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Abstract

Background

Chronic parasitic infections are associated with active immunomodulation which may

include by-stander effects on unrelated antigens. It has been suggested that pre-natal expo-

sure to parasitic infections in the mother impacts immunological development in the fetus

and hence the offspring’s response to vaccines, and that control of parasitic infection among

pregnant women will therefore be beneficial.

Methodology/Principal findings

We used new data from the Entebbe Mother and Baby Study, a trial of anthelminthic treat-

ment during pregnancy conducted in Uganda, to further investigate this hypothesis. 2705

mothers were investigated for parasitic infections and then randomised to albendazole

(400mg) versus placebo and praziquantel (40mg/kg) during pregnancy in a factorial design.

All mothers received sulfadoxine/pyrimethamine for presumptive treatment of malaria. Off-

spring received Expanded Programme on Immunisation vaccines at birth, six, 10 and 14

weeks. New data on antibody levels to diphtheria toxin, three pertussis antigens, Haemophi-

lus influenzae type B (HiB) and Hepatitis B, measured at one year (April 2004 –May 2007)

from 1379 infants were analysed for this report. Additional observational analyses relating

maternal infections to infant vaccine responses were also conducted. Helminth infections

were highly prevalent amongst mothers (hookworm 43.1%, Mansonella 20.9%, Schisto-

soma mansoni 17.3%, Strongyloides 11.7%, Trichuris 8.1%) and 9.4% had malaria at enrol-

ment. In the trial analysis we found no overall effect of either anthelminthic intervention on

the measured infant vaccine responses. In observational analyses, no species was
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associated with suppressed responses. Strongyloidiasis was associated with enhanced

responses to pertussis toxin, HiB and Hep B vaccine antigens.

Conclusions/Significance

Our results do not support the hypothesis that routine anthelminthic treatment during preg-

nancy has a benefit for the infant’s vaccine response, or that maternal helminth infection has

a net suppressive effect on the offspring’s response to vaccines.

Trial Registration

ISRCTN.com ISRCTN32849447

Author summary

Parasitic infections, such as worms and malaria, have potent effects on the human

immune system. These effects include modification of immune responses in the fetus

and infant if a mother has a parasitic infection during pregnancy. These immunological

changes can influence the way a child responds to the same infection when exposed in

later life. It has been suggested that the immunological changes might also influence how

the child responds to the vaccines given in infancy, and that treating mothers for para-

sitic infections when they are pregnant might be helpful. In this study we compared

responses to vaccines between infants of mothers who had, or had not, been treated for

worms while they were pregnant. We found no overall differences. We also compared

vaccine responses between groups of mothers with and without parasitic infections. We

found no evidence that the parasitic infections were associated with reduced responses

in the children. This means that, although treating worms during pregnancy may have

some benefits, improvements in the children’s responses to vaccines are not likely to be

among them.

Introduction

There is substantial evidence that pre-natal exposures are important in shaping immunological

development [1]. This includes strong evidence that prenatal exposure and sensitisation to par-

asite antigens determines susceptibility to the same parasite in the offspring [1] and that

immunisation during pregnancy influences the infant response to the same vaccine [2]. There

is also evidence that prenatal exposures may influence the offspring’s response to unrelated

antigens [1]. It is important to better understand such effects since they are likely to be impor-

tant in broadly determining susceptibility to infectious diseases, either directly or through

responses to immunisation, as well as determining susceptibility to other immunologically

mediated conditions (such as allergy-related disease [3, 4]). Vaccines provide an example of a

standardised immunological challenge given at a standardised time and hence an opportunity

to evaluate the effects of pre-natal exposures on infant immune responses.

Recently, Malhotra and colleagues reported a study among children of mothers infected or

uninfected with malaria and helminths in a coastal region of Kenya which suggested that

infants of parasite-infected mothers had a reduced ability to develop antibody responses to

Prenatal exposure to parasitic infections and anthelminthic treatment on responses to immunisations
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Haemophilus influenzae type B (HiB) immunisation and diphtheria toxoid (DT), but showed

no effect on responses to hepatitis B (Hep B) immunisation or tetanus toxoid (TT) [5].

If there is a causal association between prenatal parasitic exposure and infant vaccine

responses, then treatment of maternal parasitic infections might be expected to remove par-

asite-associated effects. We conducted a randomised controlled trial (the Entebbe Mother

and Baby Study, ISRCTN32849447) to investigate whether anthelmintic treatment of preg-

nant mothers improved the vaccine response amongst their children [6]. We have previ-

ously reported the effects of treatment on cellular responses following BCG and tetanus

immunisation, and on tetanus and measles antibody concentrations: there were no overall

effects but, in planned subgroup analyses, albendazole treatment of mothers with hook-

worm was associated with reduced T-helper 2 cytokine responses to TT in their infants, and

(unexpectedly) albendazole treatment of mothers without hookworm resulted in increased

interferon-γ(IFN-γ) responses to mycobacterial antigen; otherwise no effects of maternal

treatment on responses to BCG, TT or measles were observed [7]. Here, we report on the

effects of maternal anthelminthic treatment on a further six serological responses (DT, per-

tussis [pertussis toxin (PT), filamentous haemagglutinin (FHA) and pertactin], Hep B and

HiB).

In addition to the trial results, we also present an observational analysis of associations

between multiple maternal infections and infant immunological responses, analogous to the

observational analyses reported by Malhotra and colleagues, using our existing dataset to

investigate whether similar associations are also present in our cohort of mothers and babies

from rural and urban areas of central Uganda.

Methods

Study design and participants

Healthy pregnant mothers in their second or third trimester were enrolled as part of the

Entebbe Mother and Baby Study (EMaBS; ISRCTN32849447) between 2003 and 2005,

described elsewhere [6, 7]. Briefly, this was a randomised, placebo-controlled, factorial study

of the effect of single-dose albendazole (400 mg) and praziquantel (40 mg/kg) given during

the second or third trimester of pregnancy on postnatal outcomes. Mothers were enrolled at

their first antenatal visit unless they attended in the first trimester, in which case enrolment

was postponed to minimise risk of teratogenicity. After enrolment they continued to receive

standard antenatal care, including intermittent presumptive treatment for malaria with sulfa-

doxine/pyrimethamine and tetanus immunisation, and intrapartum and neonatal single-

dose nevirapine for prevention of mother-to-child HIV transmission for the minority in

whom it was required. Infants received the routine EPI (Expanded Programme on Immuni-

sation) vaccines (BCG and polio at birth; DT, pertussis toxin, TT, Hep B and HiB at age six,

10 and 14 weeks, measles at nine months). All mothers gave informed written consent on

behalf on themselves and their children. We have previously reported on responses to vac-

cines against tuberculosis, TT and measles [7]. Here we assess six immunological responses

amongst children at age one year: DT, Hep B, pertussis, FHA, pertactin, Hep B, and HiB.

Only children who received all three doses of pentavalent vaccine are included in this

analysis.

Ethical consent was granted for the original trial and for subsequent analysis from UVRI

(GC/127/12/07/32), the Uganda National Council for Science and Technology (MV625), Lon-

don School of Hygiene & Tropical Medicine (790, A340), and the Oxford Tropical Research

Ethics Committee (39–12).

Prenatal exposure to parasitic infections and anthelminthic treatment on responses to immunisations
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Maternal and infant infection status

At screening during pregnancy, and at delivery, or as soon as possible after delivery (for those

whose children were born outside hospital), blood samples were obtained from each woman

to test for presence of malaria parasites by thick film and for microfilariae of Mansonella per-
stans using a modified Knott’s method [8]; a single stool sample was obtained for diagnosis of

intestinal parasites including hookworm (Necator americanus in this area [9]), Schistosoma
mansoni, Trichuris trichiura and Ascaris lumbricoides using the Kato Katz technique [10] and

for Strongyloides stercoralis by culture [11].

In case of multiple births just the first child was considered for inclusion in this analysis.

Mother-baby pairs were excluded if the infant did not receive the standard three doses of EPI

vaccines before samples were collected.

At one-year of age a blood sample was obtained from infants. Plasma and serum were sep-

arated and stored at -80˚C until processing. Plasma or serum were assessed for antibody con-

centrations against DT, pertussis antigens and HiB using a Luminex bead-based multiplex

immunoassay described in detail elsewhere[12, 13]. Antibody concentrations against Hep B

were measured using the ABBOTT Architect i2000 with their anti-HBs kit (Abbott Laborato-

ries, Chicago IL, USA) using the recommended protocol. We elected to measure the unsti-

mulated serological response to vaccination in order to maintain consistency with other

published reports of helminth-vaccine response associations. In the cases of DT and HiB

these measures are likely correlated with protection against disease. In the case of pertussis it

remains unclear which antigen is responsible for inducing protection and whether serological

levels are sufficient correlates, whereas for hepatitis B, there is evidence that measuring peak

response of antibody (approximately 6 weeks post final vaccination) is the optimal correlate

of protection although practically this is very difficult to achieve [14].

Mothers were categorised by parasite exposure in three ways, following the approach of

Malhotra 2015 for comparability [5]. First, mothers were grouped according to the total num-

ber of infections (helminths and malaria: 0; 1; 2;�3). Second, mothers were grouped as no

infection; malaria only; malaria plus one helminth infection; malaria plus two or more hel-

minth infections. Third, mothers without malaria were grouped as follows: no helminth infec-

tions; one infection and no malaria, two infections and no malaria; three or more infections

and no malaria.

Statistical analysis

The vaccines examined here were not the primary outcomes for this trial, so sample size calcu-

lations were not based on these responses. In a post-hoc evaluation of power, based upon the

standard deviations we observed, we had 80% power to detect differences ranging from 1.18

(FHA) to 1.34 (HiB). A complete case analysis was done where possible, and imputation of

missing data was not performed. Vaccine responses from the included and excluded records

were compared with t-tests or Mann-Whitney tests, as appropriate.

As this was a factorial trial, comparisons were made between all those randomised to alben-

dazole versus those randomised to matching placebo, and between praziquantel versus pla-

cebo. Linear regression was used to assess associations between exposures (albendazole and

praziquantel) and outcomes (infant vaccine responses). Outcome variables were transformed

onto the log (base 10) scale to reduce skew; hence reported coefficients represent geometric

mean ratios (GMR). Regression was performed with a bias-corrected bootstrap using 100 rep-

licates. Covariates were selected a priori and included maternal baseline characteristics of age,

parity (1; 2–4;�5), education level (none; primary; secondary; tertiary), and household socio-

economic group (on a six point scale, with six representing the highest group); infant

Prenatal exposure to parasitic infections and anthelminthic treatment on responses to immunisations
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covariates were sex, infant malaria and time (in days) since the third EPI vaccination. Pre-

planned sub-group analysis was carried out to examine the effect of albendazole on children of

mothers who had a hookworm infection, and separately for the effect of praziquantel on the

children of mothers with S. mansoni infection. This was performed using the same regression

technique as described above and allowing an interaction between randomised treatment and

infection. Interaction effects between the two randomised treatments were tested in a similar

way.

A similar approach was used to assess individual infections (including binary indicator vari-

ables for malaria, hookworm, S. mansoni, M. perstans, Ascaris, Trichuris and strongyloidiasis

in one linear regression model) and the exposure categories defined above. In each case we

also adjusted for randomised treatment. Exposure groups were treated as categorical variables

designed to allow for a comparison with the previously published results from mothers in

Kenya [5].

No adjustment was made for the numerous testing caused by assessing the effect of multiple

exposures on six outcomes. Stata version 14.1 was used for all analyses.

Results

A total of 2507 mothers were enrolled into the trial [7]. We had complete vaccine response

data (excluding hepatitis B) for 1379 (55%) mothers and first-born babies: 348 were rando-

mised to albendazole + praziquantel, 346 to albendazole + placebo, 336 to praziquantel + pla-

cebo, and 349 to placebos only. Due to limited serum and plasma from infants, samples were

unavailable for Hepatitis B assay for 374 of these infants (Fig 1). The demographic character-

istics of these 1379 mothers were similar to those who were missing from our analysis. The

biggest difference was in maternal malaria infection: this was 9.4% in those included in the

analysis and 12.9% in those excluded. Other characteristics were broadly similar: average age

was 23.9 years (included) and 23.4 years (excluded); education was “none” or “primary” in

Fig 1. Flow of patients through the trial.

doi:10.1371/journal.pntd.0005213.g001
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54.7% in the included group and 54.5% in the excluded group. Hookworm infection was

43.2% and 45.3%, and S. mansoni infection was 17.3% and 19.7% in the included and

excluded groups respectively. The sex of the babies was also similar between the included

(49.6% female) and excluded groups (47.3% female), as was the parity of the mothers (mean

2.8 in both groups).

Baseline characteristics were broadly balanced between the randomised arms (Table 1). The

most common maternal infection among the mothers with vaccine response data was hook-

worm (43.1%), followed by Mansonella (20.9%), S. mansoni (17.3%), Strongyloides (11.7%),

malaria (9.4%), Trichuris (8.1%) and Ascaris (2.1%). We had stool samples for 1235 (89.6%) of

one-year olds. The most common parasites detected were Ascaris (n = 16) and Trichuris
(n = 12). We found very low levels of hookworm (n = 4) and S. mansoni (n = 1).

We found no evidence of an effect of randomised treatment on any of the infant vaccine

responses (Table 2), nor any evidence for treatment interaction (p>0.1 for all outcomes, S1

Table). In pre-planned sub-group analysis, the only evidence of a differential treatment effect

was on DT response in children of mothers who received albendazole: in mothers with hook-

worm the adjusted geometric mean ratio (aGMR) for albendazole was 0.89 (95 CI% 0.74–1.08)

and in mothers without hookworm it was 1.24 (95% CI 1.04–1.47). The p-value for interaction

was p = 0.01 (Table 3).

For the observational analysis, a total of 1286 mothers-baby pairs had known status for all

seven infections of interest and five of the six vaccines (Hepatitis B, n = 940). We found no evi-

dence of different vaccine response results in the excluded records. Similar to the trial analysis,

the most common maternal infection in this group was hookworm (43.1%), followed by Man-
sonella (21.2%), S. mansoni (16.7%), Strongyloidiasis (11.6%), malaria (9.2%), Trichuris (8.5%)

and Ascaris (1.9%).

We found no evidence that maternal infections were associated with infant vaccine

response except for maternal strongyloidiasis. The aGMR of HiB response for children of

mothers with strongyloidiasis was 1.51 times greater (95% CI 1.11–2.01) than children of

mothers who were uninfected. For Hep B the increase was by a factor of 1.47 (95% CI 1.11–

1.94) and in pertussis response the aGMR was 1.41 (95% CI 1.06–1.88). We found no evidence

of an association between any of the maternal exposure groups (number of infections, number

of infections alongside malaria, number of infections among mothers without malaria) and

any infant vaccine response at one year. Full results are in Table 4.

Discussion

We found no evidence of enhanced vaccine responses among infants of infected mothers who

were treated for helminths during pregnancy, nor evidence of a suppressive effect of prenatal

exposure to maternal parasitic infections on infant vaccine responses, in this cohort of mothers

and infants in Uganda. Such possible effects as were observed were indicative of enhanced
responses for a number of vaccines in the infants of mothers identified as having strongyloidia-

sis, and of reduced DT responses in the infants of mothers with detectable hookworm infection

who were treated with albendazole.

The primary strength of our study is the randomised, controlled intervention during preg-

nancy. Hookworm infection was treated effectively by albendazole (declining from over 40%

prevalence before treatment to 5% after delivery among albendazole treated women) and

schistosomiasis was treated effectively by praziquantel (declining from about 18% to 5%) while

Mansonella and Strongyloides were unaffected by the treatment [15]. From a simplistic per-

spective, the lack of effect of maternal treatment on vaccine responses among infants of

women infected with hookworm and S. mansoni implies either that prenatal exposure to these

Prenatal exposure to parasitic infections and anthelminthic treatment on responses to immunisations
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Table 1. Baseline characteristics of mothers whose children were enrolled into the study and provided samples at nine years of age.

Characteristic Albendazole + praziquantel

(n = 348)

Praziquantel only

(n = 336)

Albendazole only

(n = 346)

Placebo

(n = 349)

Mother’s age group

14–19 68 (20%) 82 (24%) 88 (25%) 72 (21%)

20–24 123 (35%) 129 (38%) 125 (36%) 144 (41%)

25–29 98 (28%) 78 (23%) 81 (23%) 74 (21%)

30–34 41 (12%) 32 (10%) 28 (8%) 44 (13%)

35+ 18 (5%) 15 (4%) 24 (7%) 15 (4%)

Mother’s education (2 missing

values)

None 11 (3%) 10 (3%) 10 (3%) 16 (5%)

Primary 181 (52%) 171 (51%) 182 (53%) 172 (49%)

Senior 124 (36%) 117 (35%) 134 (39%) 124 (36%)

Tertiary 32 (9%) 37 (11%) 20 (6%) 36 (10%)

Mother’s tribe (2 missing values)

Baganda 181 (52%) 173 (51%) 176 (51%) 167 (48%)

Banyankole 41 (12%) 20 (6%) 34 (10%) 40 (11%)

Batoro 11 (3%) 19 (6%) 11 (3%) 21 (6%)

Basoga 15 (4%) 8 (2%) 9 (3%) 10 (3%)

Luo 15 (4%) 25 (7%) 21 (6%) 18 (5%)

Banyarwanda 21 (6%) 15 (4%) 20 (6%) 19 (5%)

Others 64 (18%) 76 (23%) 75 (22%) 74 (21%)

Mother’s SES group (22 missing

values)

1 Lowest 16 (5%) 19 (6%) 14 (4%) 19 (6%)

2 26 (8%) 25 (8%) 34 (10%) 30 (9%)

3 105 (31%) 105 (32%) 94 (28%) 116 (34%)

4 101 (29%) 92 (28%) 90 (26%) 102 (30%)

5 73 (21%) 68 (21%) 87 (26%) 61 (18%)

6 Highest 22 (6%) 21 (6%) 21 (6%) 16 (5%)

Mother’s parity (22 missing values)

1 87 (25%) 90 (27%) 91 (26%) 86 (25%)

2–4 193 (55%) 191 (57%) 199 (58%) 209 (60%)

5+ 68 (20%) 55 (16%) 56 (16%) 54 (15%)

Hookworm (22 missing values)

No 189 (54%) 185 (55%) 214 (62%) 196 (56%)

Yes 159 (46%) 151 (45%) 132 (38%) 153 (44%)

S. mansoni (22 missing values)

No 292 (84%) 281 (84%) 284 (82%) 284 (81%)

Yes 56 (16%) 55 (16%) 62 (18%) 65 (19%)

Malaria (22 missing values)

No 321 (92%) 305 (91%) 311 (90%) 313 (90%)

Yes 27 (8%) 31 (9%) 35 (10%) 36 (10%)

Filariasis (22 missing values)

No 274 (79%) 266 (79%) 279 (81%) 272 (78%)

Yes 74 (21%) 70 (21%) 67 (19%) 77 (22%)

Ascaris (22 missing values)

No 343 (99%) 328 (98%) 339 (98%) 340 (97%)

Yes 5 (1%) 8 (2%) 7 (2%) 9 (3%)

(Continued )
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helminth species has no important effect on the infant response to unrelated vaccines (and

hence perhaps to unrelated infections), or that the impact of prenatal exposure is established

prior to the second trimester and cannot be reversed thereafter. Of note, Malhotra and col-

leagues treated all mothers with albendazole (for nematodes) during pregnancy; we, and Mal-

hotra and colleagues, treated all mothers with sulfadoxine / pyrimethamine (for malaria); the

Table 1. (Continued)

Characteristic Albendazole + praziquantel

(n = 348)

Praziquantel only

(n = 336)

Albendazole only

(n = 346)

Placebo

(n = 349)

Trichuris (22 missing values)

No 320 (92%) 306 (91%) 320 (92%) 321 (92%)

Yes 28 (8%) 30 (9%) 26 (8%) 28 (8%)

Strongyloidiasis (22 missing values)

No 301 (86%) 297 (88%) 308 (89%) 311 (89%)

Yes 47 (14%) 39 (12%) 38 (11%) 38 (11%)

doi:10.1371/journal.pntd.0005213.t001

Table 2. The effect of randomised maternal treatment on antibody concentrations among infants at one year of age.

Antibody concentrations Geometric mean Geometric mean ratio (95% CI)* Geometric mean Geometric mean ratio (95% CI)*

Albendazole Placebo Praziquantel Placebo

HiB (g/ml) 0.89 0.78 1.14 (0.93–1.39) 0.8 0.87 0.92 (0.75–1.13)

Diphtheria (Dtox IU/ml) 0.03 0.03 1.07 (0.94–1.22) 0.03 0.03 0.93 (0.82–1.05)

Hepatitis B (mIU/ml) 99.94 97.27 1.03 (0.86–1.23) 90.41 106.88 0.85 (0.71–1.01)

Pertussis toxin (Ptx EU/ml) 10.78 9.02 1.20 (0.99–1.44) 9.92 9.81 1.01 (0.84–1.21)

FHA (EU/ml) 3.1 2.86 1.08 (0.97–1.21) 2.99 2.97 1.01 (0.90–1.13)

Pertactin (Pm EU/ml) 11.36 10.97 1.04 (0.91–1.17) 10.96 11.36 0.96 (0.84–1.11)

* Bias-corrected accelerated CIs computed by bootstrapping

doi:10.1371/journal.pntd.0005213.t002

Table 3. Subgroup analysis of the effect of randomised maternal treatment on antibody concentrations among infants at one year of age in groups

according to maternal infection status.

Albendazole Praziquantel

Antibody

concentration

Effect of treatment

in women with

hookworm (aGMR,

95% CI)*

Effect of treatment

in women without

hookworm (aGMR,

95% CI)*

P-value for

interaction

Effect of treatment in

women with

schistosomiasis (aGMR,

95% CI)*

Effect of treatment in

women without

schistosomiasis (aGMR,

95% CI)*

P-value for

interaction

HiB (g/ml) 1.03 (0.77–1.38) 1.22 (0.93–1.61) 0.39 0.98 (0.58–1.63) 0.91 (0.73–1.14) 0.80

Diphtheria

(Dtox IU/ml)

0.89 (0.74–1.08) 1.24 (1.04–1.47) 0.01 0.88 (0.66–1.18) 0.94 (0.82–1.08) 0.70

Hepatitis B

(mIU/ml)

0.93 (0.72–1.22) 1.11 (0.88–1.40) 0.33 1.17 (0.76–1.80) 0.79 (0.66–0.95) 0.09

Pertussis toxin

(Ptx EU/ml)

1.10 (0.86–1.42) 1.27 (1.00–1.61) 0.39 1.03 (0.71–1.51) 1.00 (0.82–1.23) 0.89

FHA (EU/ml) 1.17 (0.98–1.41) 1.02 (0.87–1.20) 0.29 1.11 (0.87–1.42) 0.99 (0.86–1.12) 0.44

Pertactin (Pm

EU/ml)

0.99 (0.83–1.18) 1.07 (0.91–1.26) 0.47 1.03 (0.78–1.38) 0.95 (0.83–1.10) 0.58

* Bias-corrected accelerated CIs computed by bootstrapping. All models are adjusted for randomised treatments, maternal age, gravidity, maternal

education, household SES, maternal income, infant sex and previous infant malaria.

doi:10.1371/journal.pntd.0005213.t003
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effects described in each study were necessarily those that occur despite, or in the context of,

these interventions [5].

However, the truth of the matter seems to be that the impact of prenatal parasitic infections

on infant vaccine responses is complex and depends at least on characteristics of both the para-

sitic infection and the vaccine, and on the nature of the desired, protective vaccine response. A

study from Ecuador, in accord with our results, showed no association between maternal geo-

helminths and infant IgG responses to DT, TT, PT, measles, rubella or HiB [16], but several

studies have now indicated a net enhancement of infant vaccine responses following exposure

to certain maternal infections, including Trypanosoma cruzi for BCG, DT, TT and Hep B [17],

maternal intestinal helminth infections and the IgA response to rotavirus and polio (in the

Ecuador study [16]), as well as our result for strongyloidiasis and PT, HiB and Hep B. Mean-

while, Malhotra and colleagues have shown that, for malaria and lymphatic filariasis (and, in

an earlier study, schistosomiasis [18]), the impact of maternal infection on infant vaccine

response depends upon whether or not the infant was sensitised to the parasitic infection in

utero: compared to unexposed infants, malaria sensitised infants showed an increase, and

malaria tolerised infants a decrease, in the response to DT [5]–this may contribute to a neutral

net effect in studies which do not make the same distinction. Like us, Malhotra and colleagues

observed no effect of pre-natal exposure to parasitic infections on infant responses to most of

the EPI vaccines. The principal exception was HiB and, interestingly, although individual

maternal infections were associated with reduced responses, additional infections tended to

reverse this effect. Our findings for HiB followed a similar pattern, although the associations

were not statistically significant.

Our observation of an enhanced response to DT amongst infants of mothers without

hookworm who received albendazole was surprising, and may be a chance finding given that

subgroup analyses were conducted and multiple comparisons were made, with no formal

adjustment in statistical interpretation. However, this result accords with our previous find-

ings of an enhanced IFN-γ response to BCG, an enhanced IL-13 response to TT, and an

enhanced risk of infantile eczema in the same group [7, 19] and suggests a pro-inflammatory

effect of albendazole, in the absence of maternal hookworm, which may be a direct effect of

the drug, or mediated by effects on other co-infections. We think it unlikely that these results

represent an effect of albendazole on light, undetected hookworm infections: as we have pre-

viously reported, a proportion of mothers in the albendazole placebo group had three sam-

ples examined before treatment was given post-delivery, evaluation of which increased the

prevalence of hookworm in this group by only 6% (from 45% to 51%) [19].

A net adverse effect of prenatal exposure to maternal parasitic infections on the induction

of immune responses by vaccines given to the offspring would imply a net adverse effect on

the infant’s ability to respond to pathogens, also. This would be expected to result in increased

neonatal or infant mortality. However, an initial result suggesting that anthelminthic treat-

ment during pregnancy had benefits for infant mortality [20] has not been substantiated in

controlled trials [7, 21]. By contrast, there is considerable evidence that intervention against

malaria during pregnancy has benefits for infant mortality [22]. While this may be mediated

largely by prevention of the major effects of malaria on placental function and fetal growth,

and by effects on infant susceptibility to malaria itself [23, 24], an impact on vaccine responses

and on susceptibility to heterologous infections may contribute. This accords with the rela-

tively prominent suppressive effect of maternal malaria described in Malhotra’s study, with a

reported suppressive effect of prenatal exposure to malaria on the infant response to BCG,

described in The Gambia [25] and with our own previous finding of an association between

maternal malaria and reduced infant antibody response to measles immunisation [26].
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A limitation of our study was that we included just 55% of eligible infants due to incomplete

data. However, the mother-baby pairs that were excluded were similar in known characteris-

tics to those included in the analysis. Further infants were missing from the Hep B analysis. A

limitation of the observational component of our study was the classification of maternal infec-

tion status based on a single blood or stool sample. This would substantially underestimate

and misclassify malaria exposure, which is best assessed by placental histology, and more sensi-

tively assessed by polymerase chain reaction (PCR) assays. The use of a single stool result

would also result in misclassification for hookworm or S. mansoni exposure [27, 28] and hence

may have obscured relevant associations. We have previously reported that in this study the

sensitivity of one stool sample compared with three stool samples was 89% for hookworm

infection and 66% for schistosomiasis [7]. This limitation does not apply to evaluation of Man-
sonella exposure which showed 96% agreement between samples taken in pregnancy and after

delivery in this cohort (2077 of 2162 mothers for whom samples were available at both time

points). Our classification of exposure differed markedly from the classification used by Mal-

hotra and colleagues who included microscopy and PCR on placental and cord blood for

malaria, and assays of circulating antigen and IgG4 for Schistosoma haematobium and Wucher-
eria bancrofti. The use of IgG4 detection as a marker of active infection is of possible concern

as levels may be higher among individuals with a regulatory bias in their immune response

[29]. Contrasting with the time-course described by Malhotra and colleagues, we had data on

vaccine-specific antibody responses only at age one year, but this was a time point at which

many of the effects observed by Malhotra and colleagues were evident, so comparable results

might have been expected. Although other markers or measured timepoints may be more

desirable in terms of assessing true protection against disease (such as neutralisation or func-

tional opsonophagocytic assays [14]), many of these other assays are more prone to inter-

observer error. Our analysis of the unstimulated antibody concentrations maintains consis-

tency between studies and provides observations relating to immunological responses rather

than chances of protection. Furthermore, we had data on a different set of helminth infections

to those used by Malhotra. It could be that particular helminths are more important in deter-

mining vaccine responses of infants, or that there are interaction effects which we have not

explored. This paper contains a large number of estimates, confidence intervals and hypothesis

tests. Due to these multiple comparisons, it is possible that some associations which appear sta-

tistically significant are in fact due to chance alone. These results should therefore not be con-

sidered definitive, but should instead be seen as evidence to be considered alongside other

studies in this field.

From a public health perspective, the additional results that we contribute here accord with

our previous findings [7, 26] and suggest that, whatever its benefits, routine anthelminthic

treatment during pregnancy is not likely to result in improved infant vaccine responses.

Supporting information

S1 Table. Unadjusted analysis of treatment effect allowing an interaction between rando-

mised treatments.
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