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ABSTRACT 

 

Background: The minimum mortality temperature from J or U- shaped curves 

varies across cities with different climates. This variation informs on adaptation, 

but ability to characterize it is limited by the absence of a method to describe 

uncertainty in estimated minimum mortality temperatures.  

Methods:  We propose an approximate parametric bootstrap estimator of 

confidence interval (CI) and standard error (SE) for the minimum mortality 

temperature from a temperature-mortality shape estimated by splines.  

Results: The coverage of the estimated CIs was close to nominal value in the 

datasets simulated, though SEs were slightly high. Applying the method to 52 

Spanish provincial capital cities showed larger minimum mortality temperatures 

in hotter cities, rising almost exactly at the same rate as annual mean temperature.  

Conclusions: The method proposed for computing CIs and SEs for minimums from 

spline curves allows comparing minimum mortality temperatures in different 

cities and investigating associations of them with climate properly allowing for 

estimation uncertainty.  



INTRODUCTION 

The temperature-mortality relationship has been described as a J or U- shaped 

curve, with a temperature at which risk of mortality is at a minimum (1). Minimum 

mortality temperature is found at different temperature levels, varying greatly 

across countries and regions possibly due to acclimatization (2,3). The value of the 

minimum mortality temperature and in particular how it varies across places with 

different climates (4) and over time (5) has been investigated, as this is relevant to 

adaptation to climate. However, such comparison of minimum mortality 

temperatures, formal or informal, has been limited by the absence of a method to 

describe uncertainty in estimation of minimum mortality temperature. 

Temperature-mortality curves frequently do not identify clearly where within the 

long bottom of the J or U- shape the minimum mortality temperature is, suggesting 

poor precision of an estimate.  

  

This paper presents a method to obtain an estimate, confidence interval (CI) and 

standard error (SE) for the minimum mortality temperature based on the 

temperature-mortality shape estimated by splines, and in particular distributed 

lag non-linear models. We apply this method to investigate the patterns of 

minimum mortality temperature in the 52 provincial capital cities in Spain and 

explore the climatic determinants of variation in the city-specific minimum 

mortality temperature. 

 

METHODS 

Temperature-mortality relationship 

We collected daily counts of all-natural cause mortality (International 

Classification of Diseases-9th revision: 1–799) and daily mean temperature for the 

52 provincial capital cities in Spain for the study period 1990–2010 (data provided 

by the Spain National Institute of Statistics and the Spain National Meteorology 

Agency, respectively). For each city, we applied a standard time-series quasi-

Poisson regression, including a natural cubic spline of time with 10 degrees of 

freedom per year to control for seasonal and long-term trends and an indicator of 



day of the week. We modelled the association with temperature using distributed 

lag non-linear models (6,7). This class of models can describe the complex non-

linear and lagged dependencies typically found for temperature and mortality 

through the combination of two functions that define the conventional exposure-

response relationship and the additional lag-response relationship, respectively. 

The latter is applied to model the delay between the exposure occurrence and the 

associated increase in risk. We specifically modelled the exposure-response curves 

with a natural cubic spline with three internal knots placed at the 10th, 75th and 

90th centiles of location-specific temperature distributions, because the 

temperature-mortality association is typically more curved towards the tails, in 

particular the right tail for heat, than across the milder more central range, and the 

lag-response curve with a natural cubic with three internal knots placed at equally 

spaced values in the log scale (8). The lag period is extended to 21 days in order to 

capture the long delay in the effects of cold and account for short-term harvesting 

(8). These modelling choices were tested in further sensitivity analyses. 

 

Point of minimum temperature mortality 

Identifying a minimum mortality temperature from any estimated function 

associating temperature to mortality is straightforward. One merely needs to scan 

through the function to find the value of t that minimises it. Finding a SE and CI is 

not so simple. We propose the following algorithm, which can be described as an 

approximate parametric bootstrap estimate: 

 

1. Simulate a large number (we used N=10,000) of parametric bootstrap splines 

from the estimated spline coefficients and their covariance matrix. 

2. For each simulated spline, identify the minimum mortality temperature. 

3. From the N estimated minimum mortality temperature of the simulated 

bootstrap splines, use the 2.5th and 97.5th centiles and the standard deviation 

to estimate the 95% CI and SE respectively. 

 



Detailed algorithm to find SE and CI for the minimum mortality temperature of the 

temperature-mortality spline and R code for the estimation process, jointly with 

examples of use and simulations are given in the eAppendix 1. 

 

The estimates and SEs obtained by the above procedure were used to describe the 

distribution of the 52 minimum mortality temperatures and explore their 

association with the cities’ climates, summarised by the mean annual temperature, 

allowing for the estimation precision using random effects meta-analysis and 

meta-regression, estimating the between-city component of variance by the 

method of moments (9). 

 

RESULTS 

We first tested the coverage of the CI and bias in the standard error estimated from 

this method by applying to splines simulated from an underlying association with 

known minimum mortality temperature. Coverage of the 95% CI (from 1000 

simulations) was 96.4%. Mean of estimated SEs were higher (+41%) but median 

just slightly lower (-4%) than the standard deviation of minimum mortality 

temperatures in the datasets simulated. Estimates did not change when using a 

negative binomial rather than a Poisson distribution (eAppendix 1 table). 

 

The city-specific temperature-mortality curves are shown in eAppendix 2. Most 

cities exhibited J or U- shapes, showing evidence of increased mortality at 

temperatures higher and lower than the minimum mortality temperatures. 

However, we noticed that in some smaller cities the minimum mortality 

temperatures was at or close to one of the imprecisely estimated tails of the curve. 

To avoid likely spuriously high or low estimated minimum mortality temperatures 

the point estimate was therefore constrained to the 1st-99th centile range, though 

we allowed the bootstrap minimum mortality temperatures and hence CIs fall 

outside that range.  

 



Figure 1 shows the curves for six cities selected to illustrate issues in estimating 

minimum mortality temperature and its CI. The top three cities of Figure 1 are 

typical in having convex (broadly U- shaped) temperature-mortality curves, 

though for all except Barcelona the CIs widths suggest considerable uncertainty in 

the minimum mortality temperature. Also the uncertainty is notably asymmetric. 

The long flat bottom of the curve for Madrid suggests the possibility of minimum 

mortality temperature range, a possible extension of the minimum mortality 

temperature concept.  Each of the bottom three cities illustrates the main 

problems that can occur in smaller cities. In Tenerife and Caceres the 

unconstrained estimated minimum mortality temperatures are at the minimum 

and maximum of their temperature ranges respectively, though each city also has a 

local more central minimum, which is the estimate of minimum mortality 

temperature if the minimum mortality temperature is constrained to be in the 1st-

99th centile range. But again the CI widths suggest considerable uncertainty in the 

minimum mortality temperature, especially in Caceres where includes the entire 

range of temperature. In Teruel the temperature-mortality curve is monotonic 

increasing, so the1st-99th centile constraint merely increases the minimum 

mortality temperature estimate from the minimum to the 1st centile. The 

eAppendix 3 shows unconstrained and constrained estimates of minimum 

mortality temperatures for the cities for which the constraint was applies, and also 

for three others that would be constrained if 5h-95th or 10th-90th centile range 

constraints had been adopted. 

 

The city-specific minimum mortality temperatures ranged from -2°C, in a small 

Northern city (Teruel) up to 26°C in the Southern Mediterranean region 

(Tarragona and Castellon), with random effects meta-analysis mean of 19.7°C 

(95% CI=[18.1 to 21.4°C]). In terms of the centile scale minimum mortality 

temperatures ranged from the 1th to 93th centiles of the city-specific distribution of 

daily mean temperature (mean 15.5°C, ranged from 10.6 to 21.6°C). Many of the 

minimum mortality temperatures are estimated imprecisely (mean standard error 

of 7.2°C), and the overlap of CIs suggests caution in comparing them between 

individual cities. Estimated underlying heterogeneity as a proportion of total 



variation is moderate (I2=24%), but there is a discernible pattern of higher 

thresholds in cities with higher annual mean temperatures (Figure 2). A random 

effects meta-regression model confirmed this, estimating that the minimum 

mortality temperature increased on average 1°C for a mean rise of 1°C of the mean 

annual temperature (b=1.09°C, 95% CI=[0.56 to 1.63°C]), with almost no residual 

heterogeneity (I2=2.8%). The patterns were broadly robust to alternative model 

assumptions. The use knots placed at the quartiles provided somewhat larger 

heterogeneity between-city estimates, while lag periods at 14 and 28 days 

provided slightly lower and upper pooled estimates, respectively (eAppendix 4). 

 

DISCUSSION 

By deriving and applying a method for computing CIs and SEs for minimums from 

spline curves, we were able to properly compare minimum mortality temperatures 

in different cities and investigate associations of them with climate allowing for 

estimation uncertainty, which we found often to be large. The method is applicable 

to describing uncertainty in any minimum or maximum of a fitted spline curve. 

 

The principle difficulty was handling minimum mortality temperatures apparently 

at minimum or maximum temperatures, where spline curves are imprecise, mainly 

in smaller cities. We believe that our somewhat ad-hoc procedure of constraining 

estimates to exclude temperatures in the extreme tails worked well in this data. 

However, it would seem sensible to be reviewed in future applications. It is 

possible for true minimum mortality temperatures to fall at or close to the 

minimum or maximum observed temperatures, where spline curves are imprecise. 

Large cities showing empirical minimum mortality temperatures at extreme 

temperature might give stronger evidence for this than the small cities with 

extreme minimum mortality temperatures seen in Spain. The use of minimum 

mortality temperatures from, for example, an empirical Bayes best linear unbiased 

temperature-mortality curves approach (8) could be a more measured way to 

combine uncertain evidence from a city with prior expectations, but at the cost of 

complexity. Using the mean of the bootstrap simulated minimum mortality 



temperatures (as given in eAppendix 1) or natural cubic splines, which limit 

curvature of splines at tails (1,10), help reduce problem cases more simply. 

 

The availability of standard errors should make meta-analysis of minimum 

mortality temperatures more powerful and robust, but given often asymmetric 

confidence intervals, some caution is needed. Meta-analytic methods making 

minimum distributional assumptions to estimate the between-study component of 

variance, such as the DerSimonian and Laird approach (9), may have some 

advantages in this context. 

 

Applying the method to 52 Spanish cities confirmed the previously observed 

pattern of higher minimum mortality temperatures in hotter cities (2,3) and was 

able to quantify this, with minimum mortality temperatures rising almost exactly 

at the same rate as annual mean temperature (1°C/°C). This suggests that Spanish 

communities had broadly adapted to their local climate to the same extent. We 

hope that the method proposed will be useful to clarify the how much this is also 

true elsewhere and where climate varies over time, as found to some extent in 

France using similar analyses but without allowing for minimum mortality 

temperature uncertainty (5). 
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Legend for tables and figures. 

 

Figure 1. Temperature-mortality associations for 6 provincial capital cities in Spain 

(with 95% CI shaded grey) selected to illustrate issues in estimating minimum 

mortality temperatures. The top three cities show unconstrained minimum 

mortality temperatures and the bottom three constrained minimum mortality 

temperatures to the 1st-99th centile range of mean temperature. Solid vertical lines 

are minimum mortality temperature and dashed vertical lines (as well as solid 

bottom-horizontal lines) are its 95% confidence interval. RR=relative risk. 

 

Figure 2. Forest plot for the estimated minimum mortality temperatures, and its 

corresponding centile, for the 52 provincial capital cities in Spain. Cities are sorted 

by annual mean temperature, which is indicated in parentheses after the city 

name. [*] denotes cities with minimum mortality temperature constrained to the 

1st-99th centile range of mean temperature. MMT=minimum mortality 

temperature. 

 

eAppendix 1. Algorithm and R code to find SE and CI for the minimum mortality 

temperature of the temperature-mortality spline.  

 

eAppendix 2. Temperature-mortality associations for the 52 provincial capital 

cities in Spain (with 95% CI shaded grey). Dashed vertical lines are unconstrained 

minimum mortality temperatures. Average daily mortality count is indicated in 

parentheses after the city name. RR=relative risk. 

 

eAppendix 3. Sensitivity analysis for the cities where unconstrained minimum 

mortality temperatures are at or close to one of the imprecisely estimated tails of 

the curve. MMT=minimum mortality temperature. RR=relative risk. I2=index of 

heterogeneity. 



 

eAppendix 4. Sensitivity analysis for distributed lag non-linear modelling choices 

of knots (at 10th-75th-90th centiles and quartiles) and lag periods (at 14, 21 and 28 

days). MMT=minimum mortality temperature. I2=index of heterogeneity. Res. 

I2=residual heterogeneity. 






