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Group B streptococcus (GBS) capsular serotypes are major determinants of virulence and affect potential vaccine coverage. Here
we report a whole-genome-sequencing-based method for GBS serotype assignment. This method shows strong agreement
(kappa of 0.92) with conventional methods and increased serotype assignment (100%) to all 10 capsular types.

Streptococcus agalactiae, or group B streptococcus (GBS), is an
important pathogen in neonates (1–3), with early infections

being acquired from the maternal genitourinary tract (4). In ad-
dition, GBS is now recognized as an increasingly important patho-
gen among immunosuppressed and elderly individuals in high-
income regions (5, 6).

GBS expresses a capsular polysaccharide that is involved in
virulence and immune evasion. Ten different serotype variants
(i.e., Ia, Ib, II, III, IV, V VI, VII, VIII, and IX), which differ in their
disease-causing abilities, have been described. Conjugate vaccines
targeting the most common disease-causing serotypes are cur-
rently in development (7). Establishment of vaccine serotype cov-
erage is important, as is postintroduction surveillance to monitor
for potential serotype replacement, as has been seen following the
introduction of other conjugate vaccines (8).

Current methods for GBS serotype allocation rely on latex ag-
glutination assays or PCR assays (9). Recent advances in whole-
genome sequencing (WGS) have enabled the development of ap-
proaches that can be used in place of traditional microbiological
methods, such as strain typing and antibiotic susceptibility profil-
ing (10–12). A major advantage of this approach is that the cost of
sequencing can be mitigated by the ability to use the same data to
generate multiple outputs. Given the decreasing cost of WGS (13)
and the ongoing increase in WGS data generation, we sought to
establish and to validate a WGS-based method for GBS capsular
typing.

We developed an algorithm for serotype assignment on the
basis of sequence similarity between a given de novo assembly and
capsular gene sequences of the 10 GBS serotypes. For nine sero-
types, published sequences were used as references (Table 1); for
serotype IX, however, only a partial capsular locus sequence has
been published (14). A suitable reference for the full capsular locus
region was therefore determined by WGS of a serotype IX isolate
obtained from the Statens Serum Institute (Copenhagen, Den-
mark).

To assign the serotype for a given isolate, a BLAST database was
generated from the de novo assembly and queried with the variable
region of the capsular locus sequence for each serotype (cpsG-cpsK
for serotypes Ia to VII and IX and cpsR-cpsK for serotype VIII),
using BLASTn with an E value threshold of 1e�100 and otherwise
default parameters. A serotype was considered correct if it showed
�95% sequence identity over �90% of the sequence length.

These thresholds were chosen on the basis of being stringent
enough to provide differentiation between the various reference
sequences while maximizing serotype allocation for an initial test
set of publicly available GBS WGS data, for which serotype infor-
mation was not available (therefore, we had no way of knowing
whether the assigned serotypes were actually correct).

This sequence-based method for serotype allocation was vali-
dated using WGS with a set of 223 colonizing or invasive human
isolates from Canada, Latin America, Singapore, the United King-
dom, the United States, and Thailand for which serotypes had
been determined previously using conventional latex agglutina-
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TABLE 1 Reference sequences used for sequence-based serotype
allocation

Serotype
GenBank
accession no. Region (bp) Reference

Ia AB028896.2 6982–11695 Yamamoto et al. (20)
Ib AB050723.1 2264–6880 Watanabe et al. (21)
II EF990365.1 1915–8221 Martins et al. (22)
III AF163833.1 6592–11193 Chaffin et al. (23)
IV AF355776.1 6417–11656 Cieslewicz et al. (24)
V AF349539.1 6400–12547 Cieslewicz et al. (24)
VI AF337958.1 6437–10913 Cieslewicz et al. (24)
VII AY376403.1 3403–8666 Cieslewicz et al. (24)
VIII AY375363.1 2971–7340 Cieslewicz et al. (24)
IX NAa NA This study
a NA, not applicable.
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tion assays, with PCR assays being used to confirm weak positive
or negative results in a subset (15–17). For two rare serotypes
(serotypes VIII and IX), one isolate of each was obtained from the
Statens Serum Institute. GBS isolates stored at �80°C were sub-
cultured on Columbia blood agar for 24 to 48 h, followed by DNA
extraction from a single colony using a commercial kit (Quick-
Gene; Fujifilm, Tokyo, Japan). High-throughput sequencing was
performed at the Wellcome Trust Centre for Human Genetics
(Oxford University, Oxford, United Kingdom) using the Illumina
HiSeq2500 platform, generating 150-base paired-end reads. De
novo assembly was performed using Velvet and VelvetOptimiser
(18, 19). Agreement between serotype allocations was tested with
the kappa statistic.

High-quality sequence data were obtained for all 223 GBS
isolates (median read number, 2,975,508 [range, 1,798,744 to
13,073,718]; median contig number, 46 [range, 16 to 106]; me-
dian assembly length, 2.05 Mb [range, 1.94 to 2.22 Mb]). Each
isolate was allocated to a single serotype using the WGS data (Ta-
ble 2). Three isolates that did not have a capsular type assigned by
latex agglutination methods had serotypes Ib, VI, and VII as-
signed. For all previously serotyped GBS isolates with a known
capsule type, the kappa statistic of 0.92 indicated very strong
agreement between WGS-predicted and conventional serotypes.
Nine isolates had discordant results. In each case, there was strong
support for the sequence-allocated serotype, with �98% sequence
identity over 100% of the reference length in all nine cases (Fig. 1).
Across all isolates, differences in relatedness between the capsular
locus sequences of the different serotypes led to characteristic re-
lationships between the allocated serotype (best match) and the
second-best match. For example, all isolates assigned to serotype
Ia had serotype III as the second-best match. In all cases, the sec-
ond-best match was substantially poorer than the best match,
demonstrating that there was no ambiguity in the predicted sero-
type (Fig. 1 and Table 3).

The nine isolates with discordant results and the three non-
typeable isolates were retested by latex agglutination assays (Table
4) and were resequenced using the Illumina MiSeq platform, with
sequence processing and WGS-based serotype prediction per-
formed as described above. In all cases, resequencing results were
consistent with the initial WGS classification. For 6/9 isolates with

discordant results, the new latex agglutination results matched the
WGS-based prediction, suggesting that the initial discordance
might have resulted from incorrect latex agglutination typing or
sample mislabeling. The other three isolates with discordant re-
sults and the three nontypeable isolates were all classified as non-
typeable with retesting.

This WGS-based method for GBS serotyping, which was vali-
dated using 223 isolates that had been typed using conventional
methods, was therefore highly accurate. Although WGS currently
may not be cost-effective for direct replacement of traditional se-
rotyping, costs are likely to decrease further. Furthermore, WGS
may already be the cheapest option for combined studies, with
possibilities for utilizing the resulting data for additional analyses,
such as multilocus sequence typing, analyses of relatedness to
other sequenced isolates, and detailed phylogenetic analyses.

TABLE 2 Serotype allocation by WGS versus serotype allocation by
latex agglutination

Latex
agglutination
serotype

No. with WGS serotype of:
Total
no.Ia Ib II III IV V VI VII VIII IX

Ia 34 0 0 1 0 0 0 0 0 0 35
Ib 0 9 1 0 0 0 0 0 0 0 10
II 0 0 25 0 0 0 0 0 0 0 25
III 3 0 0 111 0 0 0 0 0 1 115
IV 0 0 0 0 1 0 1 0 0 0 2
V 0 0 0 0 0 16 0 0 0 0 16
VI 0 0 0 0 0 1 8 0 0 0 9
VII 0 0 0 0 0 0 0 5 0 0 5
VIII 0 0 0 0 0 0 0 0 1a 0 1
IX 0 1 0 0 0 0 0 0 0 1a 2
Nontypeable 0 1 0 0 0 0 1 1 0 0 3

Total 37 11 26 112 1 17 10 6 1 2 223
a Reference GBS isolates from Statens Serum Institute for serotypes VIII and IX.
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FIG 1 Relationships between allocated serotypes (best matches) and second-
best matches. For each isolate, the percentage of the capsular locus region
present (�95% sequence identity) for the assigned serotype is shown on the x
axis and that for the serotype showing the next best match is shown on the y
axis. Gray circles, isolates showing agreement between sequence-based sero-
typing and conventional serotyping; blue circles, isolates classified as nontype-
able by conventional methods; red circles, isolates with discordant results.
Small circles, single isolates; large circle, 100 isolates. For each serotype, the
second-best match is identical in all cases, leading to the observed horizontal
banding (details in Table 3).

TABLE 3 Relationships between allocated serotypes and second-best
matchesa

Allocated
serotype

Match (%) for
allocated serotype

Second-best
serotype

Match (%) for
second-best serotype

Ia 93.91–100 III 64.56
III 100 Ia 62.98
V 100 IX 36.26
IX 100 V 31.05
VI 100 III 26.68
IV 100 Ia 20.3
Ib 99.61–100 VI 15.55
II 99.86–100 IV 9.45
VII 100 Ib 6.95
VIII 100 None 0
a See also Fig. 1.
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TABLE 4 Retyping of isolates with discordant results and nontypeable isolates

Isolate Reason for retyping

Latex agglutination
serotype WGS serotype

Initial Repeat Initial Repeat

CB466 Discordant results III Ia Ia Ia
IW8194 Discordant results III IX IX IX
IW8466 Discordant results Ia III III III
IW8471 Discordant results III Ia Ia Ia
IW7157 Discordant results Ib II II II
SMRU1 Discordant results VI V V V
SMRU25 Discordant results IV NTa VI VI
SMRU4 Discordant results IX NT Ib Ib
SMRU59 Discordant results III NT Ia Ia
Z41 NT NT NT Ib Ib
UK22 NT NT NT VII VII
IW2723 NT NT NT VI VI
CB454 Control III III III III
IW4445 Control Ia Ia Ia Ia
IW4077 Control II II II II
a NT, nontypeable.
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