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Abstract—The design of algorithms for Game AI agents
usually focuses on the single objective of winning, or maximizing
a given score. Even if the heuristic that guides the search (for
reinforcement learning or evolutionary approaches) is composed
of several factors, these typically provide a single numeric
value (reward or fitness, respectively) to be optimized. Multi-
Objective approaches are an alternative concept to face these
problems, as they try to optimize several objectives, often
contradictory, at the same time. This paper proposes for the
first time a study of Multi-Objective approaches for General
Video Game playing, where the game to be played is not known
a priori by the agent. The experimental study described here
compares several algorithms in this setting, and the results
suggest that Multi-Objective approaches can perform even
better than their single-objective counterparts.

I. INTRODUCTION

Creating Artificial Intelligence (AI) agents for games is
usually tackled from the perspective of a bot trying to excel in
one particular objective - typically, to achieve victory. Even
if the objective of the agent is also to maximize score, it is
often the case that an heuristic is designed for the bot to aim
to accomplish both goals simultaneously. Other games may
also require some additional objectives, such as exploring the
game area, considering time elements or collecting power-
ups that enhance the player abilities. Even in this case, a
carefully designed heuristic, tailored to the specifics of the
game at stake, may provide a single value that, if optimized,
may lead to an optimal behaviour. This approach is taken in
most research and algorithms used for game AI.

An alternative to this kind of approaches is to consider
the game as a Multi-Objective (MO) problem. By doing this,
the agent tries to find an equilibrium between two or more
objectives to optimize, typically in opposition. For instance,
as seen later in this paper, the agent may try to maximize
both the score achieved and the areas of the level that are
explored. According to some policy, the agent takes actions
in order to reach states of the games where both objectives
are maximized. Previous research shows that MO approaches
can outperform significantly single-objective algorithms in
specific games [1].

The value of considering multiple objectives at once can
be even more relevant when the same agent is meant to
play many different games, which rules and mechanics are
unknown a priori. It seems reasonable to define a single

objective heuristic function specifically designed to guide the
agent in a known game, but it is fair to ask if MO approaches
are better suited for unknown games, where it is unclear
which objectives may have more or less importance.

The idea of creating agents able to play in multiple
games is not new, although it is becoming more and more
popular lately after the advances in frameworks like the
Atari simulator ALE (Arcade Learning Environment; [2])
or the General Video Game AI (GVGAI) framework and
competitions [3]. General Video Game aims to propose a
challenge for algorithms capable of playing any game, even
if it has not been seen before. The reasoning behind this
is to make algorithms independent from specific domains,
in order to perform research that can be traversal across
different games. Also, it is possible to consider that playing
any number of unseen games is closer to the problem of
artificial general intelligence, as opposed to AI concerned
with solving individual problems.

The goal of this paper is to shed some light into the
performance of MO approaches in GVGAI, analyzing the
performance of previous and new MO algorithms, and com-
paring them with other single-objective agents. This paper
is organized as follows: Section II describes the GVGAI
framework and games, used in the experiments performed
for this research. Section III provides a background on the
algorithms that form the basis of the agents employed on the
experiments, which are described in Section IV. Experiments
and results are discussed later in Section V, and conclusions
and future work outlined in Section VI.

II. THE GENERAL VIDEO GAME AI FRAMEWORK

This section describes the framework and games employed
for the experimental part of this study. The GVGAI frame-
work is a Java port of the original py-vgdl, a Python version
implemented by Tom Schaul [4] as a benchmark for learning
and planning problems.

One of the objectives of this framework is to allow an
easy creation of new games and levels. Therefore, all these
are described, in plain text, in a high-level Video Game
Definition Language (VGDL). VGDL allows the definition
of 2D real-time single-player arcade-type games, where the
player can control an avatar and interact with objects located
around the level. By means of an ontology, this language
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permits the creation of multiple games. At the time of writing
of this paper, 80 different games have been designed, forming
8 groups of 10 games each.

The GVGAI framework is able to read VGDL games
and expose an interface to the agent, allowing queries about
the game state (score, victory state, time steps), the avatar
(position, resources collected, list of available actions) and
other sprites in the game. It is important to highlight that
the VGDL descriptions of the game and level are not given
to the controller, which can only access game information
through Java objects. Furthermore, the information about the
nature of the sprites is hidden, so it is not possible to know
in advance the utility or purpose of the other elements of the
game.

The agent is provided, however, with a forward model,
so it can simulate the effects of taking certain actions and
reach the subsequent states. The games are, in general, of
stochastic nature, so it is worth highlighting that multiple
calls to the forward model from the same state and action
may provide different next states. The controller can make
use of this forward model to decide the next action to take
in the game, as long as it does not exceed the 40ms of time
budget allocated to each move. In case of an overspent, no
action is executed on the next move. This framework and
settings were used in the GVGAI competitions run in 2014
and 2015. For more details, the reader is referred to the 2014
GVGAI competition paper [3].

The games employed for this research are those of the first
set, described in detail in Table I. It is worth highlighting the
differences in the nature of these games. There are different
ways to achieve victory on them (reaching an exit, capturing
certain sprites, placing objects in specific locations, etc.), and
the score schemes vary importantly from one game to the
other. Not even all games share the same set of available
actions (while Aliens allows the avatar to move sideways and
shooting, Butterflies only allows movement in all directions).

III. BACKGROUND

This section provides an overview of the techniques behind
the agents (or controllers) employed in the experiments of
this research study.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [5] is a reinforcement
learning approach that has become very popular in the last
decade due to its performance in the game of Go [6]. Since
then, MCTS has been applied to diverse games and scenarios,
and multiple variants and modifications have been proposed
in the literature [7]. MCTS has achieved good results in
many domains, including General Game (and Video Game)
Playing, and it is the first algorithm (in combination with
Deep Neural Networks) able to defeat a professional Go
player in a complete 19× 19 board, unbiased match [8].

MCTS is a tree based search algorithm that builds an
asymmetric tree in memory using a forward model of the
game. The algorithm adds one node at each iteration, esti-
mating its game-theoretic value by using self-play from the

Fig. 1. MCTS algorithm steps

state of the node to the end of the game or a given depth.
Each node stores statistics regarding the number of time it is
visited (N(s)), the number of times an action is taken from
that node (N(s, a)) and the empirical average of the rewards
obtained when picking an action a from s (Q(s, a)).

Figure 1 depicts the 4 steps of the MCTS algorithm.
During the first step, tree selection, the tree is navigated
from the root, using a Tree Policy, until reaching a node
that is not totally expanded (i.e. there is at least one action
that has not been picked from that state). The expansion
step adds a new node to the tree, from which the Monte
Carlo simulation (or roll-out) is performed, following the
Default Policy until the end of the game or some specified
depth. At that point, the state reached is evaluated with some
heuristic function, and the result is back-propagated to all
visited nodes in the tree during that iteration. This process
is repeated until a time budget or a maximum number of
iterations is consumed. The action to play in the real game
is determined by a Recommendation Policy.

One of the most popular tree policies is Upper Confi-
dence Bounds (UCB1; see Equation 1). This policy balances
between exploitation (first term of UCB1) and exploration
(second term) at every step in the tree selection phase, in
order to explore the most promising states of the search
space. This balance can be tempered by the value of C:
setting high values gives priority to exploration, while values
closer to 0 reward those actions a ∈ A(s) with a higher
expected reward.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The default policy can select actions uniformly at random,
or biased by features of the states visited. Finally, the
recommendation policy can choose an action for playing in
the real game based on different metrics, such as Q(s, a) or
N(s, a).

B. Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) refers to
a scenario where two or more conflicting functions need to



Game Description Score

Aliens

Similar to traditional Space Invaders, Aliens features the player (avatar) in the
bottom of the screen, shooting upwards at aliens that approach Earth, who also
shoot back at the avatar. The player loses if any alien touches it, and wins if
all aliens are eliminated.

• 1 point is awarded for each alien or pro-
tective structure destroyed by the avatar.

• −1 point is given if the player is hit.

Boulderdash

The avatar must dig in a cave to find at least 10 diamonds, with the aid of a
shovel, before exiting through a door. Some heavy rocks may fall while digging,
killing the player if it is hit from above. There are enemies in the cave that
might kill the player, but if two different enemies collide, a new diamond is
spawned.

• 2 points are awarded for each diamond
collected, and 1 point every time a new
diamond is spawned.

• −1 point is given if the avatar is killed by
a rock or an enemy.

Butterflies
The avatar must capture butterflies that move randomly around the level. If a
butterfly touches a cocoon, more butterflies are spawned. The player wins if it
collects all butterflies, but loses if all cocoons are opened.

• 2 points are awarded for each butterfly
captured.

Chase
The avatar must chase and kill scared goats that flee from the player. If a goat
finds another goat’s corpse, it becomes angry and chases the player. The player
wins if all scared goats are dead, but it loses if is hit by an angry goat.

• 1 point for killing a goat.
• −1 point for being hit by an angry goat.

Frogs
The avatar is a frog that must cross a road, full of tracks, and a river, only
traversable by logs, to reach a goal. The player wins if the goal is reached, but
loses if it is hit by a truck or falls into the water.

• 1 point for reaching the goal.
• −2 points for being hit by a truck.

Missile
Command

The avatar must shoot at several missiles that fall from the sky, before they
reach the cities they are directed towards. The player wins if it is able to save
at least one city, and loses if all cities are hit.

• 2 points are given for destroying a missile.
• −1 point for each city hit.

Portals
The avatar must find the goal while avoiding lasers that kill him. There are
many portals that teleport the player from one location to another. The player
wins if the goal is reached, and loses if killed by a laser.

• 1 point is given for reaching the goal.

Sokoban The avatar must push boxes so they fall into holes. The player wins if all boxes
are made to disappear, and loses when the timer runs out.

• 1 point is given for each box pushed into
a hole.

Survive
Zombies

The avatar must stay alive while being attacked by spawned zombies. It may
collect honey, dropped by bees, in order to avoid being killed by zombies. The
player wins if the timer runs out, and loses if hit by a zombie while having no
honey (otherwise, the zombie dies).

• 1 point is given for collecting one piece
of honey, and also for killing a zombie.

• −1 point if the avatar is killed, or it falls
into the zombie spawn point.

Zelda
The avatar must find a key in a maze to open a door and exit. The player is
also equipped with a sword to kill enemies existing in the maze. The player
wins if it exits the maze, and loses if it is hit by an enemy.

• 2 points for killing an enemy, 1 for col-
lecting the key, and another point for reach-
ing the door with it.

• −1 point if the avatar is killed.

TABLE I
SET OF 10 GAMES USED FOR THE EXPERIMENTS OF THIS PAPER.

be optimized simultaneously. It can be defined as:

optimize {f1(~x), f2(~x), · · · , fm(~x)} (2)

subject to ~x ∈ Ω, involving m(≥ 2) conflicting objective
functions fi : <n → <. ~x = (x1, x2, · · · , xn)T are decision
vectors from the feasible region Ω ⊂ <n and Z ⊂ <m
is the feasible objective region, which elements are called
objective vectors and consist of m objective (function) values
~f(~x) = (f1(~x), f2(~x), · · · , fm(~x)). Then, each solution ~x
results in a set of m different scores to be optimized. A
solution ~x dominates another solution ~y if and only if:

1) fi(~x) is not worse than fi(~y), ∀i = 1, 2, . . . ,m.
2) For at least one objective j: fj(~x) is better than its

analogous counterpart in fj(~y).
When both conditions are met, it is said that ~x ≺ ~y

(~x dominates ~y), a condition that provides partial ordering
between solutions in the objective space. In those cases where
it is not possible to say that ~x ≺ ~y or ~y ≺ ~x., it is said that
these solutions are indifferent to each other and form part of
the same non-dominated set. Given a non-dominated set P ,
it is said that P is the Pareto-set if there is no other solution

in the decision space that dominates any member of P , and
their objective vectors build a Pareto-front.

Multiple MO approaches can be found in the litera-
ture, including evolutionary and reinforcement learning ap-
proaches [9], [10]. The weighted-sum approach is known to
be one of the traditional methods, which provides a set of
weights to balance between objectives according to the user
preference. The resulting weighted sum leads to one objective
function to be optimized and, depending on the weights
provided, the algorithm can converge to different solutions,
ideally on a Pareto-front. However, this linear scalarization
approach fails to find optimal solutions for problems with
non-convex-shape Pareto-fronts [9].

Another important concept in the MO literature relates
to how to measure the quality of a non-dominated set. A
popular metric for this is the Hypervolume Indicator (HV),
which measures both the diversity and convergence of non-
dominated solutions [11]. The HV of a Pareto front, HV (P ),
is defined as the volume of the objective space dominated by
P . Assuming the objectives are to be maximized, the higher
the value of HV (P ), the better the front obtained.



Algorithm 1 Pareto MO-MCTS node update [1].
1: function UPDATE(node, r, dominated = false)
2: node.V isits = node.V isits+ 1
3: node.R = node.R+ r
4: if !dominated then
5: if node.P ≺ r then
6: dominated = true
7: else
8: node.P = node.P ∪ r
9: UPDATE(node.parent, r, dominated)

C. Multi-objective MCTS

The first Multi-Objective Monte Carlo Tree Search (MO-
MCTS) for real-time games, developed by D. Perez-Liebana
et al. [1], tackles the problem of selecting an action with a
reduced time budget in an MO setting. This algorithm adapts
the traditional MCTS to deal with multiple objectives when
evaluating a game state.

This algorithm requires that a game state evaluation func-
tion provides fitness for m objectives, as a vector r. r is
back-propagated through all the nodes visited in the tree, as
shown in the fourth step of MCTS, to update the accumulated
reward vector R. In MO-MCTS, each node in the tree keeps a
local Pareto front approximation P , which is updated at each
iteration with the reward vector r. Algorithm 1 describes how
the node statistics are updated in MO-MCTS.

The update of each local Pareto front P (line 8 of
Algorithm 1) works as follows: if r is not dominated by the
front, it is added to P , considering that any (or all) points in
P can be dominated by r and therefore leave the set. In the
case that r is dominated by P , the front remains unchanged,
and the same occurs for the rest of the nodes until reaching
the root.

By keeping these fronts, each node has an estimation of the
quality of the states that can be reached from that point. Also,
the quality of this estimation can be measured by calculating
the HV of the front P of the node. Following this reasoning,
it is straightforward to see that the front of the root of the tree
contains the best non-dominated front of the whole search.

The algorithm also provides information for the tree and
recommendation policies. In the former case, it is possible
to substitute the value of Q(s, a) (which in the original
algorithm refers to single rewards) from Equation 1 with the
Hypervolume measure of the front, HV (P ). In the latter, it
is possible to store information on the root node as to which
action leads to each point in its non-dominated front. By
providing weights to the different objectives, it is possible
to determine which point in P is selected and therefore pick
the action that leads to it.

IV. APPROACHES

This section describes in detail the different controllers
employed in this study. First, Section IV-A defines the
different heuristics that are used by the agents to conform
the objectives. Then, Section IV-B specifies how the agents

Fig. 2. Pheromone diffusion.

use these objectives differently to play the games described
in Table I.

A. Heuristics

1) Score (Objective O1): This heuristic simply takes the
score of the present game state, but a high integer is added
if the game is won or lost (106 or −106, respectively). This
heuristic is used by the sample MCTS, a controller provided
with the framework, and included in the experiments for
comparison. Albeit simple, this sample controller provides
a reasonable performance: it finished in third position in the
2014 GVGAI Competition (18 qualified controllers) and in
the mid table in the legs of the 2015 edition (close to 50
controllers).

2) Level Exploration (Objective O2): The second heuris-
tic consists on a value that, if maximized, aids the agent
to maximize the number of positions (or grid cells) ex-
plored in the level. It is a nature-inspired technique based
on pheromone trails, and its complete description can be
found in [12]. In short, this mechanism works by simulating
pheromones expelled by the avatar at each game tick, which
spread into the neighbouring area. Each cell contains a
pheromone value pij ∈ [0, 1], where i and j are coordinates
in the level board. pij decays with time, and the change of
pheromone pij from one step to the next is given by the
Equation 3:

pi,j = ρdf × ρφ + (1− ρdf )× ρdc × pi,j (3)

ρφ is calculated as the sum of pheromone trail in all neigh-
bouring cells divided by the number of neighbouring cells
(note that an edge cell reduces the number of neighbours).
ρdf ∈ (0, 1) sets the value of diffusion of the pheromone
and, finally, ρdc ∈ (0, 1) establishes the decay of the value
at each game cycle. These values are set to ρdf = 0.4 and
ρdc = 0.99, as they have shown good results in a previous
study [12]. Figure 2 shows an example of the decay of the
pheromone trail from one step to the next.

This algorithm produces high values of pheromone trail
in the close proximity of the avatar, as well as in positions
recently visited. In order to maximize exploration of the
level and movement through it, the heuristic should prefer
positions where this value is small. Therefore, the value of
the heuristic is calculated as O2 = 1−pi,j , where i and j are



the coordinates of the avatar in the grid in a particular state.
Nevertheless, using this objective as defined here, would not
reward appropriately game states where the agent wins or
loses the game. Therefore, as in the previous agent, a high
positive or negative number is added to 1 − pi,j to weight
this factor in.

B. Agents

Although the four agents presented here differ in the way
the heuristics are composed to give a value of the quality
of a given state, the algorithms share some common settings
for a fair comparison. As they are all MCTS approaches,
they need a value for the exploration-exploitation constant
C, which is set to

√
2, a value that has given good results

in the past for single player games, as the types of games in
the framework.

Additionally, instead of using a time budget for each game
tick, a limit of 50 rollouts per decision was imposed for
all algorithms1. This measure assures that all algorithms
explore approximately the same amount of states and there
is no dependency on the overload of the server where the
experiments are run. Finally, each rollout was set to a limit
of 10 actions from the root.

1) Sample MCTS: This agent is sample MCTS controller
supplied with the GVGAI framework. Therefore, the value
function for the state is exactly the value of O1.

2) Weighted Sum MCTS: This agent uses a single objec-
tive MCTS, which value function is the weighed sum of O1

and O2: O1 × α + O2 × β. The two weights, α and β, are
both set to 0.5. This is just one possible, balanced value
that has been chosen for this algorithm, but also for the next
two agents when a decision between objectives needs to be
made. An interesting line of further investigation could be
to analyze changes of performance with different weights,
although this was left out of scope for this study.

3) Mixed Strategy MCTS: This is a new algorithm pro-
posed for this study. The idea is to tackle the Multi-objective
problem as a mixed strategy [13], where each objective is
managed by a different decision maker. In practical terms,
this agent has two different value functions and, at the
beginning of the game tick, a high level policy determines
which value function should be used during the decision time
for that move.

In this agent, the agent may choose to use a MCTS that
maximizes the score (using O1) as value function, or one that
maximizes exploration (O2 as heuristic). In the experiments
performed for this study, and as indicated for the previous
agent, the selection of one or another tree is uniformly
random (probability of 0.5 for each).

4) MO-MCTS: This agent uses the MO-MCTS algorithm
described in Section III-C, using the two objectives O1 and
O2. When the algorithm has finished its allotted number of
iterations, a weighed sum O1 × α + O2 × β is calculated
(as before, with both weights set to 0.5) for each member

1This value is, on average across games, similar to the number of
iterations that Sample MCTS performs in 40ms.

Sample
MCTS

Weighted
Sum

MCTS

Mixed
Strategy
MCTS

MO-
MCTS

% Victories 32.24
(0.67)

29.80
(0.66)

30.51
(0.66)

42.38
(0.70)

TABLE II
PERCENTAGE OF VICTORIES ACHIEVED ACROSS ALL GAMES IN THE

FIRST GVGAI COMPETITION SET.

of the local Pareto front P of the root. Then, the point with
the highest value is selected, and the action that leads to this
point is picked for execution in the real game.

V. EXPERIMENTS

The experiments were conducted in the 10 games shown
in Table I, for each one of the four agents described in the
previous section. Each game has been played in 5 different
levels, 100 times each, adding up to 500 plays per game and
agent2.

It is possible to analyze these results using two different
metrics: percentage of victories achieved and score average at
the end of the game. Regarding the percentage of victories, it
is worth highlighting the best results obtained by the winners
the two editions of the GVGAI competition3. The winner of
the 2014 edition, adrienctx, achieved 51.2% of victories in
the test set [3], while the best entry of the 2015 legs obtained
a final 45.8% of victories across 3 test sets. This is, therefore,
a far from solved problem where about half of the games
played are lost.

Figure 3 show the percentage of victories of all agents in
the 10 games tested. As can be seen, the best two agents are
Sample MCTS and MO-MCTS, always being one of these
two controllers the one that achieves the highest percentage
of victories on each game. MO-MCTS achieves a clearly
higher result in 5 games (Aliens, Frogs, Missile Command,
Portals and Zelda).

Table II shows the percentage of victories of all agents
across all games and, as can be seen, MO-MCTS achieves
the highest percentage of victories across the algorithms
compared. Sample MCTS is the second best algorithm in
this ranking, with Weighted Sum and Mixed Strategy MCTS
staying behind.

It is also interesting to analyze the results in some of
the games in particular. For instance, Aliens is a game that
has been traditionally well played by the Sample MCTS
agent, achieving close to 100% of victories on the 40ms
per tick setting of the official competition, which allowed
for an average close to 100 iterations per game cycle. As
Figure 3 shows, when the number of iterations is reduced
to 50, the performance of Sample MCTS drops, while MO-
MCTS is still achieving 99, 80%(0.20) of victories. Another
very impressive result is the one obtained in Frogs, which
has been a game that has posed many problems to MCTS

2Due to a high computational cost, some games haven’t reached 500
games after 2 weeks of experiments. The number of repetitions is indicated
in the first column of Table III

3www.gvgai.net
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Aliens Boulderdash Butterflies Chase Frogs Missile Command Portals Sokoban Survive Zombies Zelda
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Fig. 3. Percentage of victories (with std. error). Four approaches are compared per game. From left to right: Sample MCTS, Weighted Sum MCTS, Mixed
Strategy MCTS, MO-MCTS.

approaches. However, it seems that the MO-MCTS agent is
able to use the exploration heuristic wisely to find the goal
of the level in 86.40% (1.53) of the games played.

Not all games are favorable to MO-MCTS, however, and
in some cases it is possible that the excessive exploration is
actually a disadvantage. A good example could be Survive
Zombies, where one of the best strategies is to locate a spot
in the level safe from zombies. Exploring the level too much
may lead to find more enemies and therefore to lose the
game.

Regarding the score obtained by the different approaches,
Figures 4 and 5 show the average of scores achieved on
each game. Note that the range of typical scores varies
considerably between different games. According to this
metric, MO-MCTS obtains a higher score than the other
algorithms in 7/10 games, only beaten or matched by Sample
MCTS on the rest.

The numerical results for victories and scores can be
seen in Table III, which also includes standard errors and
indication of those results that are statistically significant.
As can be seen, MO-MCTS is significantly better in terms
of scores than all approaches in 7 games (non parametric
Wilcoxon signed-rank test with p-value < 0.05), and better
than Weighted Sum and Mixed Strategy in the other 2
(Sokoban and Chase).

Another interesting result is the fact that MO-MCTS
behaves clearly better, both in terms of victories and average
of scores, than the other two multi-objective approaches.
This seems to suggest that, although approaching general
video game playing as a multi-objective problem seems to
be a better choice in general, the way these objectives are
employed in the heuristics and in the search algorithm are
very relevant. In other words, Weighted-Sum and MO-MCTS
use exactly the same expressions for both objectives (see
Sections IV-B2 and IV-B3), but the former forms a single
value by combining them with weights, while the latter uses
both values to guide the search. It is very clear that the second
approach works better in this setting.

Finally, it is also worth mentioning that the Mixed Strategy
MCTS approach proposed here does not obtain results on
a par with the best two algorithms tried in this study.
Nevertheless, this does not mean that the results obtained
are not interesting. This agent spends 50% of its moves
only considering new places to move to, without taking into
account a maximization of the score. Note that this is the
only agent that completely ignores the score in half of its
moves: the other agents consider this value at every turn.

Taking this into account, it is worth noting, as seen in
Table III, that Mixed Strategy MCTS is (significantly) better
than Weighted-Sum MCTS in 2 games in terms of, precisely,
score; and similar in performance in the other 8 (never
worse). This could suggest that it is not necessary to keep a
permanent focus on maximizing score, and that in some cases
it could be even better to change targets completely. This
result reinforces the idea of mixed strategies for GVG, and
encourages further investigation on how to balance better (i.e.
more dynamically) the different objectives while playing.

VI. CONCLUSIONS

This paper compares, for the first time in the litera-
ture, several Multi-Objective approaches for General Video
Game Playing, performing experiments in 10 games from
the GVGAI framework. The algorithms proposed are the
Sample (single-objective) MCTS, and three variants of MO
approaches: weighted-sum, a mixed strategy and a Multi-
Objective MCTS (MO-MCTS) that builds Pareto fronts in
the nodes of the tree in order to take actions that lead to
non-dominated solutions.

One of the most interesting results found is that the MO-
MCTS algorithm obtains, on average, a higher percentage of
victories considering all games together, and a higher average
of scores than the other agents in most of them.

Additionally, it has been shown that the way several
objectives are combined does affect the quality of the results.
Even where two approaches (Weighted-Sum MCTS and MO-
MCTS) were using the same expression for both objectives,
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Fig. 4. Average of scores (with std. error). Four approaches are compared per game. From left to right: Sample MCTS, Weighted Sum MCTS, Mixed
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Fig. 5. Average of scores (with std. error). Four approaches are compared per game. From left to right: Sample MCTS, Weighted Sum MCTS, Mixed
Strategy MCTS, MO-MCTS.

the latter performed much better because of the way these
objectives are integrated into the nodes of the search tree. The
Mixed Strategy approach did not achieve the same results
that the best two agents found in this study did, but it was
able to obtain slightly better results than the weighted sum
agent with quite different approaches, suggesting that some
further investigation is needed in this respect.

The work performed in this paper opens several lines of
future work. First of all, it would be interesting to analyze
how changing the weights in the recommendation policy
affects the performance of MO-MCTS. Actually, varying
these weights dynamically in response to changes in the
environment seems to be a reasonable idea, both for MO-
MCTS and Mixed-Strategy MCTS. This would, of course,
open the challenge of finding objective adaptive heuristics for
General Video Game Playing. In fact, it is worth investigating
if a more involved selection of the heuristic that guides
the search in Mixed-Strategy MCTS lies better results. For
example, it would be fair to assume that a deeper exploration
is beneficial at the beginning of the game, or when new areas

of the levels are discovered.
Furthermore, other multi-Objective approaches can also

be considered. An idea is to use the Epsilon-Constrained
approach [14], that considers one of the objective functions
as a constraint (Oi < ε, in case of maximization) and only
the other function is subject to optimization. The value of ε
depends on the user-preferences and is a constant value. This
would allow to establish limits for certain objectives, which
could force the recommendation policy to select actions
that lead to more adequate points in the Pareto front of
the MO-MCTS tree root. Finally, the performance of other
algorithms, like a Rolling-Horizon version of NSGA-II [1],
could also be studied in general video game playing.
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