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Abstract—Detection based on eigenvalues of received signal
covariance matrix is currently one of the most effective solution
for spectrum sensing problem in cognitive radios. However, the
results of these schemes always depend on asymptotic assump-
tions since the close-formed expression of exact eigenvalues ratio
distribution is exceptionally complex to compute in practice.
In this paper, non-asymptotic spectrum sensing approach to
approximate the extreme eigenvalues is introduced. In this
context, the Gaussian approximation approach based on exact
analytical moments of extreme eigenvalues is presented. In this
approach, the extreme eigenvalues are considered as dependent
Gaussian random variables such that the joint probability
density function (PDF) is approximated by bivariate Gaussian
distribution function for any number of cooperating secondary
users and received samples. In this context, the definition of
Copula is cited to analyze the extent of the dependency between
the extreme eigenvalues. Later, the decision threshold based on
the ratio of dependent Gaussian extreme eigenvalues is derived.
The performance analysis of our newly proposed approach is
compared with the already published asymptotic Tracy-Widom
approximation approach.

Index Terms—Spectrum sensing; eigenvalue ratio based detec-
tion; non-asymptotic Gaussian approximation; Copula.

I. INTRODUCTION

In cognitive radio networks, the spectrum resources are
available for a secondary user (SU) only when they are not
occupied by the primary user (PU), which aims at avoidance
of intolerable interference. Thus, the SU should be able to
detect the presence of the PU. In this context, high probability
of accurate detection in spectrum sensing becomes extremely
important in the implementation of cognitive radio networks.
Eigenvalue ratio (ER) based detection has been considered
as an effective and efficient solution to this problem [1]–[5].
The key advantage of this detection method lies in the fact
that there is no need to obtain a prior information of the PU.
The main idea is to decide whether the spectrum resources
are being used by a PU or not by exploiting the extreme
eigenvalues of the received signal covariance matrix.

Based on the resent results of random matrix theory, the ER
detector exploit the ratio between the largest and the smallest
eigenvalues of the covariance matrix as analytical statistics

and determine the decision threshold. The decision threshold
is precalculated, which is determined by the distribution of
the test statistics TN . However, the exact distribution of the
test statistics of the ER detector is generally a mathematically
intractable function. Some semi-analytical approaches for the
distribution are presented in [5], [6] where the computational
complexity becomes intractable with the increase in number of
SUs K and received samples N . The exact expression for this
ratio has also been derived in [3], however the distribution can
only be evaluated numerically. Also, when K and N are large,
the complexity of the exact expression may become computa-
tionally cumbersome. As a consequence, a Gaussian approxi-
mation is introduced in [7] to derive the analytical distribution
of TN such that the decision threshold γ can be calculated in a
closed-form. Despite the simplicity of the decision threshold,
the proposed approximation is only valid under the assumption
that the distribution of the largest and the smallest eigenvalues
converges to the Tracy-Widom distribution of order two [8]. It
has been also shown that such convergence only occurs when
K →∞, N →∞ and K

N → c ∈ (0, 1). However, the resulting
cumulative distribution function (CDF) of the Tracy-Widom
random variable involve matrix determinants with function
entries that are difficult to evaluate when K and N are larger.
The derived decision threshold is based on the asymptotic
Gaussianity of the extreme eigenvalue distribution obtained
by fitting asymptotic moments of Tracy-Widom distribution
of order 2 [8]. Moreover, the approximation is under the
assumption that the extreme eigenvalues are independent with
each other which leads to inaccuracy of considerable extent
for moderate to small number of SUs and samples.

The contributions of this paper are as follows: We in-
troduce a simple non-asymptotic spectrum sensing approach
based on non-asymptotic Gaussian approximation for any
number of collaborating SUs and received samples. The joint
probability density function (PDF) of the largest and the
smallest eigenvalues are approximated by a bivariate Gaussian
distribution function. The proposed approximation captures the
non-asymptotic Gaussianity of the extreme eigenvalues based
on their exact analytical moments. The definition of Copula
is cited to show that the largest and the smallest eigenvalues



are dependent and their dependency increases with moderate
to small values of K and N .

The rest of this paper is organized as follows. Section II
defines the system model to explain the detection problem of
PU; Section III introduces the Gaussian approximation to the
extreme eigenvalues. In this section, we recast the Gaussianity
of the extreme eigenvalue distribution in the framework of
their exact analytical moments. Dependency analysis based
on Gaussian Copula between the extreme eigenvalues is also
presented; Finally, we calculate an accurate optimal decision
threshold for the false alarm probability. Conclusions are
presented in IV.

II. SYSTEM MODEL

Consider there are K collaborating SUs such that each user
collects N samples during the sensing time to detect a PU.
The SUs may be considered as a K receive antennas in one
secondary terminal or K secondary terminals each with single
antenna, or any combinations of these. The collected samples
from K collaborating SUs will be forwarded to a fusion center
for combined processing. The aim of the SU cognitive phase
is to construct and analyze tests associated with the following
hypothesis testing problem:

H0 : y(n) = w(n) (1)
H1 : y(n) = h(n) s(n) +w(n) (2)

where y(n) = [y1(n), · · · , yK(n)]
T is the K × 1 observed

complex time series,w(n) represents a K×1 complex circular
Gaussian white noise process with unknown variance σ2

w.
In (2), the vector h(n) ∈ CK×1 typically represents the
propagation channel between the PU and K collaborating SUs
and the signal s(n) denotes a standard scalar i.i.d circular
complex Gaussian process w.r.t samples n = 1, 2, · · · , N
and stands for the source signal to be detected. We stack
the observed data into K × N data matrix YYY which may be
expressed as

YYY =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

. . .
...

yK(1) yK(2) · · · yK(N)

 (3)

The received sampled covariance matrix is RRR = Y YY YY Y H with
ordered eigenvalues λ1 > λ2 > · · · > λK > 0, where
(·)H is the Hermitian conjugate operator. These eigenvalues
behave differently depending on the presence or absence of
the PU. The spectral properties of the covariance matrix is
the reason of using the ratio between the largest and the
smallest eigenvalues of this matrix as a test statistics to infer
the presence or absence of the PU. The test statistics for ER
detector is TN = λ1/λK and denoting γ as the decision

threshold employed by the detector such that TN
H1

≷
H0

γ to decide

if the target spectrum resource is occupied or not.

III. NON-ASYMPTOTIC GAUSSIAN APPROXIMATION
BASED ON EXACT MOMENTS OF EXTREME EIGENVALUES

In this section, we first derive the moments of the extreme
eigenvalues. Later, we fit their statistical mean and variance to
a Gaussian distribution function to approximate the joint PDF
of extreme eigenvalues and calculate a decision threshold.

A. Moments of Largest and Smallest Eigenvalues
Let us denote det(AAA,BBB) as the cross-determinant of two

matrices AAA = {ai,j}m×m and BBB = {bi,j}n×n with m ≤ n
such that

det(AAA,BBB) =

m∑
i=1

m∑
j=1

(−1)i+jai,jBi,j (4)

where Bi,j is the minor of matrix BBB with i-th row and j-th
column deleted. The PDF of the largest (λ1) and the smallest
( λK ) eigenvalues are given by [9]

fλ(·)(λ) = C−1
N,K det(AAA,BBB(·)) (5)

where the constant CN,K = Γ(K)(N)Γ(K)(K) with
Γ(m)(n) =

∏m
i=1(n− i)!; the element of K ×K matrix AAA

is ai,j = e−λλN−K+i+j−2; the elements of K ×K matrix
BBB(·) for λ1 and λK are bi,j = γ(N −K + i + j − 1, λ) and
bi,j = Γ(N −K + i+ j − 1, λ) respectively, with γ(·, ·) and
Γ(·, ·) as the lower and the upper incomplete gamma functions
respectively.

Considering the p-th moment of λ1 and λK , we have

E
{
λp(·)

}
=C−1

N,K

∫ ∞
0

det(AAAp,BBB(·)) dλ (6)

=C−1
N,K

m∑
i=1

m∑
j=1

(−1)i+j
∫ ∞

0

ai,jBi,j dλ, (7)

where the element of AAAp are ai,j = e−λλp+N−K+i+j−2.
1) Moments of the Smallest Eigenvalue (λK): For the

smallest eigenvalue (λK), we have the minors of matrix BBB(·)

as

Bi,j =
∑
α

sgn(α)

K−1∏
k=1

Γ(N −K + Lαk,k, λ), (8)

where Lk can be determined by

Lαk,k =

 k + αk − 1 if αk < i and k < j
k + αk + 1 if αk ≥ i and k ≥ j
k + αk otherwise

(9)

Note that Γ(n, λ) = e−λ(n− 1)!
∑n−1
l=0

λl

l! , then Bi,j may be
expressed as

Bi,j =
∑
α

sgn(α)

K−1∏
k=1

(N−K+Lαk,k−1)!

(
L1∼K∑
l1∼K

λ
∑
lK1

lK1 !

)
,

(10)
where

L1∼K∑
l1∼K

=

(N−K+Lα1,1
−1)∑

l1=0

(N−K+Lα2,2
−1)∑

l2=0

· · ·
(N−K+LαK,K−1)∑

lK=0

;



E {λpK} = C−1
N,K

K∑
i,j=1

(−1)i+j
∑
α

sgn(α)

K−1∏
k=1

(N −K + Lαk,k − 1)!

(
L1∼K∑
l1∼K

1

lK1 !

∫ ∞
0

e−(K+1)λλ(
∑
lK1 +N−K+i+j+p−2)dλ

)
(11)

= C−1
N,K

K∑
i,j=1

(−1)i+j
∑
α

sgn(α)

K−1∏
k=1

(N −K + Lαk,k − 1)!

(
L1∼K∑
l1∼K

Γ(
∑
lK1 +N −K + i+ j + p− 1)

lK1 !(K + 1)
∑
lK1 +N−K+i+j+p−1

)
(12)

E {λp1} = C−1
N,K

K∑
i,j=1

(−1)i+j
∑
α

sgn(α)

K−1∏
k=1

(N −K + Lαk,k − 1)!

(∑
S

(−1)|S|
Γ(
∑

S +N −K + i+ j + p− 1)∏
S!(|S|+ 1)

∑
S+N−K+i+j+p−1

)
(16)

∑
lK1 = (l1 + l2 + · · ·+ lK) and lK1 ! = l1! l2! · · · lK !.
By substituting (10) into (7), we have (11) which is showing

at top of the page. The p-th moment of the smallest eigenvalue
(λK) can be calculated using (12).

2) Moments of the Largest Eigenvalue (λ1): Similarly, for
the largest eigenvalue (λ1), we have

Bi,j =
∑
α

sgn(α)

K−1∏
k=1

γ(N −K + Lαk,k, λ), (13)

where Lαk,k is determined by (9). Note that
γ(n, λ) = (n− 1)!

(
1− e−λ

∑n−1
l=0

λl

l!

)
, we may express

Bi,j as

Bi,j =
∑
α

sgn(α)

K−1∏
k=1

(N −K + Lαk,k − 1)! (14)

×
K∏
k=1

1− e−λ
N−K+Lαk,k−1∑

lk=0

λlk

lk!


=
∑
α

sgn(α)

K−1∏
k=1

(N −K + Lαk,k − 1)!

×

(∑
S

(−e−λ)|S|
λ
∑

S∏
S!

)
, (15)

where S is any subset of the set {l1, l2, · · · , lK} with lk
from 0 to N − K + Lαk,k − 1 ,

∑
S is the sum over all

the elements in S, |S| is the cardinality of subset S,
∑

S
is the sum of all the elements in the subset S, and

∏
S!

is the product of the factoring of each element in S. For
example, if S = {li1 , li2 , · · · , lik}, then we have |S| = k,∑

S = li1 + li2 + · · ·+ lik ,
∏

S! = li1 ! li2 ! · · · lik ! and

∑
S

=

(N−K+Lαi1,i1
−1)∑

li1=0

(N−K+Lαi2,i2
−1)∑

li2=0

· · ·
(N−K+Lαik,ik

−1)∑
lik=0

;

For the special case, when S is empty, we have |S| = 0,
∑

S =
0 and

∏
S! = 1. With Bi,j above, the p-th moment of the

largest eigenvalue (λ1) can be calculated as given in (16).
Choose p = 1 and p = 2 to calculate the first and the

second moments respectively of λK and λ1. The numerical
values of mean and variance of the extreme eigenvalues are
shown in Table I. The CDFs of the largest and the smallest
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Fig. 1. CDFs of :(a) the largest eigenvalue; (b) the smallest eigenvalue.

eigenvalues for selected values of K and N are shown in
Fig. 1(a) and Fig. 1(b) respectively. The figures illustrate that
the proposed non-asymptotic Gaussian approximation based
on exact moments of extreme eigenvalues outperforms the
approximation based on the moments of the Tracy-Widom
distribution. Moreover, our results are in perfect agreement
with the empirical results.

B. Joint PDF and Copula of Extreme Eigenvalues
We employ the exact analytical moments of extreme

eigenvalues to recast the bivariate Gaussian distribu-
tion function as a joint PDF of extreme eigenvalues.



TABLE I
NUMERICAL RESULTS OF LARGEST AND SMALLEST EIGENVALUES

(K,N)
λ1 λK

Simulated Tracy Widom Approx. Analytical Simulated Tracy Widom Approx. Analytical
mean variance mean variance mean variance mean variance mean variance mean variance

(2,4) 6.1857 5.4267 5.2184 10.7467 6.1875 5.4023 1.8161 1.0328 0.9570 0.0977 1.8125 1.0273
(2,10) 13.5144 11.0854 12.7763 17.2958 13.5239 11.1058 6.4803 4.0686 5.3194 1.3284 6.4761 4.0579
(4,20) 32.1538 21.1422 31.5975 27.4554 32.1652 21.1160 9.8012 4.2497 8.9635 2.1088 9.8047 4.2215
(4,50) 68.8106 42.6479 68.4290 49.7672 68.7793 42.4981 33.1711 15.7900 32.0965 10.5549 33.1032 15.8013

Let
(
λ1 ∼ N (µλ1 , σ

2
λ1

), λK ∼ N (µλK , σ
2
λK

)
)

be a bivariate
Gaussian random variables with

µ =

(
µλ1

µλK

)
and Σ =

(
σ2
λ1

ρσλ1σλK
ρσλ1

σλK σ2
λK

)
are the mean and the covariance of bivariate Gaussian dis-
tribution function respectively, and where ρ is the correlation
coefficient between λK and λ1. If fλ1,λK (x, y) is the joint
PDF of the extreme eigenvalues then by exchanging the Gaus-
sian moments with the exact analytical moments of extreme
eigenvalues, the joint PDF can be approximated as

fλ1,λK (x, y) =
1

2πσλ1σλK (1− ρ2)0.5
exp

(
− z

2(1− ρ)2

)
(17)

where

z ≡ (x− µλ1
)2

σ2
λ1

− 2ρ(x− µλ1
)(y − µλK )

σλ1σλK
+

(y − µλK )2

σ2
λK

Now, we analyze the dependency between the random
variables (λ1, λK) to approximate ρ by plotting their Cop-
ula. A Copula is a multivariate distribution function with
known marginal cumulative distribution functions (CDFs)
[10]. More specifically, a bivariate joint distribution function
Fλ1,λK (x, y) = Pr{λ1 ≤ x, λK ≤ y} of two random vari-
ables λ1 and λK , may be represented by a Copula C as a
function of their marginal CDFs Fλ1

(x) = Pr{λ1 ≤ x} and
FλK (y) = Pr{λK ≤ y} and therefore may be expressed as
[10]

Fλ1,λK (x, y) = C(Fλ1(x), FλK (y)) , C(u, v) (18)

where u = Fλ1(x) and v = FλK (y); C(u, v) is the associated
Copula distribution function. Thus, we have

C(u, v) = Fλ1,λK (F−1
λ1

(u), F−1
λK

(v)) (19)

By exploiting the chain rule, the corresponding joint PDF
fλ1,λK (x, y) may be decomposed as

fλ1,λK (x, y) =
∂2Fλ1,λK (x, y)

∂x∂y
=
∂2C(Fλ1

(x), FλK (y))

∂x∂y

=
∂2C(u, v)

∂u∂v

∂Fλ1(x)

∂x

∂FλK (y)

∂y
, c(u, v)fλ1

(x)fλK (y) (20)

It is obvious that the joint PDF is the product of the marginal
PDFs fλ1(x) and fλK (y) and Copula density function c(u, v).
The definition of Copula identifies a strong relationship which
provides link between the marginal PDFs/CDFs and the re-
spective joint PDF/CDF. Also, c(u, v) = 1, for independent
random variables [10].
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Fig. 2. Plot of Copula between random variables λ1 and λK based
on empirical (blue scatter plot) and Gaussian (red scatter plot) marginal
distribution functions.

Let Φλ1
(x) and ΦλK (y) are the marginal distribution func-

tions of the approximated Gaussian random variables λ1 and
λK respectively. Using the statistical values of µλ1

, µλK , σ2
λ1

,
σ2
λK

, the Copula distribution of (17) is given by [10]

C(u, v) =

∫ Φ−1
λ1

(u)

−∞

∫ Φ−1
λK

(v)

−∞
fλ1,λK (x, y) dxdy (21)

where Φ−1
(·) (·) is the inverse of the standard univariate Gaussian

distribution function.
The plots of Copula between λ1 and λK based on the

empirical and Gaussian marginal distribution functions are
showing in Fig. 2(a) and Fig. 2(b) respectively for (K,N) =
(2, 10). It can be seen that the structure of Copula based
on the empirical distribution functions appears same as the
Copula structure based on the Gaussian distribution functions
for ρ = 0.3. It can also be noticed that the Copula structure
is distinctive for small value of K and N i.e. the extreme
eigenvalues are dependent with each other. However, with the
increase in number of K and N , the dependency between
λ1 and λK decreases. The same is shown in Fig. 2(c-d) for
(K,N) = (4, 50) where the correlation between the extreme



γ =
µλ1

µλK − τ2ρσλ1
σλK

µ2
λK
− τ2σ2

λK

+
τ
√
µ2
λ1
σ2
λK

+ µ2
λK
σ2
λ1

+ (ρ2 − 1)τ2σ2
λ1
σ2
λK
− 2µλ1µλKρσλ1σλK

µ2
λK
− τ2σ2

λK

(24)

eigenvalues decreases to ρ = 0.1. Therefore, the dependency
between λ1 and λK can not be ignored if accurate spectrum
sensing is required. However, some analytical approaches may
be applied to calculate the exact value of ρ.

C. Optimal Decision Threshold

We have already shown that the joint PDF of (λ1, λK)
can be well approximated by a bivariate Gaussian distribution
function knowing their exact moments and ρ. If the joint PDF
of (λ1, λK) ∼ N (µ,Σ) is given as (17) , then the CDF of
the ratio of two dependent Gaussian random variables may be
expressed as [11]

F (γ) = Φ

{
µλKγ − µλ1

σλ1
σλKa(γ)

}
(22)

where a(γ) =

(
γ2

σ2
λ1

− 2ργ
σλ1σλK

+ 1
σ2
λK

)0.5

and Φ(�) is the

CDF of a standard Gaussian random variable. Using (22), we
may calculate an accurate decision threshold analytically in
closed form based on exact moments. For a given target false
alarm probability (Pfa) and fixed ρ, the decision threshold γ
is obtained by solving

Pfa = 1− F (γ) (23)

The solution is shown at the top of the page as (24), where
τ = Φ−1(1− Pfa).

In Fig. 3, we plot the decision threshold γ as a func-
tion of Pfa for small and moderate number of K and N
to compare the Gaussianity of λ1 and λK based on exact
moments with their Gaussianity based on the moments of
Tracy-Widom distribution. It can be seen that the proposed
non-asymptotic Gaussian approximation performs extremely
well in comparison with the Tracy-Widom approximation
approach and our results match the empirical results. The
proposed approximation is equivalently good for any number
of K and N , however the results are significantly accurate for
reasonably moderate to small number of K and N .

IV. CONCLUSION

In this paper, a non-asymptotic Gaussian approximation
based on the exact analytical moments of the extreme eigenval-
ues has been employed to approximate the decision threshold
for ER detector. Copula plot showed that the largest and
the smallest eigenvalues are dependent and their dependency
should not be ignored specially for moderate to small num-
ber of collaborating SUs and samples. The accuracy of our
proposed decision threshold has been evaluated in comparison
with decision threshold calculated using Tracy-Widom approx-
imation approach. Our proposed approximation is accurate
enough for any number of collaborating SUs and samples.
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