increases in accuracy found by including additional 

images. As the correlation coefficient (r2) exceeded 0.95 for both grain size and sorting and 

the 95% confidence intervals of the digital grain-size results compared to settling were 

0.0084 mm and 0.0064 mm, respectively, the digital collection and processing was suitable 

for field deployment.  

 

3. RESULTS 

3.1. Regional grain-size patterns 

The sediment samples collected from the surface at three-cross positions from 53 beach 

sites around the south-west (UK) peninsula, were physically analysed for D50 and sediment 

sorting. South and east facing beach locations were typically coarser, poorer sorted and 

more compositionally immature than the north coast. Linked to the larger grain sizes and the 

smaller wave heights, beach morphology was more reflective, with a steeper slope and 

narrower intertidal zone.  

Using the three samples from mean spring high, mid and low tide, 49 of the 53 sites 

showed an increase in grain size (Fig. 3A) and an improvement in sorting (Fig. 3B) with 

increasing seaward distance across the intertidal zone. Of the remaining four, the two south 

facing sites were composed of mixed sand and gravel, which are hydrodynamically different 

and tend to be coarser towards the upper beach (Horn & Walton, 2007) or have significant 

grading (Buscombe & Masselink, 2006). The two atypical north coast sites are situated 

immediately adjacent to river estuaries, which deposits mud and fine sand towards the base 

of the profiles. The minimum, mean and maximum percentage increase in grain size 

between the upper and lower beach samples was 4.3%, 19.1% and 53.1%, respectively, 

and 2.6%, 17.6% and 46.6% for the associated improvement in sorting.  
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3.2. Local grain-size patterns 

The regional observations of cross-shore grain-size coarsening were based upon a single 

sample from each location. To support these regional observations, Perranporth, a high-

energy, macro-tidal sandy beach site, was selected for repeat high resolution DGS surveys. 

These surveys were repeated every other month, with a total of nine DGS surveys 

completed within the study period. The DGS survey results were consistent with the 

observations from the regional physical samples. Sediments were regularly finer and poorer 

sorted on the upper beach than the lower beach, with an average grain size of 0.335 mm 

(medium sand) and a sorting of 0.366 (well-sorted) on the upper beach and 0.402 mm 

(medium sand) and 0.238 (very well-sorted) on the lower beach, corresponding to an 

average 20% increase in grain size and an improvement of 35% for sorting. Figure 4A 

shows the locations (141 samples) and surface grain sizes for the DGS survey collected in 

August 2014. Across the 550 m by 1200 m survey extent, grain sizes consistently coarsened 

with increasing seaward distance across the intertidal. While the upper and middle beach 

were longshore uniform with little variation between sediments in the north and south, the 

lower beach showed some longshore variation. There was a slight coarsening trend towards 

the north caused by localised coarse (and well-sorted) patches associated with the non-

uniform low-tide bar and rip morphology. Sediments found in the active channels were up to 

0.1 mm (26%) coarser and considerably better sorted than sediments found on the adjacent 

intertidal sand bars and consistent with prior observations made by Gallagher et al. (2011) 

and Thorpe et al. (2014).  

The results from each of the nine DGS surveys are also shown in Fig. 4, with Fig. 4B the 

cross-shore grain-size profiles and Fig. 4C the sorting. While the general cross-shore 

coarsening and improvement in sorting is observed in each of the nine surveys, the degree 

of difference between the upper and lower beach sediments is variable. The two 

occurrences of the lower beach sediments exceeding 0.45 mm are associated with the 

extreme winter storms of 2013 to 2014 (Masselink et al., 2015), where persistently large 
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(Fig. 5A, shaded) long period waves conditions drove extreme coarsening (and erosion) 

across the lower intertidal profile, with lower beach sediments up to 52% coarser than typical 

winter values. These larger grain sizes associated with the storms are not apparent in the 

upper beach sediments, which were only 3% coarser than typical winter values. The cross-

shore grain-size profiles that had a reduced contrast between the upper and lower beach 

sediments were collected during the lower energy summer months. Grain size increased by 

an average of 18.9% and sorting improved by an average 26.4%, although due to the 

seasonal periodicity, winter sediment grain sizes increased and sorting improved by up to a 

maximum of 51.6% (average 32.4%) and 64.4% (average 51.0%), respectively. During the 

summer months, the maximum increase of grain size with cross-shore distance was 9.4% 

(average 8.3%) and the maximum improvement in sorting was 33.3% (average 18.3%). 

 

4. THE RELATIONSHIP BETWEEN THE SPATIAL GRAIN-SIZE PATTERNS AND WAVE 

ENERGY DISSIPATION 

4.1 Wave energy dissipation model 

The position and extent of the surf zone is implicitly linked to beach morphology and 

sediment transport. Studies in laboratory flumes (Çelikoğlu et al., 2006; Kakinoki et al., 2011; 

Jiang et al., 2015), have shown a consistent relationship between the sediment 

characteristics (grain size and sorting) and energy dissipated by breaking waves. 

Additionally, Reniers et al. (2013) showed that for a high-energy beach, using natural 

hydrodynamic and sedimentological conditions, the position of the shore break over a 

number of days always correlated to the maximum observed grain sizes. However, this 

concept has yet to be examined on a macro-tidal site across a multi-year temporal scale, 

which accounts for the seasonal variations and episodic storm responses. 
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Therefore, this study compares the high resolution DGS surveys from Perranporth, with the 

outputs of a Battjes & Janssen (1978) wave balance model. This model estimates the rate of 

wave energy dissipation (D) per unit width (1 m cross-shore spacing), simplified as: 

    
 

 

 
      

    Equation (2) 

where α is a dimensionless coefficient of magnitude 1, f is the wave frequency (f = 1/Tp), ρ is 

the water density, g the gravitational acceleration, Hm is the depth limited wave height and Q 

is the fraction of breaking waves [Q = f(Hrms / Hm), where Hrms ~ Hs / 1.4]. The model 

estimates the dissipation of a single breaking wave (with a height denoted by Hrms) using a 

bore dissipation model and then combines this with a clipped-Rayleigh probability density 

function to estimate the dissipation of a random wave field. Only five inputs are required to 

successfully run the model, a value for the wave height (Hs), peak wave period (Tp), wave 

direction (θp), tidal elevation for each predictive time step (every 30 minutes) and a beach 

profile. The hydrodynamic data (Hs, Tp, θp Fig. 5A, B and C) were recorded in 30-minute 

intervals from a nearshore Datawell directional WaveRider buoy (Datawell BV, Haarlem, The 

Netherlands), moored in 10 to 14 m water depth, 0.6 km offshore from Perranporth. Between 

8 February 2014 and the 14 March 2014, the Perranporth wave buoy was damaged, with the 

gap in the time series filled in by the outputs of a local SWAN model nested within a regional 

wave model. This model, set up with a 12 x 15 km grid and a 150 m node size, output two-

dimensional spectral data at a location coincident with the nearshore wave buoy [see Austin 

et al. (2012) for detailed setup conditions and model validation]. A continuous time-series of 

tidal elevation for each 30 minute hydrodynamic measurement was calculated via an 

interpolation using local tidal coefficients (Fig. 5D).  
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Before input into the Battjes & Janssen (1978) model, the hydrodynamic inputs (Hs, Tp, θp) 

were weighted using a temporally-evolving term that recognises that there is significant 

hysteresis, in which further change is dependent upon the antecedent conditions (Davidson 

et al. 2013). This weighting function can be expressed as: 

             
    

  
           

      Equation (3) 

where  represents either the Hs, Tp, θp time-series and  represents the antecedent Hs, Tp, 

θp time-series. The weighting function decays at a rate governed by ϕ and reaches 10% and 

1% at ϕ and 2ϕ days prior to the current calculation time. Prodger et al. (2016) found, when 

describing temporal grain-size patterns at Perranporth over a number of years, that an 

optimum fit to the antecedent wave conditions were obtained with a weighting function 

decaying at a rate that reached 10% (ϕ) of the present value at 83 days and 1% (2ϕ) at 166 

days. Despite the inclusion of this antecedent term, the most recent wave conditions are still 

the most important, with rapid change possible if the current conditions are sufficiently 

different from the antecedent conditions.  

Intertidal topographic surveys were collected every month from 2008 to 2016, using an 

RTK-GPS (accurate to ±0.03m) mounted on an all-terrain vehicle on the biggest spring low 

tide of the month. For the study period, a total of 22 monthly intertidal surveys were 

collected, with a mean interval of 24 days. The subtidal profile was measured using a 

Valeport MIDAS Surveyor (Valeport Limited, Totnes, UK) logging in high-frequency mode at 

210 kHz, deployed from a 3.8 m Aranica RIB (Arancia Industries Limited, Auckland, New 

Zealand). Height corrections were provided by RTK-GPS (accurate to ±0.03m), input into the 

MIDAS during field data collection which reduced the associated error to 0.15 m. Subtidal 

bathymetry was collected along cross-shore profiles that had a 25 m resolution from spring 

low tide to the subtidal bar crest and a 50 m resolution offshore from the subtidal bar crest. 

As these subtidal surveys required wave heights to be less than 1 m, only seven were 

obtained. Additionally, the timeframe between them was significantly larger than the monthly 
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intertidal surveys. For the study period, the minimum, mean and maximum spacing was 27 

days, 75 days and 230 days, respectively, with the latest available collected in July 2015. 

Each subtidal survey was meshed with the nearest available intertidal survey and gridded at 

a 25 m resolution in both the cross-shore and alongshore directions via a quadratic loess 

interpolation scheme (Plant et al., 2002). This interpolation created a continuous three-

dimensional surface of the intertidal topography (accurate to ±0.08 m) and subtidal 

bathymetry (accurate to ±0.205 m) that was translated onto a local co-ordinate grid. A beach 

profile with a 1 m cross-shore spacing suitable for use with the wave dissipation model was 

then extracted from this surface.  

Using the antecedent-weighted hydrodynamic inputs (Hs, Tp, θp and Tidal Elevation) and 

the cross-shore beach profile to force the model, a dissipation value for each 1 m cross-

shore location specified by the beach profile is output. To obtain a time-averaged, 

antecedent-adjusted dissipation profile, the outputs from the model (every 30 mins) are 

integrated over 2ϕ days (ca 326 tidal cycles) prior to the current calculation time. A summary 

of the DGS sample positions, the cross-shore transect along which the grain size, sorting 

and elevation profiles were extracted and the origin point for the local co-ordinate grid is 

available in Fig. 6 and an example of an integrated dissipation profile in Fig. 7.  

4.2 Antecedent-adjusted model results 

The cross-shore coarsening in grain size and improvement in sorting noted in the DGS 

surveys from Perranporth was related to the hydrodynamic conditions via the Battjes-

Janssen 1D cross-shore wave dissipation model, using inputs which had been weighted with 

a temporally-evolving antecedent term. The time-averaged energy dissipation strongly 

correlated with grain-size and sorting profiles. Model outputs, in addition to the grain-size, 

sorting and beach profiles are shown in Fig. 8, with the error bars obtained using the data in 

Fig. 2 and are a reflection of the confidence that the digital grain-size measurements reflect 

the actual D50 and sorting value. 
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Due to the strong seasonality in wave heights, during the winter months (Fig 8A, B, F and 

G) the surf zone was wider, with waves breaking further offshore and dissipating increased 

amounts of energy across the profile. Average energy dissipated across the entire cross-

shore profile was 16.2 Wm-3 in winter, compared to 3.9 Wm-3 in summer. The increased 

amount of energy dissipated and wider surf zone width (average winter surf zone width – 

738 m), were associated with the greatest variation between the upper and lower beach 

sediment grain sizes and sorting (Fig. 9). Although, grain size and sorting still increased with 

increasing distance across the intertidal zone in the calmer summer months, there was a 

reduced contrast between the upper and lower beach sediments. This was linked to the 

reduced amount of energy dissipated across a narrower surf zone (average summer surf 

zone width – 531 m).  

 

5. DISCUSSION 

The spatial variability in grain size and sorting was assessed using both physical samples 

from 53 sites around the south-west peninsula of the UK and high-resolution digital grain 

size (DGS) surveys from Perranporth. Each of the sandy sites (49 in total) exhibited a cross-

shore coarsening and an improvement in sorting towards mean spring low-tide, regardless 

of the average D50 size (Fig. 3). The DGS surveys supported the results from the regional 

physical samples, with grain size consistently increasing and sorting improving with 

increasing seaward distance across the intertidal in all nine surveys (Fig. 4). Due to the 

increased number of digital samples (mean 223) compared to the physical samples (three 

per site), variability can be observed at significantly higher resolution. Regardless of the 

underlying morphology, hydrodynamic conditions or alongshore location, grain size (and 

sorting) consistently increased (and improved) in the seaward direction across the intertidal 

zone. Additionally, the upper and middle beach face were longshore uniform, with little 

variation. When the beach was in a dissipative state there was also little longshore variation 
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in the lower beach sediments. However, with the development of non-uniform bar and rip 

morphology there was some longshore variability in the lower beach sediments, whereby 3D 

bar and rip topography was associated with localised well-sorted, coarse sediment patches. 

Outputs from the Battjes & Janssen (1978) wave dissipation model indicate that the 

temporally-averaged, antecedent adjusted, cross-shore energy dissipated from breaking 

waves correlates well with the cross-shore grain size and sorting profiles (Fig. 8). Areas of 

high dissipation are more turbulent and will readily transport the finer sand fractions due to a 

lower transport threshold, either offshore, onshore or alongshore depending upon the 

prevailing wave, current and tidal conditions. Increased amounts of dissipation corresponded 

to coarser better sorted sediments on the bed. However, it is typically assumed that all 

sediments across the intertidal respond in the same manner to changing hydrodynamic 

conditions, instead the DGS survey results show that the upper and lower beach sediments 

exhibit different seasonal behaviour. As the sediments at the mean spring high-tide mark 

were only in the swash during peak spring tides, the seasonal periodicity is smaller than that 

displayed by sediments on the lower beach, which are submerged in the surf zone almost 

continuously. The cross-shore coarsening and the seasonal variability correlated with the 

outputs of a Battjies & Janssen (1978) model, where the coarser, better sorted sediments on 

the lower beach were explained by the increased amount of energy dissipation (turbulence) 

preferentially removing the finer sediment fractions. The seasonal periodicity between the 

amount of energy dissipated on the upper beach in summer and winter was low, reflected in 

small variations in summer and winter sediment grain sizes and sorting values. However, on 

the lower beach, the larger winter storm waves break further offshore, and with more energy, 

than the smaller summer swell waves, prompting surface grain sizes to significantly coarsen 

as fines were removed. It was found that the time-averaged peak energy dissipation 

correlated with the location of the observed maximum grain sizes and sorting and the 

amount of energy dissipated adjusted the degree of coarsening and improvement in sorting 

between sediments on the upper and lower beach (Fig. 9). This relationship between coarse 
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grain sizes and high breaking wave dissipation and turbulence has been shown to occur in 

flume studies (Çelikoğlu et al., 2006; Jiang et al., 2015), on micro-tidal (Reniers et al., 2013) 

and meso-tidal (Bascom, 1951) coasts and tidal-flats (Malvarez et al., 2001). Yet, this study 

is the first to examine this on a macro-tidal location using natural wave forcing over a 

relatively long temporal scale, in addition to using repeated field data for both the beach 

profiles and sediment characteristics. Additionally, the use of antecedent hydrodynamic 

inputs using a temporally-evolving weighting term (Eq. 3) has not previously been applied to 

spatial grain-size patterns. However, it has been used successfully in studies by Wright et al. 

(1985) on beach morphodynamics, Davidson et al. (2013) on shoreline change, Stokes et al. 

(2015) on three-dimensional sand bar evolution and Prodger et al. (2016) on temporal grain-

size variability. These studies all noted improved correlations with the introduction of an 

antecedent term, which recognises that there is significant hysteresis where future change is 

dependent upon the previous conditions. By including this antecedent term, the correlation 

between the antecedent adjusted breaking wave dissipation and the grain size and sorting 

profiles were considerably improved (Fig. 8).  

Currently, the DGS profiles are limited to the dry intertidal zone, as the turbulence and high 

suspended sediment concentrations caused by strong wave and swash conditions make 

clear images difficult to obtain underwater. Although, as the wave energy dissipation is 

modelled to reduce offshore from the subtidal bar crest, increasingly smaller fractions should 

be able to settle out of suspension. Therefore, grain size would begin to decrease and 

sorting would become poorer with increasing offshore distance from this point.  

 

6. CONCLUSIONS 

Using a data set of 53 beaches from around the south-west, United Kingdom, consistent 

spatial variations in beach sediment grain size and sorting were observed, with grain-size 

coarsening and sorting improving by an average of 19% and 18%, respectively, in the 
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seaward direction across the intertidal zone.  High spatial resolution digital grain-size (DGS) 

surveys from Perranporth support these observations, with an average increase of 18.9% 

and 26.4% for grain size and sorting, respectively. There was a strong seasonality in the 

sediments on the lower beach, with winter grain sizes up to 0.12 mm (30%) coarser than the 

summer equivalents. This seasonality was reduced for the upper beach sediments, with only 

a 0.04 mm (12%) increase between summer and winter grain sizes. The increase of grain 

size and improvement in sorting with increasing seaward distance across the intertidal was 

more pronounced in the winter months, with a maximum coarsening of up to 51.6% and a 

64.4% improvement in sorting. In summer months the maximum increase in grain size and 

increase in sorting was only 9.4% and 33.3%, respectively.  

Cross-shore grain-size and sorting profiles were deterministically linked to the antecedent-

adjusted breaking wave dissipation, with the observed maximum grain sizes and sorting 

corresponding to the location of peak energy dissipation. Additionally, the different seasonal 

behaviour shown by the upper and lower beach sediments correlated to a greater amount of 

energy dissipated across a wider surf zone during the winter months.  
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Figure 1. Location map of the 53 samples sites (green circles) situated around the south-

west peninsula of the UK; there are 37 from the north coast and 16 from the south and east 

facing coast. Physical surface samples were collected from positions that related to the 

upper, middle and lower beach at each site in April 2014. The red square indicates 

Perranporth, where high-spatial resolution digital samples were collected. 

 

Figure 2. D50 and sorting estimates using the DGS transferable wavelet method plotted 

against D50 and sorting calculated by settling tube. The dashed line shows the perfect one to 

one relationship and the red line shows the best fit line. Each point represents a single 

image, with filled circles representing images taken in the laboratory during April 2014, and 

open circles images taken in the field throughout 2014. Correlation coefficients (r2) for grain 

size were 0.963 and 0.951 for sorting, with a 95% confidence interval of the digital samples 

compared to the settling tube of 0.0084 mm for grain size and 0.0064 mm for sorting.  

 

Figure 3. Colours indicate the percentage change between the upper and lower beach 

sediment samples with (A) the cross-shore improvement in grain size and (B) the cross-

shore improvement in sorting.    
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Figure 4. (A) The location of the DGS samples collected in August 2014, with the colour 

related to D50 size. Contours are beach elevation (every 0.5 m) collected from an RTG-GPS 

during the DGS survey. The longshore averaged grain size (B) and sorting (C) profiles for 

each of the nine DGS surveys, with the beach profile in black, the summer profiles in blue 

and the winter profiles in red. Due to the varying low-tide elevations each grain-size and 

sorting profile have been interpolated onto the same local grid.  

 

Figure 5. Hydrodynamic measurements over the study period at Perranporth, measured at 

the nearshore WaveRider buoy in 10 to 14 m water depth. Values show the average daily Hs 

(A), Tp (B) and θp (C), calculated from 48 measurements on a 30 minute time-step. The 

shaded box in (A) highlights the extreme storms during the winter of 2013/2014. Grey lines 

in (A), (B) and (C) are outputs from a SWAN model because the wave buoy was not in 

operation. The tidal elevation for each 30 min time-step relative to chart datum is shown in 

(D).  

 

Figure 6. The location of the digital grain-size samples (white circles), the nearshore 

WaveRider buoy (blue star), the cross-shore profile (intertidal in red and subtidal in blue) and 

the origin position for the translation to a local co-ordinate grid (yellow circle): (A) shows the 

plan view, and (B) the profile view.  

 

Figure 7. (A) An example of how a time-integrated dissipation profile (magenta) would be 

obtained across one tidal cycle at Perranporth, with an antecedent average obtained from 24 

separate dissipation profiles (30 min time-step). The hydrodynamic conditions used to force 

the model are available in (B) wave height, (C) wave period, (D) wave direction and (E) tidal 

elevation.  
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Figure 8 (A) February 2014, (B) March 2014, (C) June 2014, (D) August 2014, (E) October 

2014, (F) December 2014, (G) February 2015, (H) April 2015 and (I) June 2015. In each 

panel, the black line represents the beach profile (relative to chart datum) extracted from the 

meshed intertidal and subtidal bathymetry survey, the blue dashed line the time-integrated 

antecedent wave energy dissipation profile, the solid red and solid yellow, the grain-size and 

sorting profiles respectively, from the interpolated DGS survey. Error bars represent the 95% 

confidence interval of the digital method. The scales for each x and y axis were kept 

consistent in each subplot.  

Figure 9. Time averaged energy dissipation across the length of the profile against the 

percentage increase in grain size (A, r2 = 0.998, p < 0.01) and improvement in sorting (B, r2 = 

0.958, p < 0.01) between the upper and lower beach sediments. Time averaged surf zone 

width against the percentage increase in grain size (C, r2 = 0.848, p < 0.05) and 

improvement in sorting (D, r2 = 0.904, p < 0.05) between the upper and lower beach 

sediments.  
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