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3Departamento de Matemática e Estat́ıstica, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.

4Instituto de F́ısica, Universidade de São Paulo, São Paulo, SP, Brazil.

5Department of Mathematical Sciences, University of Essex, Wivenhoe Park, UK.

6Institute for Complex Systems and Mathematical Biology, Aberdeen, SUPA, UK.

Abstract

We study the capacity of Hodgkin-Huxley neuron in a network to change temporarily or permanently their connections
and behavior, the so called spike timing-dependent plasticity (STDP), as a function of their synchronous behavior. We
consider STDP of excitatory and inhibitory synapses driven by Hebbian rules. We show that the final state of networks
evolved by a STDP depend on the initial network configuration. Specifically, an initial all-to-all topology envolves to
a complex topology. Moreover, external perturbations can induce co-existence of clusters, those whose neurons are
synchronous and those whose neurons are desynchronous. This work reveals that STDP based on Hebbian rules leads
to a change in the direction of the synapses between high and low frequency neurons, and therefore, Hebbian learning
can be explained in terms of preferential attachment between these two diverse communities of neurons, those with
low-frequency spiking neurons, and those with higher-frequency spiking neurons.
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PACS: 87.10Hk, 87.19.lj, 87.19.lw

1. Introduction

Neuroplasticity, also known as brain plasticity or brain
malleability (Strong et al., 1998; Brenner et al., 2000),
refers to the ability of the brain to reorganize neural path-
ways in response to new information, environment, devel-
opment, sensory stimulation, or damage (Draganski et al.,
2004; James, 1890; Lashley, 1923). The term neuroplas-
ticity was firstly introduced in 1948 by neuroscientist J.
Konorski in a work (Konorski, 1948) that showed the asso-
ciative learning as a result of the adaptation of the brain to
external stimuli. In 1949, D. O. Hebb, in his book entitled
“The Organization of Behavior” (Hebb, 1949), proposed a
plasticity rule, today known as Hebb’s rule.

Scientific advances in neuroimaging and in noninvasive
brain stimulation have provided insights to understand
better neuroplasticity. Learning-induced structural alter-
ations in gray and white matter have been documented
in human brain (Dayan & Cohen, 2011). Draganski and
collaborators (Draganski et al., 2004) used whole-brain
magnetic-resonance imaging to observe learning-induced
neuroplasticity. They verified structural changes in areas
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of the brain associated with the processing and storage
of complex visual motion. Lu and collaborators (Lu et
al., 2003) demonstrated that neuroplasticity is affected by
environmental stimuli. In addition, neuroimaging studies
have showed alterations of neuroplasticity in depression,
namely depressive disorder may be associated with im-
pairment of neuroplasticity (Fuchs et al., 2004).

Aiming at understanding the fundamental mechanisms
behind plasticity, Popovych and collaborators studied the
effect of noise on synchronous behavior in globally-coupled
spiking Hodgkin-Huxley neurons with spike timing-depen-
dent plasticity (STDP) and excitatory synapses (Popovych
et al., 2013; Borges et al., 2016). STDP networks have
nodes that adapt their synaptic strength according to some
rule based on their spike timings (Gilson et al., 2010; Mar-
kram et al., 2011; Markram et al., 2012). Abarbanel and
Talathi (Abarbanel & Talathi, 2006) studied a neural cir-
cuit responsible for recognizing interspike interval sequen-
ces by means of STDP of inhibitory synapses. Similar re-
sults, though using different kinds of neural models, have
been reported earlier by Kalitzin and collaborators (Kalit-
zin et al., 2000), where it was shown that coherent input
can enhance synapses inducing high connectivity, whereas
mutually anti-correlated inputs to individual neurons wea-
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kens connectivity. On the contrary, the work in (Popovych
et al., 2013) however shows that a fully uncorrelated input
can enhance connectivity. Sadeh and collaborators (Sadeh
et al., 2015) studied the emergence of functionally specific
connectivity in the visual cortex with Hebbian plasticity
based on visual experience. They showed that plasticity
can lead to functionally specific and stable connections
in random networks composed of leaky integrate-and-fire
neurons. In our work, we focus the attention on the net-
work dependence on plasticity. To do that, we consider an
initial all-to-all topology and focus on the changes in syn-
chronous and non synchronous states caused in a Hodgkin-
Huxley neural network with excitatory (eSTDP) and in-
hibitory synapses (iSTDP).

Neural spike synchronization is responsible for informa-
tion transfer (Antonopoulos et al., 2015; Baptista et al.,
2016), and can be associated with forms of dysfunction.
For instance, abnormally synchronized oscillatory activity
has been reported in Parkinson’s disease (Hammond et al.,
2007), epilepsy (Uhlhaas & Singer, 2006) and some other
neurological disorders. Synchronous behavior was analised
in systems of synfire chains to solve binding problems. It
was verified that dynamics of binding may be modeled by
competitive synchronization among synfire chains (Abeles
et al., 2004; Hayon & Lehmann, 2005). Moreover, synfire
chains have been considered to describe information trans-
fer phenomena and coherent spiking (Wang et al., 2016).

Our main goal is to show that spike timing-dependent
plasticity of excitatory and inhibitory synapses induces
non-trivial topologies in the plastic brain. Initial networks
of neurons fully connected, evolve to a non trivial com-
plex network. Consequently, this non-trivial topology al-
ters the synchronous behavior. In our results, we have
observed for some parameter conditions not only the im-
provement of neural spiking synchronization, but also for
other parameter conditions that promote desynchroniza-
tion. We have also observed concurrent synchronous and
non synchronous behavior in the neurons of a network con-
structed for a particular set of parameters. Therefore, the
onset of synchronicity comes along side with desynchronic-
ity in the plastic brain. This balance between different
synchronous behaviors is vital to maintain a fundamental
property of a brain network. Clusters need to be suffi-
ciently synchronous for information to be efficiently ex-
changed, but at the same time sufficiently desynchronous
to behave independently. Finally, we show that when there
is an external perturbation, the plastic neural network has
an abrupt change in behavior characterized by a first-order
transition.

This paper is organized as follows: In Section II we in-
troduce the neural network described by coupled Hodgkin-
Huxley neural model. In Section III, we discuss our re-
sults about neural synchronization considering eSTDP and
iSTDP. In the last Section, we draw our conclusions.

2. Neural network

In this work, we focus on eSTDP and iSTDP based
on Hebbian theory proposed in Ref. (Hebb, 1949). These
plastic mechanisms consist of synapses that become stron-
ger or weaker depending on the pre and postsynaptic neu-
rons’ activity. We have considered an initial network with
a global coupling, with chemical synapses where the con-
nections are unidirectional, and the local dynamics is de-
scribed by the Hodgkin-Huxley model (Izhikevich, 2004;
Hodgkin & Huxley, 1952). The system is given by

CV̇i = Ii − gKn4
i (Vi − EK)− gNam

3
i hi(Vi − ENa)

−gL(Vi − EL) +
(V Exc

r − Vi)
ωExc

NExc∑

j=1

εijsj

+
(V Inhib

r − Vi)
ωInhib

NInhib∑

j=1

σijsj + Γi, (1)

ṅi = αni(Vi)(1− ni)− βni(Vi)ni, (2)
ṁi = αmi(Vi)(1 −mi)− βmi(Vi)mi, (3)
ḣi = αhi(Vi)(1 − hi)− βhi(Vi)hi, (4)

where C is the membrane capacitance (µF/cm2), Vi is the
membrane potential (mV) of neuron i (i = 1, ..., N), Ii is a
constant current density randomly distributed in the inter-
val [9.0, 10.0], ωExc (excitatory) and ωInhib (inhibitory) are
the average degree connectivities, εij and σij are the ex-
citatory and inhibitory coupling strengths from the presy-
naptic neuron j to the postsynaptic neuron i (Gray, 1959).
The εij values are in the interval [0, 0.5] and the σij values
are in the interval [0, 2σM ]. In our simulations, the max-
imum value for εij is equal to 0.5 according to Reference
(Popovych et al., 2013), and we consider the maximum
value for σM equal to 0.75 due to the fact that for σij < 1.5
we observe a transition from synchronized to desynchro-
nized states. In addition, we have discarded a transient of
1.95×106ms. We consider that 80% of the neurons are ex-
citatorily coupled (NExc) and 20% of them are inhibitorily
coupled (NInhib) according to anatomical estimates for the
neocortex (Noback et al., 2005). Both populations receive
input from all other neurons in own population and from
the other population. We also consider an external pertur-
bation Γi, so that each neuron randomly chosen receives
an input with a constant intensity γ = 10µA/cm2 during
1ms. In each time step tstep = 0.01ms a random input
with amplitude γ is applied to each neuron with a proba-
bility equal to tstep/14, where 14ms approximately corre-
sponds to the inter-spike interval of the Hodgkin-Huxley
neuron. Functions m(Vi) and n(Vi) represent the activa-
tion for sodium and potassium, respectively, and h(Vi) is
the function for the inactivation of sodium. Functions αn,
βn, αm, βm, αh, βn are given by

αn(v) =
0.01v + 0.55

1− exp (−0.1v − 5.5)
, (5)

βn(v) = 0.125 exp
(−v − 65

80

)
, (6)
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αm(v) =
0.1v + 4

1− exp (−0.1v − 4)
, (7)

βm(v) = 4 exp
(−v − 65

18

)
, (8)

αh(v) = 0.07 exp
(−v − 65

20

)
, (9)

βh(v) =
1

1 + exp (−0.1v − 3.5)
, (10)

where v = V/[mV ]. Parameter g is the conductance and
E the reversal potentials for each ion. Depending on the
value of the external current density Ii (µA/cm2) the neu-
ron can present single spike activity or periodic spikings.
In the case of periodic spikes, if the constant Ii increases,
the spiking frequency also increases. In this work, we con-
sider C = 1 µF/cm2, ENa = 50mV, EK = −77 mV,
EL = −54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2,
gL = 0.3 mS/cm2. The neurons are excitatorily coupled
with a reversal potential V Exc

r = 20mV, and inhibitorily
coupled with a reversal potential V Inhib

r = −75mV. The
presynaptic potential si is given by (Destexhe et al., 1994;
Golomb & Rinzel, 1993)

dsi

dt
=

5(1− si)
1 + exp

(
− vi+3

8

) − si, (11)

where vi = Vi/[mV ].
One of the key principles of behavioral neuroscience

is that experience can modify the brain structure, what
is known as neuroplasticity (Ramon Y Cajal, 1928). Al-
though the idea that experience may modify the brain
structure can probably be traced back to the 1890s (Bliss
& Gardner-Medwin, 1973; Bliss & Collingridge, 1993), it
was Hebb who made this a central feature in his neuropsy-
chological theory (Hebb, 1961). With this in mind, we
consider excitatory and inhibitory spike timing-dependent
plasticity according to the Hebbian rule. The coupling
strengths εij and σij are adjusted based on the relative
timing between the spikes of presynaptic and postsynap-
tic neurons (Bi & Poo, 1998; Haas et al., 2006).

The plasticity dynamics can be mathematically defined
as

d∆ε(t)
dt

= f(∆ε, V, t), (12)

where ∆ε is the update value of the synaptic weight. Kalit-
zin and collaborators (Kalitzin et al., 2000) considered a
function f that depends on the activation of the synapse,
the transmembrane potential of the postsynaptic neuron,
and the thresholds for switching on long-term potentia-
tion and the long-term depression (Artola et al., 1990).
In this work, we consider a linear function f of the form
f(∆ε, t) = (a + c/t)∆ε. The solution to the differential
equation, Eq. (12), is given by ∆ε = btc exp(at), where
a, b and c are constants. For c = 0 and c 6= 0, eSTDP
and iSTDP are obtained, respectively. The plasticity dy-
namics introduced by means of this linear function is not

fundamentally related to physiological processes (Artola
et al., 1990), but, by means of this function it is possible
to find a fit that describes experimental results of eSTDP
and iSTDP obtained in Refs. (Bi & Poo, 1998) and (Haas
et al., 2006).
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Figure 1: (Color online) Plasticity as a function of the difference of
spike timing of post and presynaptic (a) excitatory (eSTDP) and (b)
inhibitory (iSTDP) synapse. The insets show the absolute value of
the plasticity function.

The excitatory eSTDP is given by

∆εij =
{
A1 exp(−∆tij/τ1) , ∆tij ≥ 0
−A2 exp(∆tij/τ2) , ∆tij < 0 , (13)

where ∆tij = ti − tj = tpos − tpre, tpre is the spike time of
the presynaptic and tpos the spike time of the postsynaptic
neuron. Figure 1(a) exhibits the result obtained from Eq.
(13) for A1 = 1.0, A2 = 0.5, τ1 = 1.8ms, and τ2 = 6.0ms.
The initial synaptic weights εij are normally distributed
with mean and standard deviation equal to εM = 0.25 and
0.02, respectively (0 ≤ εij ≤ 2εM ). Then, they are up-
dated according to Eq. (13), where εij → εij + 10−3∆εij .
The insets in Fig. 1 show the absolute value of the plastic-
ity function, where the red and black lines are the potenti-
ation and depression values, respectively, as a function of
∆tij . The green dashed line in the inset Figures denotes
the ∆tij value at wich the curves of potentiation and de-
pression intersect. The inset in Fig. 1(a) shows that for
|∆tij | < 1.8ms the potentiation of εij is bigger than the
depression. Whereas in the case of iSTDP (inset in Fig.
1(b)) the potentiation of σij is bigger than the depression
for |∆tij | > 9.8ms.
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For the inhibitory iSTDP synapses, the coupling stren-
gth σij is adjusted based on the equation

∆σij =
g0

gnorm
αβ |∆tij |∆tijβ−1 exp(−α|∆tij |), (14)

where g0 is the scaling factor accounting for the amount of
change in inhibitory conductance induced by the synaptic
plasticity rule, and gnorm = ββ exp(−β) is the normalizing
constant. Figure 1(b) exhibits the result obtained from
Eq. (14) for g0 = 0.02, β = 10.0, α = 0.94 if ∆tij > 0,
and for α = 1.1 if ∆tij < 0 (Talathi et al., 2008). As
a consequence, ∆σij > 0 for ∆tij > 0, and ∆σij < 0
for ∆tij < 0. The initial inhibitory synaptic weights σij

are normally distributed with mean and standard devia-
tion equal to σM and 0.02, respectively (0 ≤ σij ≤ 2σM ).
Then, the coupling strengths are updated according to Eq.
(14), where σij → σij +10−3∆σij . The updates for εij and
σij are applied for the last postsynaptic spike.

3. Spiking neuron synchronization

To study the effect of plasticity on the neural network,
we have calculated the coupling strengths, and used the
time-average order-parameter as a probe of spike synchro-
nization, a quantity expressed by

R =
1

tfinal − tinitial

tfinal∑

tinitial

∣∣∣∣∣∣
1
N

N∑

j=1

exp(iψj)

∣∣∣∣∣∣
, (15)

where tfinal − tinitial is the time window for our estimation
and the phases are calculated by

ψj(t) = m+
t− tj,m

tj,m+1 − tj,m
, (16)

where tj,m represents the time when a spike m (m =
0, 1, 2, . . .) in neuron j occurs (tj,m < t < tj,m+1), with the
beginning of each spike being when Vj > 0. In synchronous
behavior, the order-parameter magnitude approaches uni-
ty. In addition, if the spike times are uncorrelated, the
order-parameter magnitude is typically small and vanishes
for N →∞. When identical neurons are coupled, the neu-
ral network may exhibit complete synchronization among
spiking neurons, in other words, all other neurons may
present identical time evolution of their action potentials.
In this work, we are not considering identical neurons, and
as result it is not possible to observe complete synchroniza-
tion. However, an almost-complete synchronization may
be observed.

Figure 2(a) shows the mean order-parameter (R̄) that
is calculated for different initial conditions, as a function of
the inhibitory coupling strength σM for a neural network
with excitatory and inhibitory synapses, where we consider
one case without STDP (black circles) and another with
STDP (red triangles). For εM equal to 0.25 and varying
σM , we do not observe a significant alteration of the R̄
value without STDP, due to the fact that initially the net-
work has an all-to-all topology. Nevertheless, considering
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Figure 2: (Color online) (a) Mean order-parameter R̄ versus σM for
γ = 0.0 and εM = 0.25, a result without STDP (black circles) and
the other one with STDP (red triangles). The bar is the standard
deviation for 30 different initial conditions. In the inset we consider
σM = 0.675. Panels (b) and (c) exhibit the time evolution of the
average time-difference for excitatory and inhibitory connections, re-
spectively. The black and red lines , for σM = 0.675, correspond
to R̄ ≈ 0.1 and R̄ ≈ 1, respectively. The green line represents the
separation between potentiation and depression.

STDP we verify that the R̄ values decrease with the in-
crease of σM and present a large standard deviation. This
standard deviation occurs due to the existence of different
synchronization states. Then, both the upper border of the
inhibitory coupling 2σ and the different initial conditions
are important to change the dynamics of the network with
STDP and without external perturbation. This is verified
by means of the decay of the R values and the large stan-
dard deviation bar. In the inset (Fig. 2(a)), we consider
σM = 0.675 and calculate the order-parameter for differ-
ent initial conditions. As a result, we can see a distribu-
tion presenting different synchronization states, including
desynchronization and synchronization. In Figs. 2(b) and
2(c) we consider σM = 0.675 according to the inset, and
calculate the time evolution of the average time-difference
for excitatory and inhibitory connections,

∆̄tExc
ij =

1
τ

∑

i6=j

|tExc
pre − tpos|, (17)

∆̄tInhib
ij =

1
τ

∑

i6=j

|tInhib
pre − tpos|, (18)

respectively, for different configurations of the initial net-
works and τ = 100ms. The black line shows the case in
which the network goes to a desynchronized state (R̄ ≈
0.1), whereas the red line exhibits the case of a network
that presents synchronous behavior (R̄ ≈ 1). In both
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cases, we consider the same parameters, except the seed to
generate the random distribution of the constant current
density Ii. Through Figures 2(b) and 2(c) it is possible
to verify why and when the coupling matrix suffer sub-
stantial changes. The transition occurs when the black
or red curves cross the green line. At this time, depreci-
ation induces weak strength in the coupling matrix, and
potentiation induces strong strength.

Figure 3 exhibits the time courses of the mean exci-
tatory (Fig. 3(a)) and inhibitory (Fig. 3(b)) coupling
strengths from the multiple coexisting regimes that are
shown in Figure 2(a). We see that for σM = 0.25 both ε̄ij

and σ̄ij have constant values for the time approximately
greater than 700s, and the learning produces a triangular-
type connecting matrix (as shown in Fig. 4), meaning that
the connections among all neurons become preferentially
directed. For σM = 0.5 the ε̄ij values decrease to approxi-
mately 0.15, while σ̄ij values oscillate about 0.25, and the
coupling matrix becomes partitioned, indicating the exis-
tence of larger clusters. Increasing the upper border σM

to 0.75 both ε̄ij and σ̄ij tend to 0, and the coupling matrix
becomes sparse.
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Figure 3: (Color online) Time courses of the mean (a) excitatory
and (b) inhibitory coupling strengths from some regimes showed in
Figure 2(a).

In Fig. 4, the synaptic weights εij and σij are encoded
in color for γ = 0.0, εM = 0.25, and σM = 0.675, where
we choose values of the parameters that provide the cases
for (a) R̄ ≈ 0.1 and (b) R̄ ≈ 1 according to the inset in
Fig. 2(a). The synaptic weights are suppressed in the
desynchronized regime (Fig. 4(a)), and consequently the
coupling matrix presents a small number of connections.
This behavior can be verified by means of the black lines
in Figs. 2(b) and 2(c). In addition, the synaptic weights
are potentiated (red lines in Figs. 2(b) and 2(c)) in the
synchronized regime (Fig. 4(b)), and the coupling matrix
exhibits a triangular shape. We have verified that, in this

Figure 4: (Color online) Coupling matrix for γ = 0.0, εM = 0.25,
and σM = 0.675, where we choose values for parameters to provide
the cases for (a) R̄ ≈ 0.1 showing many uncoupled neurons, and (b)
R̄ ≈ 1 exhibiting many directed couplings, according to the inset
in Fig. 2(a). The synaptic weights are encoded in color, where the
maximum value for εij (yellow) is 0.5 and the maximum value for
σij (blue) is 1.36. The neurons are ordered according to Ii ≤ Ij for
i < j.

case, the synchronous behavior has a dependence on the
direction of synapses. In other words, when the presy-
naptic neurons are excitatory the synapses from the high
frequency to the low frequency neurons become stronger.
When the presynaptic neurons are inhibitory, the synapses
from the low frequency to the high frequency neurons be-
come stronger.

Figure 4 shows the final topologies for two networks
initially set with a global coupling topologies after being
evolved by a STDP proccess. We see that the STDP in-
duces a non-trivial topology in the network resulting in
networks sparsely connected, moderately connected (Fig.
4(a)), or densely connected with strong preferential attach-
ment (Fig. 4(b)).

Considering an external perturbation (Γi > 0), we also
study the cases without and with plasticity. In the case
without STDP, we verify that the mean order-parameter
has a small decay when σM increases, as shown in Fig.
5(a) with black circles. The red triangles represent the
case with STDP, and unlike the case without perturba-
tion (Fig. 2(a)), there is an abrupt transition (blue trian-
gles), due to a first-order transition in the average order
parameter. First-order transition is a term that comes
from Thermodynamics and here represents a discontinu-
ity of the mean order-parameter function with respect to
the inhibitory coupling strength. In this case, the upper
border of the inhibitory coupling is relevant to produce
alteration in the dynamics, while the different initial con-
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ditions are important only at the transition. Based on the
results in the inset (Fig. 5(a)), we verify that the net-
work in the transtition can be either in one of the states:
(i) high R̄ with potentiation of the average-time difference
for excitatory and inhibitory connections (red lines in Figs.
5(b) and 5(c)), or (ii) low R̄ with excitatory average time-
difference in the depression region and inhibitory in the
potentiation region (black lines).

The transition from the synchronized to the desynchro-
nized states was reported in studies on how stimulation
impact on neurological disorders induced by an abnormal
neuronal synchronization (Tass & Majtanik, 2006; Popo-
vych & Tass, 2012). A first order transition was also ob-
served in (Popovych et al., 2013) when the stimulation
intensity varies in a neural network with eSTDP. In our
simulations, we observe the transition to desynchroniza-
tion caused by a variation in the inhibitory coupling in
neural networks with both eSTDP and iSTDP.
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Figure 5: (Color online) (a) Mean order-parameter versus σM for
γ = 10.0 µA/cm2, εM = 0.25, a result without STDP (black circles)
and another one with STDP (red triangles). Inset plot for σM =
0.575 (blue triangles) and 30 values of R, where each R is calculated
from a different initial configuration. Figures (b) and (c) exhibit
the time evolution of the average time-difference for excitatory and
inhibitory connections, respectively, where σM is equal to 0.575. The
black and red lines correspond to R̄ ≈ 0.1 and R̄ ≈ 0.8, respectively.
The green dash represents the separation between potentiation and
depression.

Figure 6 illustrates the coupling matrix for the two
states of the first-order transition. In Fig. 6(a), we can
see the coupling configuration that corresponds to high R̄.
The network presents high connectivity, and for this reason
it is possible to observe synchronous behavior. For the case
of low R̄, we verify that the network has only connections
from neurons belonging to the inhibitory population to any
other neuron, as shown in Fig. 6(b).

Figure 6: (Color online) Coupling matrix for γ = 10.0 µA/cm2,
εM = 0.25. (a) σM = 0.55 (R̄ ≈ 1) showing a large quantity of
coupled neurons, and (b) σM = 0.6 (R̄ ≈ 0.1) exhibiting connections
from inhibithory to excitatory neurons. The synaptic weights are
encoded in color, where the maximum value for εij (yellow) is 0.5,
the maximum value for σij (blue) is 1.1 in (a) and 1.2 in (b). The
neurons are ordered according to Ii ≤ Ij for i < j.

4. Conclusion

In conclusion, we have studied the effects of spike tim-
ing-dependent plasticity on the synchronous behavior and
the evolved connecting topology of neural networks con-
structed with Hodgkin-Huxley neurons. In our simula-
tions, we considered parameter values for the Hodgkin-
Huxley system and STDP according to experimental val-
ues found in the neuroscience literature (Bi & Poo, 1998;
Haas et al., 2006). Regarding the evolved topology, our
main conclusion is that learning under a STDP results
in evolved networks that present complex topology. Con-
cerning the dynamic synchronous behavior of the evolved
networks, we observe that the studied networks exhibit
concurrent synchronous and non synchronous states with
characteristics that depend on both the upper border of
the inhibitory coupling and the initial conditions. Specif-
ically, we verify that the main role of the inhibitory con-
nections is to produce a delay in the spiking time of the
postsynaptic neurons. As a consequence, the increase of
the inhibitory coupling strength can suppress synchronous
behavior, which contributes to a decrease in the mean or-
der parameter. Moreover, the transition from low to a
high synchronous state is smooth by alterations of the in-
hibitory synapses. When a random external perturbation
is introduced in the network, this transition becomes dis-
continuous, i.e., we observe a first-order transition. Sim-
ilarly to the non-perturbed network, we also find coexis-
tence of synchronous and non-synchronous neurons in the
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perturbed networks.
In future works, we plan to study synchronous states in

the brain considering plasticity dynamics in terms of the
thresholds for switching on the long-term potentiation and
the long-term depression. We also plan to investigate how
the final behavior of the network depends on the initial
population of excitatory neuron.
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