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ABSTRACT

Detection based on eigenvalues of received signal covari-
ance matrix is currently one of the most effective solu-
tion for spectrum sensing problem in cognitive radios.
However, the results of these schemes always depend
on asymptotic assumptions since the distribution of ra-
tio of extreme eigenvalues is exceptionally mathemati-
cally complex to compute in practice. In this paper, a
new approach to determine the distribution of ratio of
the largest and the smallest eigenvalues is introduced
to calculate the decision threshold and sense the spec-
trum. In this context, we derive a simple and analyti-
cally tractable expression for the distribution of the ra-
tio of the largest and the smallest eigenvalues based on
upper bound on the joint probability density function
(PDF) of the largest and the smallest eigenvalues of the
received covariance matrix. The performance analysis
of proposed approach is compared with the empirical
results. The decision threshold as a function of a given
probability of false alarm is calculated to illustrate the
effectiveness of the proposed approach.

1. INTRODUCTION

In cognitive radio networks, the spectrum resources are
available for a secondary user (SU) only when they are
not occupied by the primary user (PU), which aims
at avoidance of intolerable interference. Thus, the SU
should be able to detect the presence of the PU. In this
context, high probability of accurate detection in spec-
trum sensing becomes extremely important in the im-
plementation of cognitive radio networks.

The detection algorithms have their mathematical
foundations in the random matrix theory. One of these
algorithms is the eigenvalue ratio (ER) detector [1],
which uses the ratio of the largest eigenvalue to the
smallest eigenvalue as a test statistic and then gives
the decision threshold. ER based detection has been
considered as an effective and efficient solution to this
problem [1–5]. The key advantage of this detection
method lies in the fact that there is no need to obtain a
prior information of the PU. The main idea is to decide
whether the spectrum resources are being used by a PU
or not. In other words, these eigenvalues behave differ-
ently, which depends on the presence or absence of PU.
Due to these properties, the eigenvalue ratio based de-
tection outperforms the energy detector (ED), which is

a traditional approach for spectrum sensing, especially
when the noise uncertainty increases larger [5, 6].

The decision threshold is precalculated, which is de-
termined by the distribution of the test statistics TN .
However, the exact distribution of the test statistics
of the ER detector is generally a mathematically in-
tractable function. Some semi-analytical approaches for
the distribution are presented in [5, 7] where the com-
putational complexity becomes intractable with the in-
crease in number of SUs K and received samples N .
The exact expression for this ratio has also been derived
in [3], however the distribution can only be evaluated nu-
merically. The complexity of the exact expression may
become computationally cumbersome with the increase
in K and N . As a consequence, a Gaussian approxima-
tion is introduced in [8] to derive the analytical distri-
bution of TN such that the decision threshold γ can be
calculated. The derived decision threshold is based on
the asymptotic Gaussianity of the extreme eigenvalue
distribution obtained by fitting asymptotic moments of
Tracy-Widom distribution of order 2 [9]. Despite the
simplicity of the decision threshold, the proposed ap-
proximation is only valid under the assumption that
the distribution of the largest and the smallest eigenval-
ues converges to the Trace-Widom distribution of order
two [9]. It has been also shown that such convergence
only occurs when K → ∞, N → ∞ and K

N
→ c ∈ (0, 1).

However, the resulting cumulative distribution function
(CDF) of the Trace-Widom random variable involve ma-
trix determinants with function entries that are diffi-
cult to evaluate when K and N are larger. Therefore,
the most of the previous approaches not only based on
asymptotic assumptions but also leads to mathemati-
cally complicated solutions. In this paper, our main
concern is to develop a mathematically tractable solu-
tion to solve the problem of sensing the presence or ab-
sence of the PU with the collaboration of finite number
of SUs. However, we consider a case when few SUs are
collaborating to sense the presence PU.

The contributions of this paper are described as fol-
lows: we introduce a mathematically tractable approach
to derive the distribution of ratio of the largest and the
smallest eigenvalues. The derived distribution is based
on the upper bound on the joint probability density
function (PDF) of the largest and the smallest eigenval-
ues. The proposed approach gives useful results which



are applicable to the scenarios when few SUs are collab-
orating to sense the presence or absence of the PU in a
given sensing time.

The rest of this paper is organized as follows. Section
2 defines the system model to explain detection problem
of PU; section 3 introduces the upper bound on the joint
PDF of the largest and the smallest eigenvalues. Next
in section 4, we derive the distribution of the ratio of
extreme eigenvalues based on the upper bound. This
is followed by the calculation of decision threshold for
a given probability of false alarm. Later, we present
numerical results to validate the simulation and analyt-
ical results and illustrate the usefulness of the proposed
upper bound approach for realistic cognitive scenarios.
Finally in section 5, we conclude the results.

2. EIGENVALUE RATIO DETECTION
PROBLEM

Consider there are K collaborating SUs such that each
user collects N samples during the sensing time to de-
tect a PU. The SUs may be considered as a K receive
antennas in one secondary terminal or K secondary ter-
minals each with single antenna, or any combinations
of these. The collected samples from K collaborating
SUs will be forwarded to a fusion center for combined
processing [9].

The aim of the SU cognitive phase is to construct and
analyze tests associated with the following hypothesis
testing problem:

H0 : y(n) = w(n) (1)

H1 : y(n) = h(n) s(n) +w(n) (2)

where y(n) = [y1(n), · · · , yK(n)]
T
is the K×1 observed

complex time series, w(n) represents a K × 1 circularly
symmetric complex Gaussian (CSCG) noise with zero
mean and variance σ2

w. In (2), the vector h(n) ∈ C
K×1

typically represents the propagation channel between
the PU and K collaborating SUs and the signal s(n) de-
notes a standard scalar i.i.d circular complex Gaussian
process w.r.t samples n = 1, 2, · · · , N and stands for the
source signal to be detected with E

[

s2(n)
]

= σ2
s 6= 0.

We stack the observed data into K ×N data matrix YYY
which may be expressed as

YYY =









y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)
...

...
. . .

...
yK(1) yK(2) · · · yK(N)









(3)

As the sample number N → ∞, the sample covariance
matrix, RRR(N) = 1

N
Y YY YY Y ∗, converges to E [yyyyyy∗], where

yyy is the column vector of N samples collected by a
single receiver. From the eigenvalues of RRR(N), it is
possible to infer the absence or presence of the pri-
mary signal. Denote the normalized covariance matrix
as RRRN = N

σ2
w
RRR(N) = 1

σ2
w
Y YY YY Y ∗. Under the hypothesis

H0, RRRN is a complex white Wishart matrix subject to
CWK(N,IIIK), where IIIK is a K × K identity matrix,
while it turns out to be the class of spiked population
models under the hypothesis H1 [10].

Suppose the ordered eigenvalues of RRR(N) and RRRN

are 0 < lK < lK−1 < · · · < l1 and 0 < λK < λK−1 <
· · · < λ1 respectively, with the relationship

λk =
σ2
w

N
lk (4)

where k = 1, 2, · · · ,K.
Let us define the test statistics for the for ER based

detection as

TN =
λ1

λK

(5)

and denoting γ as the decision threshold employed by
the detector such that

TN

H1

≷
H0

γ (6)

to decide if the target spectrum resource is occupied or
not.

3. UPPER BOUND ON JOINT PDF OF
EXTREME EIGENVALUES

In this section, we present the upper bound on the joint
PDF of the largest and the smallest eigenvalues. If
gλ1,λK

(x, y) denotes the joint PDF of the largest and the
smallest eigenvalues such that gλ1,λK

(x, y) satisfies [11]:

gλ1,λK
(x, y) ≤ fλ1,λK

(x, y)

= CK,Ne−
1

2
(x+y) x

1

2
(N+K−3) y

1

2
(N−K−1)

(7)

where CK,N = 1
4Γ(K−1)Γ(N−K+1) with Γ (·) is the

Gamma function [12]. The associated marginal PDF
of the largest and the smallest eigenvalues can be re-
spectively calculated as

fλ1
(x) =

∫ ∞

0

fλ1,λK
(x, y)dy

= CK,N 2
1

2
(N−K+1) Γ

(

1

2
(N −K + 1)

)

× e−
x
2 x

1

2
(N+K−3) (8)

fλK
(y) =

∫ ∞

0

fλ1,λK
(x, y)dx

= CK,N 2
1

2
(N+K−1) Γ

(

1

2
(N +K − 1)

)

× e−
y

2 y
1

2
(N−K−1) (9)

Also, the associated marginal CDFs of the largest
and the smallest eigenvalues can be respectively calcu-
lated as

Fλ1
(x) =

∫ x

0

fλ1
(x′)dx′

= CK,N 2N Γ

(

1

2
(N −K + 1)

)

(

Γ

(

1

2
(N +K − 1)

)

− Γ

(

1

2
(N +K − 1),

x

2

))

(10)
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Fig. 1: CDFs of the largest and the smallest eigenvalues for K = 2
and N = 150.

FλK
(y) =

∫ y

0

fλK
(y′)dy′

= CK,N 2N Γ

(

1

2
(N +K − 1)

)

(

Γ

(

1

2
(N −K + 1)

)

− Γ

(

1

2
(N −K + 1),

y

2

))

(11)

where Γ (�, �) is the incomplete Gamma function [12].
Fig. 1(a) and Fig. 1(b) shows the CDFs of the largest

eigenvalue and the smallest eigenvalue using (10) and
(11) respectively for K = 2 and N = 150. The an-
alytical CDFs are compared with the empirical CDFs
(compare the solid curve with the dashed curve). It can
be seen that the marginal CDFs of the largest and the
smallest eigenvalues are behaving same as the empiri-
cal CDFs. However, the known difference between the
two CDFs is due to the obvious reason that the ana-
lytical CDFs are derived from the upper bound on the
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Fig. 2: CDFs of the largest and the smallest eigenvalues for K = 4
and N = 150.

joint density or distribution. It is to note that the re-
sults are still useful to calculate the decision threshold
numerically as a function of probability of false alarm.
Similarly, in Fig. 2(a) and Fig. 2(b) the CDFs of the
largest and the smallest are calculated for K = 4 and
N = 150. It is observed that the intrinsic difference
between the empirical and upper bound CDFs (due to
upper bound on joint density or distribution) increases
with the increase in number of collaborating SUs. How-
ever, a tighter upper bound results is expected to be
reported at a later date which is calculated using [13].
Despite the fact that our results are based on the upper
bound, the decision threshold can be easily calculated
numerically to decide the occupancy of the spectrum.

4. DISTRIBUTION OF EIGENVALUE
RATIO (TN)

In this section, we introduce a novel application of up-
per bound on the joint PDF of the largest and smallest



Table 1: Numerical values of (15) for selected values of K and N

F = FZ(z) F = 0.1 F = 0.2 F = 0.3 F = 0.4 F = 0.5 F = 0.6 F = 0.7 F = 0.8 F = 0.9
K = 2, N = 150 0.8200 0.8800 0.9300 0.9700 1.0100 1.0600 1.1000 1.1600 1.2500
K = 4, N = 100 0.8200 0.9000 0.9600 1.0100 1.0600 1.1200 1.1800 1.2600 1.3700
K = 4, N = 150 0.8400 0.9100 0.9600 1.0000 1.0400 1.0900 1.1300 1.1900 1.2800
K = 8, N = 100 0.8900 0.9700 1.0400 1.0900 1.1500 1.2100 1.2800 1.3600 1.4900
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Fig. 3: Decision threshold as a function of probability of false
alarm for K = 2 and N = 150

eigenvalues to calculate the decision threshold as a func-
tion of probability of false alarm.

Using (7), we first derive PDF of the ratio of the
largest and the smallest eigenvalues TN and then derive
CDF of the ratio. The CDF of the ratio between λ1 and
λK i.e., z = x

y
can be expressed as

FZ(z) = P{
x

y
≤ z} = P{x ≤ yz, y > 0} (12)

=

∫ ∞

0

∫ yz

−∞

fλ1,λK
(x, y)dxdy (13)

Using (13), the PDF of the ratio can be calculated as

fZ(z) =
d

dz
FZ(z) =

∫ ∞

0

yfλ1,λK
(yz, y)dy

=

∫ ∞

0

yfλ1,λK
(yz, y)dy

= CK,N

∫ ∞

0

ye−
y

2
(z+1)z

1

2
(N+K−3)yN−2 dy

= CK,N z
1

2
(N+K−3)

∫ ∞

0

e−
y

2
(z+1)yN−1 dy

Finally, we arrived at

fz(z) = CK,NΓ(N) 2N z
1

2
(N+K−3)(1 + z)−N (14)
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Fig. 4: Decision threshold as a function of probability of false
alarm for K = 4 and N = 150

The CDF of the ratio TN can be calculated as

FZ(z) = CK,N Γ(N) 2N
∫ z

0

z′
1

2
(N+K−3)(1 + z′)−Ndz′

= CK,N 2N
(

Γ

(

1

2
(N −K + 1)

)

× Γ

(

1

2
(N +K − 1)

)

+
2z

1

2
(K−N−1)Γ(N)

(K −N − 1)

× 2F1

(

N,
1

2
(N −K + 1);

1

2
(N −K + 3);−

1

z

))

(15)

where 2F1(a, b; c; z) is the Hypergeometric Function [12].
Using (15), the numerical values of CDFs of ratio

of the largest and the smallest eigenvalues for selected
values of K and N are available in Table. 1. As desired,
the resulting decision threshold γ for a given probability
of false alarm (Pfa) is calculated numerically by solving

Pfa = 1− F (γ). (16)

It is to note that in (16), F (γ) is solved numerically
in Matlab using the trapezoidal integration method [14].
For a given target Pfa, the corresponding the decision
threshold for K = 2 and N = 150 is shown in Fig. 3.
The analytically calculated decision threshold is com-
pared with the simulation based approach (compare the
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Fig. 5: Receiver operating characteristic curves for K = 20 and
N = 50.

solid curve with the dashed curve). It can be seen
that the results of our proposed approach is accept-
able for low probability of false alarm. However, there
is a trade off between the acceptable performance and
mathematical tractability with the calculation of deci-
sion threshold. Similarly, Fig. 4 shows the calculated
decision threshold as a function of range of probability
of false alarm for K = 4 and N = 150. It can be seen
that decision threshold based on our approach is use-
ful for reasonably small number of collaborating SUs to
detect the occupancy of spectrum.

Finally, the receiver operating characteristics (ROC)
curves are given in Fig. 3 which shows achieved probabil-
ity of missed detection under H0 versus the probability
of false alarm under H1. In this figure, we assume a
constant modulation transmitted signal with K = 20
collaborating SUs and N = 50 samples during the given
sensing time. The SNR is set to be −10 dB, while the
noise uncertainty is set to 1/2 dB. It is apparent that ER
detector behaves better than energy detector. However,
our approach provides a closed lower bound to the sim-
ulation result (compare the solid curve with the dashed
curve).

5. CONCLUSIONS

In this paper, we used upper bound on joint PDF of
the largest and the smallest eigenvalues of the received
covariance matrix to derive a simple and analytical
tractable expression for distribution of ratio of eigen-
values. It has been shown that the upper bound can be
exploited effectively to approximate the decision thresh-
old for a given probability of false alarm. The proposed
approach is useful specially for reasonably small number
of collaborating SUs. However, a trade off is required to
be defined between acceptable performance and mathe-
matical tractability of the detection problem.
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