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Abstract 

This paper presents the controller synthesis for an unmanned helicopter with minimum initial information about the param-

eters of its mathematical model with time-delays of measured and control signals. The unknown parameters, wind disturb-

ances, and system nonlinearity are considered as external disturbances that are estimated using a multi-gap observer. The 

estimates obtained are used in the control law to improve the stability rate for flight regimes. 

 

Keywords: unnamed helicopter, control law, time-delay, external disturbances, disturbances 

compensation, observers, uncertain. 

 

Nomenclature 

,s sa b  - Longitudinal and lateral flapping angle of main rotor ( rad ); 

g   - Local acceleration of gravity ( 2/ sm ); 

, ,p q r  - Vehicle roll, pitch and yaw rates ( deg/ s ); 

, ,u v w  - Longitudinal, lateral and normal velocity components of vehicle C.G. ( / sm ); 

W
 
- Wind actions in the body coordinate system ( / sm ); 

, ,x y z  - Vehicle position coordinates in local north-east-down frame ( m ); 

col , ped  - Normalized collective pitch and rudder servo input [−1, 1]; 

lon , lat  - Normalized elevator and aileron servo input [−1, 1]; 

ped,int  - Intermediate state in yaw rate feedback controller dynamics ( rad ); 

, ,    - Vehicle pitch, roll and yaw angles ( deg ); 

  – Deviation from the trim values. 

 

Introduction 

Influences of measurement time-delays, control forming time, and delays in actu-

ators response must be accounted when designing the helicopter digital Automatic Con-

trol System.  



Loss of helicopter control effectiveness and handing degradation are possible if 

these delays are not taken into account [1]. Consequenly, the control laws must be ro-

bust in relation to delays and modified to allow for their presence.  

Many works are nowadays published on this problem and the most popular are 

methods based on predictive control [2]. Careful analysis of these methods and their 

modifications show that they all use, in an implicit or explicit manner, predictions of the 

system state to achieve its control. A common drawback of these methods is linked to 

internal instabilities of the prediction, is that they fail to stabilize unstable systems [3].  

In recent years, there has been a significant increase of research works dedicated 

to the study of small-size helicopters. This is due to their availability, low cost, and 

some dynamic similarities with full-size helicopters. In [4], for example, the predictive 

state controller based on LQ optimal control is developed for the yaw axis of a tethered 

helicopter with 1-DOF. A predictive control model for a small-size helicopter, taking 

into account time-delays actuators and main rotor aerodynamics, is presented in [5]. The 

developed controller has tested in flight conditions using a 6-DOF helicopter rig. For the 

inner control loop, a P-controller was used and for outer  a PID-controller. Experimental 

results showed good  performance of the controllers. 

The main time-delay when using a visual system for helicopter control is linked 

to image processing, and in [6] an example is shown of a quad-rotor mini-helicopter 

where on-board cameras are used to detect the vehicle’s position. The image processing 

is introducing a time-delay. To calculate the control using a nonlinear algorithm based 

on derived dynamic model. A similar work is presented in [7], where for reducing the 

influence of the time-delay  a  Kalman filter is used. 

Like several works, related to the unnamed “Raptor” helicopter, this platform is 

used in this paper. The problem of controller synthesis for unmanned helicopters with 

minimum initial information about their parameters of mathematical models, for cases 

with time-delays of the measured and control signals, and under wind disturbances is 

considered. 



Problem Statement 

The unmanned Raptor helicopter is used in this work. Its non-linear mathematical 

model and its parameters are presented in [8, 9]. As shown in [10], to simplify the pro-

cedure of the navigational controller design, its dynamics equations are presented in the 

following form: 

 

 1 3 2( )x R X x , (1) 

 2 1 31 1 1( )x B X u f  , (2) 

 1

3 32 4( )x S X x , (3) 

 4 2 5 2x A x f  , (4) 

 5 2 2 3x B u f  , (5) 

Where: *

1 2 3 4 5

T
T T T T Tx X X x x x x x      , X  is the n -order state vector, 

* * * * *

0 0 0 0 0 0 0 0 0 0 0
T

s sX x y z a b      is the initial and trimming parameters vector, 

 1

T
x x y z    ,  2

T
x u v w ,  3

T
x      ,  4

T
x q p r , 

5 ped,int

T

s sx a b      ; 

*

lon lat ped colu
T

U U             , 
lon lat ped col

T

U         are the control signals vector, 

each of which lies in the range from -1 to 1 [8], *U  is the trimming parameters vectors;  

*

3 3 3X X x  , *

31X    , *

32 32 32X X x  ,  32

T
x     ; 

1 1

T
T

colu u     ,  1 sin sin
T

u    

is the virtual control for the outer loop to move the helicopter relative to the earth coor-

dinate system [10]; 
2 lon lat ped

T

u         ; if  ( 1,3i  ) are vectors of specified 

disturbances derived from the original equations after isolation of the terms 1 31 1( )B X u , 

2 5A x , 2 2B u , where  1 31 1( ) , cos ,B X diag g g b  , 1b  is a model parameter; 2A , 2B  are diago-

nal matrices of the model parameter;  3R X  and  32S X  are the rotation and kinematic 

transformations matrices respectively.  

We suppose that vectors ix  ( 1,4i  ) are available to measure discrete moments in 

time it , 0,1,2,...i   with noise v , which is limited in amplitude. A measurement of the 

vector (1)

1 2

T
T Ty x x     is performed with sampling period 0 1i iT t t   of time-delay: 



        (1) (1)

1 1 2 1 1

T
T T

i i i iy t x t x t v t  
    .  

Significant measurement delays  iy t  there occur, for example, when the optical 

sensors are used. They require significant time for processing by a  video-controller. 

Assume the controller output is fed to the actuator with a time-delay correspond-

ing to the sampling period. 

The problem of developing a robust discrete-time controller is posed for the sys-

tem (1)-(5). The controller must stabilize the helicopter’s motion under wind disturb-

ances. 

To achieve the desired control quality, it is necessary to provide compensation for 

the specified disturbances if  ( 1,3i  ). However, as follows from equations (1)-(5), one 

cannot realize the full compensation of the disturbances 1f  and 2f . Therefore, the con-

trol law is constructed so that it suppresses the specified disturbances which affect the 

dynamics of the state vectors ix  ( 1,3i  ). To do this, an observer is used to construct es-

timates of the specified disturbances. 

State observers and disturbances synthesis 

Let us consider the state vector, and a disturbance estimation method with time-

delay of the measured signals, separately, for each subsystem. 

1. The first subsystem (1), (2) can be rewritten: 

 
 (1) (1) (1)

6 3(1) (1)

1 1

33 6 3 3

0
w

0 0 0

A D B t
x x u

I





     
       

    
, (6) 

where (1)

1 2 1w
T

T T Tx x x    ,   2 3 2x R X t x  are calculated results using measurements, 

      1 3 1 3 2w
d

R X t f R X t x
dt

   are generalized disturbances; 3 3(1)

3 3

0

0 0

I
A

 
  
 

, 3(1)

3

0
D

I

 
  
 

, 

 
 

3(1)

(1)

1

0
B t

B t

 
  
 

,        (1)

1 3 1 31B t R X t B X t . 

Then, taking into account the approximation on the time interval 1i it t t   : 

 1 1( ) ( )iu t u t , 1 1w ( ) w ( )it t ,    (1) (1)

1 1 iB t B t , (7) 

for the subsystem (6) the obtained discrete model is: 



 
       

     

(1) (1) (1)

1 1 1

(1) (1) (1)

1 1

w ( ) ( ),

,

i i i i i i

i i i

x t Ax t B t u t D t w t

y t Cx t v t



 

   

 
 (8) 

where 
3 6 30

d dA D
A

I

 
  
 

,    (1)

1

30

d

i i

B
B t B t

 
  
 

, 
3

0 3/ 6

d

T I
D

B

 
  
 

, 3 0 3

3 30
d

I T I
A

I

 
  
 

, 
2

0 3

0 3

0.5
d

T I
B

T I

 
  
 

, 

d dD B ,  0 30lC C  , l  is the number of measured states; in the disturbance vector (1)w  

approximation error is counted (7). In this case, there are various types of the output 

coordinates measurements: 0 6C I  when changing the vectors 1x  and 2x , using a GPS 

system and airspeed-measuring sensors, for example;  0 3 30C I  is when the 

measurement 2x  is not conducted;  0 3 30C I  – when the measurement 1x  is not 

conducted. 

For estimating the disturbances 1w ( )it  discrete analog of continuous observers can 

be used, as proposed in reference [10]. However, the delay of the measured signals (6) 

increases the estimate error. In this regard, a multi-gap observer can be  used, consisting 

of two observers.  

For the subsystem (8), using first observer  

             (1) (1) (1) (1)

1 1 1 1 1i i i i i ix t Ax t B t u t HL y t Cx t       , (9) 

and finding the estimates      (1) (1)

6 6 30i iy t I x t  and      (1) (1)

3 3 30 0i iw t I x t , that are 

used in the second observer we have:  

                 (1) (1) (1) (1) (1)

1 1 6 6 3
ˆ ˆ ˆ0i i i i i i ix t Ax t B t u t Dw t HL y t I x t      . (10) 

The final disturbance estimation is calculated by:  

        (1) (1)

1 3 3 3
ˆ ˆw 0 0i i it w t I x t  , (11) 

where H MH ,  1

6 3,M diag I I  , 6 6 3

3

0

d

I
H

D I





 
  
 

,  
1

T T

d d d dD D D D


  ,   – is a tunning 

parameter; L , L  are the unknown required gain matrices;    (1) (1)

1 0
ˆ 0x t x t   .  

Thus, using the observer (9) the state vector and distribution estimates are re-

ceived, and after using the observer (10) the corrections are performed. 

To determine the matrix L, the method proposed in [11] can be used. First, we ac-

cept that 9H I . Thus if the limiting action    
11 1 ww wT

i it t Q ,    (1) (1)T

i i vv t v t Q  (where 



wQ , vQ , are determined positive definite matrices) and stability conditions are applied 

then for systems (8) and (9) the estimate          (1) (1) (1) (1)
T

i i i ix t x t x t x t X    will be 

correct. In this case the matrix X  is satisfies for the matrix inequality: 

 
   

       
11 2 3

1 1

1 1 2 2 1 2 3 2 1 2

0

1 1 , 1 1 , 1 , 0, 0.

T T T

w vX A LC X A LC DQ D LQ L  

          

     

         
 (12) 

In [12] that the parameter 1  is linked with the damping time nt  of the transient 

processes of the system (9) by the equation
0 13 / lnnt T  . So, if we set the parameter 1  

using the notation 1X X  , Y XL , and the Shura lemma then (12) can be rewritten in 

the equivalent form: 

 

 
1

1

1

1 1

1 1

1 1

1 1 1

0 0
0

0 0

0 0 1

T T T

T

w

T

v

X XA YC XD Y

A X C Y X

D X Q

Y Q



 

  



 

 

 
 
  
 
 

  

, 0X  , 1 0  . (13) 

We must find a matrix L  which allows to obtain a minimal sum of the diagonal 

matrix X  elements and a necessary decay time of step response nt . 

Here, the following statement is put forward: 

Statement 1. To determine a matrix L  in (8) considering the damping time nt  of 

transient processes it is sufficient to solve:  

  tr maxX    

with  01 exp 6 / nT t   and limits (13) for the matrix variables X , Y . Then the matrix 

is 1L X Y . 

For the found matrix L  is necessary to provide the stability of the matrix A HLC , 

by selecting the parameter   using the best disturbances estimate 1w .  

The matrix L  is defined similar to the observer (10).  

Note that  unlike [13], irregular estimation of disturbances is considered here. In 

particular, the measurement interferences are independent of the disturbance. 

If the corrected estimate of the vector    (1)

6 6 3
ˆ0 iI x t  is not required, then the re-

duced-order observer can be used instead the observer (10) as in [10]: 



 
              

       

(1) (1)

1 1

(1) (1)

1

,

ŵ ,

i i d i d i i i

i i i i

t P t PG GA y t GD B t u t w t

t t Gy t w t

  

 

     

  
  

where 3 dP I GD  ,  1 1

2 1dG D L L     , gain of the   , which can be 0  or 1 , in depend of 

estimation type. 

Similarly, the subsystem (3)-(5) can be rewritten in following form: 

 

 

3 4

4 5

1 (2)

5 32 2 2

;

;

w ,

x x

x x

x S X B u





 

 

where  1

4 32 4x S X x , 5x  is the auxiliary vector, 2w  is the generalized disturbances; 

 (2)

2 2 2 3 4, ,B A B diag b b b  , ib , 2,4i   is the model parameters. Here, measurement of the 

vectors is carried 3x , 4x  and vector calculates 4x  at discrete time moments without time-

delay, but with sampling period significantly less than in the first subsystem. Therefore, 

to construct estimates of the vectors 
5x̂  and 2ŵ  an observer of the form: 

             (2) (2) (2) (2)

1 2
ˆ ˆ ˆ

i i i i i ix t Ax t B t u t HL y t Cx t      (14) 

can be used, where (2)

4 5 2
ˆ ˆˆ ŵ

T
T T Tx x x 

  , (2)

4y x ;    1 (2)

i iB t DS t B ,  3 3 30 0C I , the oth-

er matrices are the same as mentioned previously.  

Taking into account the measurement of the vector 4x  instead of the observer (14) 

the reduced-order observer also can be used. 

Controller with delay synthesis 

Assume a control signal with a time-delay equal to the sampling period fed to the 

actuators of main rotor. 

For subsystems (1), (2) the discrete model has the form: 

               (1) (1) (1)

1 1 1 1 1 0 1 1w 0.5 w w ,i d i d i i d i i ix t A x t B B t u t D t T t t       (15) 

where (1)

1 2

T
T Tx x x     is the n-order state vector,  1w it  is the error of the disturbance 

approximation, which proportional to the value 3

0T . 

Let's write the subsystem (15) in deviations      (1) (1) (1)

i i r ix t x t x t    from the pre-

scribed helicopter motion      1 1

T
T T

r i r i r ix t x t x t     in the earth coordinate system: 



                 (1) (1) (1) (1)

1 1 1 1 1 0 1 1w 0.5 w w ,i d i d i i r i d i i ix t A x t B B t u t g t D t T t t          (16) 

where      (1) (1) (1)

1r i d r i r ig t A x t x t    is unknown vector. 

Using the found estimate of vector      (1) (1)

1
ˆˆ ŵ

T
T T

i i ix t x t t     the control law will 

be presented in the following form: 

              
1

(1) (1) (1)

1 1 1 1
ˆ ŵi i i r i i iu t B t K x t x t t a t




    
 

. (17) 

K  is the gain matrix,      (1)

0 1
ˆ0.5 wi d r i ia t D g t T t   is the known vector using when esti-

mate       1 1 1 1 0
ˆ ˆ ˆw w w /i i it t t T   is used.  

For the current time, the control law will have the form: 

              
1

(1) (1) (1)

1 1 1 1 1 1 1 1
ˆ ŵi i i r i i iu t B t K x t x t t a t



    
    
 

, (18) 

where the  (1)

1
ˆ

ix t   is defined using equation (10), and also 

        (1) (1)

1 1 3 3 3 1
ˆ ˆw 0 0i i it w t I x t   . (19) 

If we substitute the control (17) in (16) we obtain the following close-loop control 

system: 

          (1) (1) (1)

1 1
ˆ w ,i d d i d i ix t A B K x t B K x t D t          (20) 

where      (1) (1) (1)ˆ ˆ
i i ix t x t x t    is the estimating error,  1w it  is the specified disturb-

ance, which depends on the  1w it , the error of vectors compensation  (1)

r ig t , 

   1 0 1w 0.5 wi it T t , and now we can accept nD I  . 

Consider the method of determining matrix K  taking to account the component-

wise limit: 

  1 1max| |iu t u , (21) 

where *

1max max maxsin sin 1 | |
T

colu       , and max , max  are the maximum allowable angles. 

For the control law (17) the follow equation can be obtained:  

     (1) (1)

1
ˆ

i iK x t x t u    ,  

Where the vector      (1)

1 1 1 1i i iu B t u t a t     is limited above by the vector 1maxu  of (21), 

and max| |  , max| |  , possible commands and disturbances. Then we have the inequali-

ty: 



          (1) (1) (1) (1) 2ˆ ˆ
T

T

i i i iK x t x t x t x t K      , (22) 

where  1maxdiag u    is the diagonal matrix with elements of the vector 1maxu  in the 

main diagonal. 

The inequality    (1) (1)T

i ix t x t X    is correct for the system (20) if the stability 

conditions,    (1) (1)ˆ ˆ T

i ix t x t V    and    1 1w wT

i i wt t Q    are implemented [12]. The ma-

trix 0X   should be suitable for the following matrix inequality: 

 1 2 1 3 0.T T T T T T T T

d d d d d w d d d dX A XA AXK B B KXA Q B KXK B B KVK B           (23) 

where V , wQ  is the defined positive definite matrix, and the gains j ( 1,3j  ) are calcu-

lated using equations (12).  

We assume that, when the control law (18) begins to work the transients in the 

observer has ended. The transients are causes by the initial conditions  (1)

0
ˆ 0x t  . Then 

the matrix V  can be specified in the form vV q X , where the parameter 0vq   character-

izes the estimation accuracy of the vector  (1)

ix t  using the observer. In this case from 

(22) we can obtain the estimate:  

  
2

21T

vKXK q


   . (24) 

Considering the inequality vV q X , designations Y KX  and Shura lemma from 

the inequality (23) we obtain more the strict inequality:  

 
 

  

1

1 1 1

1

1 1 11
0, 0

1

T T T T

d d d d d w d

T T

d v

X A XA AY B B YA Q B Y

Y B q X
X

  

  





 
   
 
 

   

  
,  (25) 

where 1 1 10     . 

We shall construct helicopter initial deviation area from the reference motion in 

the form of inequality    (1) (1) 1

0 0

Tx t x t q X   , 0 1q  . Also from (24) we can obtain the 

inequality: 

  1
2

21 v

T q qYX Y


   ,  0 1q  . (26) 

We now need to find the matrix by which the required control time, the minimal 

sum of the matrix X diagonal elements, and the minimum value of the parameter q  are 



achieved.  The minimum value of the parameter q  must provide the largest estimate of 

the initial deviation range for the vector  (1)

0x t . Here the following statement is true. 

Statement 2. To determine matrix K  in (17) it is sufficient to solve the following 

task: 

 tr minX q  . 

Considering the adopted controls limit (22), the adopted control time pt  and val-

ue vq , the adopted parameters  01 exp 6 / pT t   и 1 1 10     . For the matrix varia-

bles X , Y  we must take into account the constraints (25), (26). Then, the matrix 

1K YX   and the initial deviation range can be calculated using inequali-

ty    (1) (1) 1

0 0

Tx t x t q X   . 

If the noise of measurement is absent, then 
vq  must be equal to 0 in (25), (26) and 

parameter 
1 0   must be include in the variables list of parameterization task. 

Unlike [13], here the allowable initial deviation range is developing and the error 

of the state vector measurement is considering. The error is independently of the dis-

turbances. 

Thus, control law      col 10 0 1i it u t  is developed and the required angles 

change:        2 2 1 1sin sin 0
T

r i r i it t I u t      .  

For the subsystem (3)-(5) the adopted control law is of the form: 

                  
1

1 (2) 1

1 1 3 2 4 3 3 5 2
ˆ ŵi i i i i r i i iu t S t B K x t K S t x t x t K x t t


       

   (27) 

where          3 3 30
T

i i r i r i r ix t x t t t x t       ;  3r ix t  is reference vector of angles, and 

1K , 2K , 3K  are diagonal matrices with positive gains. 

Thus, using control law (27) the desired angles r , r  or 3rx  are tracked. At the 

same the time vectors 5x̂  and 2ŵ  are estimated using the observer of equation (14).  

Helicopter dynamic simulation 

The simulation results of the helicopter dynamics with the control laws developed 

in [10] showed that if time-delays were present in the linear velocity sensors and collec-

tive pitch actuator, the required Handling Qualities according to ADS-33E-PRF [14] 



wer not met. In that case there were  large altitude oscillations. The time-delay value for 

each axis was equal to 0.1 sec.  

To validate the performance of the proposed discrete multi-gap observer the pir-

ouette maneuver [14] under  wind gusts was considered. The wind acting on the three 

directions X, Y, Z was of the following form: 

 
max

2
0.5 1 cosi p

p

W V t
t

  
       

, 1,3i  , (28) 

where max 5pV   m/sec is the maximum speed of wind gust during the time interval 

10pt  sec.  

Simulation responses of the helicopter landing with two observers (9)-(11) from 

an  initial height equal to 3 m and with the control laws (9)-(11), (17), and   0ia t   are 

shown in figure 1. The wind of (28), was considered without any noise. Estimates of the 

helicopter states and wind gust using only one observer (9),    (1)

13 9ŵ i it x t ,  are also 

shown in figure 1 for comparison. It may be concluded that estimates using of two ob-

servers are similar with real processes when transient has ended. In this cas,e the esti-

mates using one observer (9) have a phase-delay.  

Note that the estimation accuracy of the states and the disturbances is essential in 

solving the problem of fault detection.  

 



 

Figure 1. Simulation responses of the helicopter landing under action of wind (28) 

 

To validate the performance of the discrete controller (17), (27), (14) for the full 

model (1)-(5) with the one observer (9) the simulation responses of the landing under 

with  the wind gusts of (28) and white noise in linear velocities sensors and height sen-

sor are considered. A dispersion of the white noise is equal to 0.01. The results  are 

shown in figure 2. In this case, the longitudinal and lateral movement of the helicopter  

and its velocity were not measured. 

 



Figure 2. Simulation responses of the landing under action of wind gusts (28) and white noise 

Figure 2 shows that the helicopter landed 2.4 sec after the start of the maneuver. 

And in this case it achieved linear and angular deviations within the allowable limits ac-

cording to [14]. 

Thus, the developed discrete controller with observer provides the required con-

trol quality for cases with time-delays of the measured and control signals, and under 

wind disturbances. The main advantage of the developed controller is its easy gain tun-

ing for the real helicopters. The controller gains can be changed for different flight 

modes using analytical dependences. 
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