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Abstract

Most infectious disease data is obtained from disease surveillance which is based

on observations of symptomatic cases only. However, many infectious diseases

are transmitted before the onset of symptoms or without developing symptoms

at all throughout the entire disease course, referred to as asymptomatic trans-

mission. Fraser and colleagues [1] showed that this type of transmission plays

a key role in assessing the feasibility of intervention measures in controlling

an epidemic outbreak. To account for asymptomatic transmission in epidemic

models, methods often rely on assumptions that cannot be verified given the

data at hand.

The present study aims at assessing the contribution of social contact data

from asymptomatic and symptomatic individuals in quantifying the contribu-

tion of (a)symptomatic infections. We use a mathematical model based on

ordinary differential equations (ODE) and a likelihood-based approach followed

by Markov Chain Monte Carlo (MCMC) to estimate the model parameters and
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their uncertainty.

Incidence data on influenza-like illness in the initial phase of the 2009 A/H1N1pdm

epidemic is used to illustrate that it is possible to estimate either the propor-

tion of asymptomatic infections or the relative infectiousness of symptomatic

versus asymptomatic infectives. Further, we introduce a model in which the

chance of developing symptoms depends on the disease state of the person that

transmitted the infection.

In conclusion, incorporating social contact data from both asymptomatic

and symptomatic individuals allows inferring on parameters associated with

asymptomatic infection based on disease data from symptomatic cases only.

Keywords: mathematical model, influenza, asymptomatic transmission, social

contact data, symptom heritability

1. Introduction

In the absence of effective vaccines or treatment, controlling the spread of an

infectious disease during the early stages of an outbreak, relies on (i) isolation of

symptomatic cases and (ii) tracing and quarantining the contacts of these cases.

Hence, the timing of onset of symptoms relative to the start of infectiousness5

is a crucial factor in the success of these public health interventions. It has

been shown that the proportion of asymptomatic infections (i.e. transmission

that occurs before symptom onset or without showing symptoms at all) is a

key parameter to predict whether or not isolation and contact tracing will lead

to containment [1]. It is therefore important to use an epidemic model that10

explicitly takes into account asymptomatic transmission. However, in many

cases the available data is based on observations of symptomatic individuals

only. To overcome this limitation, models often rely on untestable assumptions,

e.g. assuming a fixed proportion of asymptomatic individuals [2] or ignoring

pre-symptomatic transmission [3].15

Data on social contacts of individuals in a population have already proven

to be a valuable additional source of information when estimating the Who

2



Acquires Infection From Whom (WAIFW) matrix and the basic reproduction

number R0 (see e.g. [4] [5]). More recently, social contact data have also been

used to gain insight in the impact of illness on social contact patterns [6]. It was20

found that individuals symptomatic with influenza-like illness (ILI) have less so-

cial contacts than asymptomatic individuals. Furthermore, the age distribution

of contacts differs between symptomatic and asymptomatic cases. These differ-

ences in mixing behavior affect the expected distribution of infection during the

early stages of an outbreak, which allowed Van Kerckhove and colleagues [7] to25

estimate the proportion of ILI infections caused by asymptomatic cases (34%;

CI: 0% - 77%) from ILI incidence data.

Influenza viruses are highly infectious and cases can show a variety of symp-

toms such as fever, runny nose and sore throat. A substantial number of cases

also show little to no apparent symptoms. Several challenge studies have looked30

at the dynamics of viral shedding and symptoms following influenza virus in-

fections; for a review see [8]. Symptomatic cases are considered to be more

infectious than asymptomatic cases, since it was found that clinical cases have

a higher quantity of virus in nasal wash fluids compared to individuals who did

not develop symptoms. In addition, a positive correlation was found between35

severity of illness and the mean quantity of virus. The link between admin-

istered dose and development or degree of symptoms is less clear. Carrat and

colleagues [8] reported a negative correlation between inoculated dose and fever,

whereas Huang et al. [9] did not find a dependency between inoculated dose and

disease outcome. Their findings point to host factors leading to asymptomatic40

infections. Hence, it is clear that more research is needed to find the precise

link between the amount and duration of viral shedding, the development and

the degree of symptoms and the transmission of the virus.

In the current study we will extend the work of Van Kerckhove et al. [7] by

incorporating social contact data from asymptomatic and symptomatic individ-45

uals to inform mixing patterns in a compartmental model described by a system

of ordinary differential equations. We will illustrate inference on parameters re-

lated to asymptomatic infection using incidence data on influenza-like illness.
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Furthermore, we will also investigate the possibility that the chance of devel-

oping ILI symptoms depends on whether infection came from a symptomatic50

or an asymptomatic case. The paper is organized as follows. In Section 2, we

introduce the model structure, data and estimation procedure. In Section 3,

the ILI data are analyzed, and, lastly, Section 4 summarizes our main results,

conclusions, and avenues for further research.

2. Material and Methods55

2.1. Data

2.1.1. ILI data

Weekly incidence data were obtained from general practitioners’ weekly con-

sultation data on influenza-like-illness (ILI) from England and Wales during the

early part of the A/H1N1pdm influenza epidemic in 2009 (weeks 23-29) [10].60

Pre-existing immunity to the pandemic strain was obtained from a serological

study in England the year before the pandemic [11].

2.1.2. Social contact data

We use data from a social contact survey that was carried out during the

A/H1N1pdm influenza epidemic in England. This survey is described in de-65

tail in [6]. Briefly, participants were recruited into the study through packs

with antiviral medication distributed at thirty-one antiviral distribution centers

throughout England during the epidemic. The packs contained a social con-

tact diary to be filled in on one day during the time they were symptomatic

with ILI. Two weeks later (by which time participants were expected to have70

recovered), participants were sent a similar, follow-up questionnaire. Thus, the

study aimed to obtain two contact diaries from each participant: one completed

when the participant was showing symptoms and one completed after he or she

had recovered. In these contact diaries participants were asked to record details

about each person they met during the course of a day: gender and (estimated)75

age of the contact, social setting and duration of the encounter, frequency with
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Figure 1: Age-specific contact rates for asymptomatic individuals (left) and symptomatic

individuals (right) based on the age classes of the incidence data. The right plots displays the

percentage reduction in contact rates between symptomatic versus asymptomatic individuals.

which that person was met, and whether the encounter involved any skin-to-skin

contact (e.g., hand-shake, kiss, or contact sport). A total of 140 participants re-

turned two completed contact diaries. Based on this information social contact

matrices Ca and Cs for both recovered (assumed to be the same as asymp-80

tomatic) and symptomatic individuals were calculated, respectively [7]. These

matrices are presented in Figure 1.

2.2. Transmission models

2.2.1. Non-preferential model

We use a compartmental model which describes the disease dynamics for85

influenza and infections with similar disease progress. In this model, individuals

either develop symptoms or not after a pre-symptomatic stage. We will refer to

this model as the non-preferential transmission model, since the development

of symptoms is independent of the status of the infector. It is depicted as a

flow diagram in Figure 2. Note that superscripts indicate clinical status of the90

infected individual: symptomatic ‘s’ or asymptomatic ‘a’.
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Figure 2: Schematic diagram of the non-preferential transmission model. Superscripts indicate

presence (s) or absence (a) of symptoms.

Hence, we assume that susceptible individuals are infected at rate λ(t). Fol-

lowing infection, individuals enter the exposed compartment (E) in which they

are infected but not yet infectious. After a mean latent period 1/γ individuals

become asymptomatic infectious, entering the compartment Ia1 . We define φ;95

0 ≤ φ ≤ 1 to be the proportion of cases that will develop symptoms, and 1− φ

the proportion of cases that will remain asymptomatic. Infectious individuals

move from the asymptomatic compartment Ia1 to the symptomatic Is or asymp-

tomatic Ia2 compartments at rates φ × θ and (1 − φ) × θ, respectively. Finally,

individuals recover and move to the recovered compartment (R) at rates σa and100

σs, respectively. The corresponding system of ordinary differential equations

(ODEs) is available in Appendix A.

2.2.2. Preferential model

Further, we extend this model by keeping track of whether a susceptible in-

dividual is infected by an asymptomatic or a symptomatic case; infection caused105

by an asymptomatic case occurs at rate λa(t) and by a symptomatic case at

rate, λs(t), respectively. If the infector is asymptomatic, the infected individual

will move from S to Ea; if the infector is symptomatic, the infected individual

will move to Es. Next, cases become asymptomatic infectious at rate γ and

6



Figure 3: Schematic diagram of the preferential transmission model. Superscripts indicate

clinical status of the infected individual: symptomatic (s) or asymptomatic (a). Subscripts

indicate whether the infector was symptomatic (s) or asymptomatic (a).

move to Iaa or Ias . Infected individuals then either develop symptoms or remain110

asymptomatic. We define φa as the probability that an individual infected by

an asymptomatic case remains asymptomatic and φs as the probability that an

individual infected by a symptomatic case develops symptoms. Figure 3 shows a

schematic diagram of this model which we will call the preferential transmission

model. The corresponding system of ODEs is available in Appendix B.115

Note that we assume the length of the incubation period to be independent

of the infector-type, since there is no information in the literature on possi-

ble differences in incubation and latent period between individuals infected by

symptomatic and asymptomatic cases. Under this assumption, the preferential

model simplifies to the non-preferential model if φs = 1− φa.120

2.3. Age structure and social contacts

Consider a population that is divided in K age categories. The rate at

which a susceptible person in age group k acquires infection at time t is defined

as λ(k, t), the age-specific force of infection. Further, let β(k, k′) denote the

time-independent average per capita rate at which an infectious individual in

age group k′ makes effective contact with a susceptible person in age group k,
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per unit time. The force of infection is then given by (see e.g. [12])

λ(k, t) =

K
∑

k′=0

β(k, k′)I(k′, t),

where I(k′, t) denotes the total number of infectious individuals in age group k′

at time t. We follow the approach by Wallinga and colleagues [4] who express

β(k, k′) as

β(k, k′) = q · c(k, k′), (1)

where c(k, k′) is the per capita rate at which an individual in age group k

makes contact with a person in age group k′, per unit of time, and q a constant

proportionality factor that may capture, among other effects, susceptibility and

infectivity. The elements c(k, k′) form a K×K matrix C, which is called a social125

contact matrix. Equation 1 is referred to as the ‘social contact hypothesis’. The

social contact matrix describes how individuals of different age groups mix in a

population.

In this paper, we distinguish between the asymptomatic social contact ma-

trix Ca and the symptomatic social contact matrix Cs. Hence, ca(k, k′) is the

per capita rate at which an asymptomatic individual in age group k′ makes

contact with a person in age group k. We allow different proportionality factors

for asymptomatic and symptomatic individuals and denote them by qa and qs,

respectively. Hence,

βa(k, k′) = qa · ca(k, k′),

βs(k, k′) = qs · cs(k, k′),

with βa and βs the transmission rates of asymptomatic and symptomatic cases,

respectively. Lastly, define qr = qs

qa as the relative infectiousness of symptomatic130

cases versus asymptomatic cases.

Then, the force of infection for the non-preferential transmission model is

defined as

λK×1(t) = βa
K×K × (Ia1,K×1(t) + Ia2,K×1(t)) + βs

K×K × IsK×1(t),
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where × denotes matrix multiplication. For the preferential transmission model

the rate at which a susceptible individual acquires infection from an asymp-

tomatic or symptomatic individual at time t, respectively, are given by

λa,K×1(t) = βa
K×K × (Iaa,K×1(t) + Ias,K×1(t) + IaK×1(t)),

λs,K×1(t) = βs
K×K × IsK×1(t).

The total force of infection is then λK×1(t) = λa,K×1(t) + λs,K×1(t).

The reproduction numbers for these models can be derived using the next-

generation approach [13]. For the non-preferential model the expression for R

is given by:

R = max

(

eigenvalues

(

βa∆S⊤

θ
+

(1− φ)βa∆S⊤

σa
+

φβs∆S⊤

σs

))

,

where Ac×d∆Bc×1 operates by multiplying the ith row of A with the ith ele-

ment of B. The expression for R in the preferential model is less straightforward

and shown in Appendix B.135

2.4. Estimation procedure

We divide the population in five age categories based on the age classes of

the incidence data at hand: 0− 4, 5− 14, 15− 44, 45− 65 and 65+. The data

consist of reported number of new symptomatic cases per age group per week.

We take into account that not all ILI cases are reported via general practitioners140

and that these under-reporting rates can differ by age.

We use a likelihood-based approach by assuming

yk,j ∼ Po(ρk · (Isnew,k(j)− Isnew,k(j − 1))),

where yk,j is the observed number of new cases in age group k in week j.

Isnew,k(t) is the expected cumulative number of new symptomatic cases in age

group k at time t obtained by solving dIs
new(t)/dt = φ · θ · Ia

1 (t) for the non-

preferential model and dIs
new(t)/dt = (1 − φa) · θ · I

a
a (t) + φs · θ · I

a
s (t) in the145

preferential model. The age-specific reporting rate of ILI cases is denoted by

ρk(k = 1, ..., 5).
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The system of differential equations is initiated by taking into account the

pre-existing immunity to the pandemic strain S(0). Furthermore, since we ob-

served a large impact of the initial number of symptomatic cases Is(0), these150

five parameters (one for each age category) are included in the estimation pro-

cedure. The number of asymptomatic cases at time 0 is assumed to be 0. The

initial number of recovered individuals is then R(0) = N − S(0)− Is(0), with

N the population size.

Our aim is to estimate φ, φa, φs, q
a, qr, ρk, and Isk(0)(k = 1, ..., 5). Other155

parameters are assumed known and were obtained from a literature review on

influenza transmission models by Dorjee et al. [14]. In this review, parame-

ter values were extracted from studies that estimate (or use) mean, minimum

and/or maximum values. These were summarized into three categories: (1) esti-

mated values, where an article attempted to estimate parameters from empirical160

data; (2) referenced values, where values were adopted from other papers; (3)

assumed values, where values were based on expert opinion or unpublished data

sources. Parameters were summarized as median and range of means, minimum

and maximum values from the reviewed articles. An overview of these parame-

ters is given in Table 1. Note that the subclinical and clinical infectious period165

refer to the period from infectiousness to recovery for asymptomatic (1/θ+1/σa)

and symptomatic individuals (1/θ + 1/σs), respectively. We use the estimated

values when available (median of means), otherwise the referenced values are

assumed to be known.

Parameters are estimated via a Markov Chain Monte Carlo (MCMC) approach.170

This procedure was performed using the LaplacesDemon package [15] in R3.1.1

and R3.2.2. A two-phase approach was used, where the first phase consists of the

Adaptive-Mixture Metropolis (AMM) algorithm to achieve stationary samples

that seem to have converged to the target distribution. In the second phase

Random-Walk Metropolis (RWM), a non-adaptive algorithm, is used to obtain175

final samples. In this phase 10,000,000 iterations were conducted retaining every

1,000th iteration. Burn-in period is based on the convergence diagnostic by

Boone, Merrick and Krachey (BMK) [16]. Uninformative prior distributions
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Table 1: An overview of parameters of pandemic influenza A/H1N1 2009 in humans obtained

from a literature review [14]. These values were either estimated from empirical data of

experimental or observational studies (Est.); or referenced for modeling (Ref.).

Parameter Median of Median of Median of

means (range) min. values (range) max. values (range)

Incubation period Est. 2.0 1.0 (1.0 - 2.0) -

1/γ + 1/θ Ref. 2.0 (1.5 - 3.0) 1 5

Latent period Est. - - -

1/γ Ref. 1.5 (1 - 3.5) 0.9 (0.7 - 1.0) 4.0 (2.0 - 5.0)

Subclinical Est. - - -

infectious period Ref. 1.0 (0.5 - 2.5) - 2.0

Clinical Est. 5.6 1.0 10.0 (8.0 - 12.0)

infectious period Ref. 3.8 (2.5 - 7.0) 3.8 (1.9 - 4.0) 5.5 (2.9 - 10)

are specified for all parameters except for the initial number of cases Is(0) for

which informative priors are used based on the ILI incidence in week 22. A180

table of prior distributions can be found in Appendix C. To ensure that the

estimates lay within their proper parameter space, logit transformations are

applied for φ, φa, φs and ρk(k = 1, ..., 5) and log transformations for qa and

qr. Furthermore, since symptomatic cases are considered to be more infectious

than asymptomatic cases, the infectiousness ratio qr is restricted to be larger185

than 1.

2.5. Impact of home isolation

One of the possible interventions targeting symptomatic individuals is rec-

ommending time off from work. Van Kerckhove et al. [7] showed that contacts

made at home are not a proxy for contacts made when symptomatic. Therefore,190

we assess the impact of individuals staying at home after symptom onset by as-

suming that a proportion p of symptomatic individuals stays home immediately

after symptom onset. The contact matrix for symptomatic individuals Cs is

replaced by pCs
h + (1 − p)Cs in which Cs

h is the contact matrix obtained from

contacts made at home by symptomatic individuals in the social contact survey.195
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Hence, we assume that these contact rates do not increase when individuals stay

at home. The obtained posterior parameter samples from the (non-)preferential

model are used to solve the system of ODEs associated with this isolation model

for fixed values of p. This way we can assess the impact of p on the difference

in the number of (a)symptomatic cases.200

3. Results

Using the social contact matrices and the ILI incidence data, described in

Section 2.1, we will look into the estimation of the proportionality factor, qa,

the infectiousness ratio qr, the reporting rates, ρk(k = 1, ..., 5), the proportion

of symptomatic infections, φ, for the non-preferential model and the proportions205

φa and φs for the preferential model.

After exploratory analyses (see Appendix D), we found that one age-independent

reporting rate ρ is not estimable from the data and its value does not affect other

parameter estimates. Hence, it is only possible to estimate the relative differ-

ences in reporting rates between age categories. We set the reporting rate of a210

randomly chosen age category fixed as reference category: ρ4 = 0.2. This value

of 20% is based on a literature search for reporting rates on ILI and influenza.

Since no information on reporting rates was found specifically for H1N1 in Eng-

land, this search was conducted worldwide including seasonal influenza e.g. [17].

However, since there is so little information on under-reporting, we will only be215

interpreting the estimated relative differences.

3.1. Non-preferential model

Posterior medians and 95% posterior credible intervals for the estimated

parameters and R are shown in Table 2. Trace plots and posterior distribution

plots are shown in Appendix A.220

The posterior credible intervals for φ and qr are quite wide, indicating that it

is difficult to estimate these parameters from the data. This is confirmed by the

posterior density plots (Figure A.8). A scatter plot of φ versus qr (Figure A.9)

12



Table 2: Posterior median, 95% posterior credible intervals and DIC value for the non-

preferential and preferential model.

Parameter Non-preferential Preferential

φ 0.15(0.04, 0.39)

φa 0.98(0.89, 1.00)

φs 0.22(0.062, 0.58)

qa 0.082(0.069, 0.093) 0.10(0.092, 0.12)

qr 2.76(1.04, 9.21) 2.62(1.04, 9.20)

ρ1 0.21(0.18, 0.25) 0.20(0.17, 0.24)

ρ2 0.20(0.17, 0.22) 0.20(0.18, 0.23)

ρ3 0.23(0.20, 0.25) 0.21(0.19, 0.23)

ρ4 0.2 0.2

ρ5 0.15(0.12, 0.19) 0.15(0.12, 0.18)

R 1.36(1.33, 1.40) 1.41(1.23, 1.63)

DIC 298.75 288.49

shows a strong link between both parameters, indicating that we can either

estimate the proportion of symptomatic cases or the relative infectiousness from225

the data at hand. When only 15% of cases develop symptoms, symptomatic

cases are estimated to be about 2.76 times more infectious than asymptomatic

cases. The reproduction number is estimated to be 1.36. Lastly, the reporting

rate is estimated to be about 1.15 times higher in the 15 − 44 years age group

and 0.75 times lower in the 65+ years age group compared to the reporting rate230

in the 45 − 65 years age group. The estimated incidence is shown in Figure 4

and the number of symptomatic and asymptomatic cases over time are plotted

in Figure A.10.

3.2. Preferential model

Posterior medians and 95% posterior credible intervals for the estimated235

parameters and R are shown in Table 2. Trace plots and posterior distribution

plots can be found in Appendix B.
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Figure 4: Observed (grey bars) and estimated (connected dots) reported weekly incidence

for the five age categories. Full line and filled dots is the estimated incidence for the non-

preferential model, dotted line and open dots are the estimates for the preferential model.

In this model, we see similar results as for the non-preferential model. Con-

fidence intervals, posterior distribution plots and a correlation plot show that

φs and qr are strongly connected and we cannot estimate both from the data240

(Figures B.12 and B.13). When 22% of cases infected by a symptomatic case de-

velop symptoms, symptomatic cases are estimated to be about 2.62 times more

infectious than asymptomatic cases. Furthermore, this model confirms that the

reporting rate in the 65+ age class is lower than in the other age categories.

Reproduction number is estimated at 1.41. Lastly, this model has a smaller245

DIC value and, hence, a better fit than the non-preferential model. Plots of

incidence and number of cases can be found in Figures 4 and B.14.

To check whether the preferential model simplifies to the non-preferential model

(φs = (1 − φa)), the difference between φs and 1 − φa is calculated for each

14
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Figure 5: Histogram of MCMC samples for φs−(1−φa), with φs the proportion of individuals

infected by a symptomatic case that develop symptoms and φa the proportion of individuals

infected by an asymptomatic case that remain asymptomatic in the preferential model.

posterior sample. The histogram of this difference is shown in Figure 5. The 95%250

credible interval for the difference is [0.05, 0.55]. This shows that the preferential

model does not simplify to the non-preferential model.

3.3. Impact of home isolation

Figure 6 shows the reduction of cases when a proportion p of symptomatic

individuals stays home after symptom onset. As p increases, the reduction in255

cases also increases. For the non-preferential model, there is no visible difference

between symptomatic and asymptomatic cases. Using the preferential model,

we do see a larger reduction in symptomatic cases compared to asymptomatic

cases. Note that the reduction of cases is larger according to the non-preferential
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staying home immediately after symptom onset. Left panel: reduction in total number of

cases for the non-preferential model with 95% confidence intervals. Right panel: reduction in

the number of total, symptomatic and asymptomatic cases for the preferential model.

model in comparison with the preferential model.260

4. Discussion

In this paper, we inferred parameters for an epidemic model accounting

for asymptomatic transmission and age-dependent under-reporting based on

weekly incidence data and social contact data from symptomatic and asymp-

tomatic individuals. The differences in mixing behavior between these indi-265

viduals affect the expected age-distribution of infection during the early stages

of an outbreak [7]. This makes it possible to estimate parameters related to

asymptomatic infection using data on symptomatic cases only. Furthermore,

we compared a simple SEIR model with asymptomatic infection to a model in

which the development of symptoms depends on the status of the infector.270

Using a Bayesian approach on ILI data from England and Wales during the

early stages of the 2009 epidemic [10], we showed that it is possible to either

estimate the proportion of symptomatic infections or the relative infectiousness

of symptomatic cases compared to asymptomatic cases in the non-preferential
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model. Hence, when one has prior information on one of these parameters, it is275

possible to estimate the other one from incidence data. Furthermore, although

the visual difference in fit between both models is minimal, we found that the

data supports the preferential transmission hypothesis i.e. the development of

ILI symptoms depends on whether one was infected by a symptomatic or asymp-

tomatic case. Both models show a significantly larger under-reporting rate for280

people older than 65 years in comparison with 45 − 65 year olds. This means

that the discrepancy between consultation rates and symptomatic illness rates

is larger for the elderly in comparison with the non-elderly adults, although con-

sultation rates in this last age category were found to be lower. Also note that

the reporting rates we estimate can possibly account for factors other than the285

propensity to visit a GP, e.g. the ability to better fit the data because of work-

ing with a hidden layer [18]. This can be due to discrepancies between the true

contact rates underlying infection and the social contact proxies, age-specific

differences in susceptibility and infectiousness, etc. Age-dependent proportion-

ality parameters could also have been used to account for these age-specific290

differences. Lastly, we assessed the effect of symptomatic individuals staying

at home. Following the preferential transmission hypothesis, we found a reduc-

tion in total number of cases of 39% (0.30, 0.45) when 50% of individuals would

stay home immediately after symptom onset. If all symptomatic individuals

would stay home, a reduction of 63% (0.53, 0.70) is observed. To assess more295

subtle scenarios of home isolation, we will use individual-based models in future

research.

Recently, Lin and colleagues [19] explored the trade-off between contact rates

and infectiousness (i.e. decreasing contact rates and increasing infectiousness

with increasing symptom severity) using a model similar to our non-preferential300

model. They found that R0 varies non-monotonically with symptom severity,

implying that certain interventions such as antivirals for influenza, can increase

R0. Their research highlights the importance of using empirical data describing

the relation between contact rates and symptom severity in epidemiological

models.305
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The preferential model resembles the infector-dependent severity (IDS) model

described by Ball and colleagues [20]. However, they assume a homogeneously

mixing population and do not estimate model parameters. They derived a

threshold limit theorem for their model and looked at the effect of vaccination.

They showed that in certain scenarios the proportion of mildly (asymptomatic310

in our setting) infected individuals can increase with increasing vaccination cov-

erage. This emphasizes the practical importance of our model for a wide range

of pathogens with different levels of symptom severity.

There are some limitations to our approach that need to be discussed. One

of them is that the reporting rates are not estimable from the data. Hence,315

one can only infer on the relative differences in reporting rates between age

categories. To estimate the true number of cases, information on the reporting

rate in at least one age class is needed. Further, we assumed constant reporting

rates over time. Though we believe this is of limited impact, since we consider a

relatively short period of time (first 7 weeks of the epidemic). Also, the obtained320

estimates rely on the values of the fixed parameters as found in the literature.

Changing these parameters will affect the estimated target parameters. Lastly,

we assumed that the contact behavior of asymptomatic cases is similar to the

contacts of recovered individuals. We believe this a reasonable assumption,

which is partly supported by the findings of Van Kerckhove et al. [7]. They325

found that the contact patterns from recovered individuals were similar to the

contact patterns observed in the POLYMOD study. However it is possible that

asymptomatic cases do not feel entirely in best shape and therefore might have a

different contact behavior than healthy individuals. Also, we use social contact

data and incidence data from A/H1N1pdm in 2009, thus it is uncertain how our330

conclusions would apply to other influenza strains.

Future research is needed to clarify the exact role of acquired viral dose in

the development of influenza symptoms. Up until now, challenge studies have

not given clear results able to confirm or reject our preferential transmission

hypothesis [8, 9]. Lastly, to extend this model for other diseases more empirical335

data on how contact rates change with symptom severity are needed.
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Appendix A. Non-preferential model

The system of ordinary differential equations (ODEs) for the non-preferential

model is given by



















































































dS(t)
dt = −λS(t)

dE(t)
dt = λS(t)− γE(t)

dIa

1
(t)

dt = γE(t)− θIa
1 (t)

dIa

2
(t)

dt = (1− φ)θIa
1 (t)− σaIa

2 (t)

dIs(t)
dt = φθIa

1 (t)− σsIs(t)

dR(t)
dt = σaIa

2 (t) + σsIs(t)

The next generation matrix for this model corresponding with the infected states

(E, Ia1 , I
a
2 , I

s) is given by

GNP =

















βa∆S
⊤

θ + (1−φ)βa∆S
⊤

σa + φβs∆S
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σs

βa∆S
⊤

θ + (1−φ)βa∆S
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σa + φβs∆S
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σs

βa∆S
⊤

σa

βs∆S
⊤

σs

0 0 0 0

0 0 0 0
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.

Therefore the reproduction number for the non-preferential model is given by

R = max (eigenvalue (GNP )) = max

(

eigenvalue

(

βa∆S⊤

θ
+

(1− φ)βa∆S⊤

σa
+

φβs∆S⊤

σs

))

,

where Ac×d∆Bc×1 operates by multiplying the ith row of A with the ith ele-

ment of B.

Trace plots, posterior and prior distributions for the parameters are plotted435

in Figures A.7 and A.8. A scatter plot of posterior samples for qr versus φ is

presented in Figures A.9. Furthermore, the estimated number of symptomatic

and asymptomatic cases in each age category are shown in Figure A.10.
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Figure A.7: Trace plot of the MCMC samples for the proportion of cases that develop

symptoms (φ), the proportionality factor for asymptomatic individuals (qa), the relative in-

fectiousness of symptomatic cases versus asymptomatic cases (qr) and the reporting rates

(ρi, i = 1, 2, 3, 5).
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Figure A.8: Prior (dotted line) and posterior (full line) distributions for the proportion of

cases that develop symptoms (φ), the proportionality factor for asymptomatic individuals

(qa), the relative infectiousness of symptomatic cases versus asymptomatic cases (qr) and the

reporting rates (ρi, i = 1, 2, 3, 5).
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Figure A.9: Scatterplot of the infectiousness ratio qr versus the proportion of symptomatic

cases φ.
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Figure A.10: Number of symptomatic (full line) and asymptomatic (dotted line) cases over

time for the five age categories assuming a 20% reporting rate in the 45− 65 age class.
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Appendix B. Preferential model

The system of ordinary differential equations (ODEs) for the preferential

model is given by
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440

Therefore the reproduction number for the preferential model is given by

R = max (eigenvalues (GP )) .

Trace plots, posterior and prior distributions for the parameters are plotted in

Figures B.11 and B.12. A scatter plot of posterior samples for qr versus φs is

presented in Figures B.13. Furthermore, the estimated number of symptomatic

and asymptomatic cases in each age category are shown in Figure B.14.
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Figure B.11: Trace plot of the MCMC samples for the proportion of individuals infected by

a symptomatic case that develop symptoms (φs), the proportion of individuals infected by

an asymptomatic case that remain asymptomatic (φa), the proportionality factor for asymp-

tomatic individuals (qa), the relative infectiousness of symptomatic cases versus asymptomatic

cases (qr) and the reporting rates (ρi, i = 1, 2, 3, 5).
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Figure B.12: Prior (dotted line) and posterior (full line) distributions for the proportion of

individuals infected by a symptomatic case that develop symptoms (φs), the proportion of

individuals infected by an asymptomatic case that remain asymptomatic (φa), the propor-

tionality factor for asymptomatic individuals (qa), the relative infectiousness of symptomatic

cases versus asymptomatic cases (qr) and the reporting rates (ρi, i = 1, 2, 3, 5).
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Figure B.13: Scatterplot of the infectiousness ratio qr versus the proportion of symptomatic

individuals infected by a symptomatic case φs.
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Figure B.14: Number of symptomatic (full line) and asymptomatic (dotted line) cases over

time for the five age categories assuming a 20% reporting rate in the 45− 65 age class.
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Table C.3: Prior distributions.

Parameter Prior distribution

Isk(0) N(µk, δk)(k = 1, ..., 5); truncated(0.1, 1000)

φ U(0, 1)

φa U(0.1, 1)

φs U(0, 0.95)

qa U(0, 10)

qr U(1, 10)

ρk U(0, 1)

Appendix C. Prior distributions445

The univariate prior distributions for all parameters are given in Table C.3.

All of these are uninformative, except for the initial number of symptomatic

cases. The number of symptomatic cases at time 0 in age class i is assumed to

follow a truncated normal distribution, with mean µk based on the observed ILI

incidence for age class k in week 22 and standard deviation δk.450

Appendix D. Exploratory analyses

We use an age-independent reporting rate ρ and fix it at the values 0.3, 0.5, 1.0

and repeat the estimation procedure for each value for both the non-preferential

and preferential model.

For both models, the value of an age-independent reporting rate ρ does not455

affect model fit or other parameter estimates. For this reason, we use a reference

reporting rate in one age category in our models with age-dependent reporting.
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Table D.4: Posterior median, 95% posterior intervals and DIC value for the non-preferential

model for different values of the reporting rate ρ.

Parameter ρ = 0.3 ρ = 0.5 ρ = 1.0

φ 0.34(0.10, 0.90) 0.34(0.083, 0.86) 0.35(0.083, 0.90)

qa 0.060(0.035, 0.079) 0.062(0.039, 0.081) 0.062(0.039, 0.080)

qr 2.79(1.05, 8.90) 2.68(1.04, 9.52) 2.67(1.05, 9.18)

ρ1 0.3 0.5 1.0

ρ2 0.3 0.5 1.0

ρ3 0.3 0.5 1.0

ρ4 0.3 0.5 1.0

ρ5 0.3 0.5 1.0

R 1.47(1.39, 1.56) 1.46(1.39, 1.55) 1.46(1.39, 1.55)

DIC 306.61 307.05 307.56

Table D.5: Posterior median, 95% posterior intervals and DIC value for the preferential model

for different values of the reporting rate ρ.

Parameter ρ = 0.3 ρ = 0.5 ρ = 1.0

φa 0.98(0.91, 1.00) 0.99(0.92, 1.00) 0.99(0.92, 1.00)

φs 0.28(0.07, 0.64) 0.29(0.07, 0.65) 0.25(0.07, 0.63)

qa 0.11(0.093, 0.12) 0.11(0.092, 0.12) 0.11(0.092, 0.12)

qr 2.32(1.03, 8.97) 2.24(1.04, 9.05) 2.53(1.03, 9.35)

ρ1 0.3 0.5 1.0

ρ2 0.3 0.5 1.0

ρ3 0.3 0.5 1.0

ρ4 0.3 0.5 1.0

ρ5 0.3 0.5 1.0

R 1.45(1.27, 1.62) 1.45(1.26, 1.62) 1.44 (1.26, 1.61)

DIC 290.97 291.78 291.43
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