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Abstract
This paper introduces a new method for 2D image compressiosewduality is demonstrated through
accurate 3D reconstruction using structured light techniques and 3Dstembon from multiple
viewpoints. The method is based on two discrete transforms: 1lheAlimensional Discrete Cosine
Transform (DCT) isapplied to each row of the image. 2) The output from the prevétep is transformed
again by a one-dimensional Discrete Sine Transform (DST), which is agpliedch column of data
generating new sets of high-frequency components followeglibgtization of the higher frequencies. The
output is then divided into two parts where the low-frequeneypoments are compressed by arithmetic
coding and the high frequency ones by an efficient minimizaimcoding algorithm. At decompression
stage, a binary search algorithm is used to recover the origitetéigiency component¥he technique is
demonstrated by compressing 2D images up to 99% compression hetidedompressed images, which
include images with structured light patterns for 3D reconstructionfrand multiple viewpoints, are of
high perceptual quality yielding accurate 3D reconstrucfanceptual assessment and objective quality of
compression are compared with JPEG and JPEG2000 through 2BDaR#MSE. Results show that the
proposed compression method is superior to both JPEG and JBEGRGerning 3D reconstruction, and
with equivalent perceptual quality to JPEG2000.

Keywords: DCT, DST, High Frequency Minimization, Binary Search Algorithm

1. Introduction

Transform coding is at the heart of the majority 2D image/video coding syatainstandards. Spatial
image data (image samples or motion-compensated residual samples) are transforraedifferent
representation, the transform domain. There are good reasons for transformiagdateagn this way.
Spatial image data isliarently ‘difficult’ to compress; neighbouring samples are highly correlated and
the energy tends to be evenly distributed across an image, making it diffididtard data or reduce the
precision of data without adversely affecting image quality [1,2].With aldeitchoice of transform, the
data become&easier’ to compress in the transform domain. There are several desirable properties of a
transform for compression. It should compact the energy in the image, i.e., cordietrabergy into a
smdl number of significant values; it should de-correlate the datiat discarding ‘insignificant’ data —
normally high frequency data hasa minimal effect on image quality; and it should be suitable for
practical implementation in software and hardware [3,4].

The two most widely used image compression transforms are the discrete cosinentr@D€IT) and the
discrete wavelet transform (DWT) [3,4,5]. The DCT is usually applied to sraglljar blocks of image
samples (e.g. 8x8 squares) and the DWT is usually applied to larger image sectionsomplete
images. Many alternatives have been proposed, for example 3D transforms (detdirspatinl and
temporal correlation), variable block size transforms, fractal transforms, almor @nalysis. The DCT
has proved particularly useful aitds at the core of most current generation of image and video coding
standards, including JPEG, H.261, H.263, H.263+, MPEG-I, MPEG-2 and MPEG-4 [6,7].

To demonstrate the effectiveness of our approach, we focus on compressing 2D imagpagdriate
for 3D reconstruction. This includes 3D reconstruction from structured light images, 3D
reconstruction from multiple viewpoint images. Previously, we have demonstrateghifeageometry
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and connectivity of a 3D mesh can be tackled by several techniques such as highpdiygaraial
interpolation [13] or partial differential equations [2@, the issue of efficient compression of 2D images
both for 3D reconstruction and texture mapping has not yet been addressed in a satisEuber.
Moreover, in most applications that share common data, it is hecessary tatt@nsnmodels over the
Internet. For example, to share CAD/CAM assets, e-commerce applications, updatd &mmten
entertainment applications, or to support collaborative design, analysis, display redegimg, medical
and scientific datasets. Bandwidth imposes hard limits on the amount ofatesianission and, together
with storage costs calls for more efficient 3D data compression for exchagigtheunternet and other
networked environments. Using structured light techniques for 3D reconstructi@tespatches can be
compressed as a 2D image together with 3D calibration parameters, transmittednet&or& and
remotely reconstructed (geometry, connectivity and texture map) at the recaidngith the same
resolution as the original data [15, 21].

Related to the techniques proposed in this paper, our previous work on data compressionaszed

as follows:1) Focused on compressing structured light images for 3D reconstriBitideq and
Rodrigues [15]proposed a method in 2014 where a single level DWT is followed by @m@E LL
sub-band vyielding the DC component and the AC-matrix. A second DWT is applied to the DC
components whose second level LL2 sub-band is transformed again by DCT. A matrix atioimiz
algorithm was applied to the AC-matrix and other sub-bands. Compression ratipst@f98% were
achieved. 2) Siddeq and Rodrigues in same year [16], proposed technique where a DWT wat applied
variant arrangements of data blocks followed by arithmetic coding. The novel aspeat paper is at
decompression stage, where a Parallel Sequential Search Algorithm was proposedamstrdted.
Compression ratios of up to 98.8% were achieved. 3) In Siddeq and Rodrigues[18paaidV/T was
applied followed by a DCT to generate a DC-component array and an MA«Nidtlti-Array Matrix).

The MA-Matrix was then partitioned into blocks and a minimization algorithm cambedh block
followed by the removal of zero valued coefficients and arithmetic coding. At decaiopresagea

new algorithm called Fast-Match-Search decompression was used to reconstruct tmeqghighey
matrices by computing data probabilities through a binary search algorithm in agsogitt a look up

table. A comparative analysis of various combinations of DWT and DCT bleekwis performed, with
compression ratios up to 99.5%.

— —
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Colour Images S|15]1S s S
— | converts to YCbCr —> ; > T]
layers
—— BcF—»
2D BMP image One-dimensional DCT One-dimensional DST
applied to each row applied to each column
Low Higfj <« Quantization Process
Compress this component by (Vertical) |
Arithmetic Coding \
High \ Minimize High-Frequency
(Horizontal) — fomponents
Final 2D matrix: divided into three
components: Low-frequency, High-
frequency (V) and High-Frequency (H) Remove zeros: For enhance

compression ratio

Figure 1. The main steps of the proposed compression algorithm.



In this paper, we introduce a new method based on DCT and DST for compressing 2B wwithg
structured light patterns for 3D surface reconstruction (i.e., the 2D irhagessmbedded stripe patterns,
and the detection and processing of such patterns are used to generate a 3D surftioegllxdthe
method is applied to a series of 2D images (with no structured light pattachssed to convert from
multiple 2D images to a 3D surface [26]. Following the discrete transformationgih&requency
minimization method is used to convert each three adjacent coefficients to ardiegge, reducing the
data size to a third of its original size. The final step is to apply arithmetiegctalihe reduced data. The
main steps in the compression algorithm are depicted in Figure 1.

2. Using One-Dimensional Discrete Cosine Transform (DCT)

The one-dimensional DCT is used to transform each row from an image (spatial dtmabtfin
transform image called 'g;', a shown in the following [3,4]5

Tkl :%C(i)ril ® co{%} M

0= IZCU)TM( )co{ @ *21“”} @

where\C(i) )= 27%,ifi=0
=1,ifi>0

Wherei=0, 1, 2, 3,..., n-1 represents images row size froéin’, and the output is a set of DCT
coefficients"Tyy". The first coefficient is called DC coefficient, and the rest are referred to @#Cthe
coefficients. Notice that the coefficients are real numbers, and they are rounded off tcs.intéger
important feature of the DCT is that it is useful in image compression [14kes tcorrelated input data
and concentrates its energy in just the first few transform coefficients. If the dapatconsists of
correlated quantities, then most of tm transform coefficients produced by the DCT are zeros or small
numbers [8], and only a few are large (normally the first data). The early coefficierasncibrg most
important (low-frequency) image information and the later coefficients contain therlpegant (high-
frequency) image information [6,17]. This feature allows good compression performance as @proport
of the less important coefficient scan be discarded without much degradation of image Higalie 2
shows the DCT applietd each row of a small image size88without using scalar quantization.

[H data <8 double> [T savep <&@ double>
1 2 3 4 5 6 7 8 1 2 3 4 5 6 Y 3
1 2 2 2 2 El 2 a |2 E s 0 0 -1 0 0
2 2 2 2 2 2 2 u u |2 68 0 0 0 0 0 0 0
3 29 el el el 30 31 30 30 |3 86 0 -1 -1 -1 0 0 1
1 ES 38 38 EY 38 20 E ERE: 107 -2 -2 - B! -1 0 1
5 46 47 47 47 49 48 51 46 |5 135 2 1 1 -2 1 2 2
6 54 53 52 54 54 53 55 53 |6 151 1 o 1 1 1 2 0
7 59 57 56 57 56 59 59 57 |7 163 1 2 2 El 2 0 1
8 57 56 57 59 60 59 59 59 |8 165 -3 -2 1 1 0 0 0
Original data ( image data) Te : DCT applied to each row

(Coefficients are rounded off to integers)
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Figure 2. (Left) Original block of data, (righf)s produced by DCT.

3. One Dimensional Discrete Sine Transform (DST)

Our research has indicated that a one dimensional DCT works togethea aitirdimensional DST
yielding large amounts of high-frequency components. These high frequency components are useful to
obtain high compression ratios comparable to the JPEG technique. In this research,apelyitine

dimensional DSTto each column of the transformed matrikqyy" from previous section. The DST
definition is represented as follows [8,9

0 . K *i
Tysi(K) = iZ:l:Tdct(') Sin(z m) (3
k=12,..N
. 2 <& ) K *i
Tou(i) = Nal +1kZ:J;Tdst(k) Sin(z n_+1) (4)

Equation (3) is used to transform"values of T," matrix into 'n" coefficients. These are the low and
high frequency coefficients containing important and less important image information. The one
dimensional DST is applietb each column of " to producea new transformed matrixTys". The

DST is equivalent to the imaginary part of the Discrete Fourier Transformation @DEThe results of

the DST are real numbers [10,11]. The main advantage of using the DST for image compreghgon in
context is that the DST preservers the image quality encoded by the low frequency compongnts of "
and increases the number of zeros, which can be discarded without loss of quality.

After the DST, we apply a quantization of the high frequency components of the transfoatned m
"Tas'. In this way, the quantization means losing only insignificant information from #itgxmEach
coefficient in the matrix is divided by the corresponding number frof@uwantization tablé and the
result is rounded off to the nearest integer. The following equation is proposed as a quantization table.

Q(ip)=(i+)) * F 5)
Where: F>0 and i,j=1,2,3,...,om (image dimensions)

In Equation (5) F" is a real number greater than zero. This value affects image quality e5>fidr "
image quality is decreased. There is no limitHphowever, from our experiments we sugdgefiom 0.1
to 10. Figure 3 shows the DST applieceach column and quantized by Equation (5).
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Figure 3. DST appliedo each Column of 4 followed by quantization with F=2 (See Equation (5))

In the above example, low and high frequency components are determined by the user. The low-
frequency ones are not compressed any further, we just represent theneiirbymg by arithmetic
coding. Meanwhile, the high-frequency components either horizontal or vertical are compredsed by t
High-Frequency Minimization algorithm described in the next section.

4. High Frequency Minimization Algorithm

In this section, we describe an algorithm to convert the high-frequency tmefi¢i.e. from previous
section results passed to Minimization algorithm) into a compressed eallag Minimized-Array
through a matrix minimization method involving eliminating zeros and tripleading whose output is
then subjected to arithmetic coding. Normally, the high frequency components contain largesrafmber
zeroes with a few nonzero data. The technique eliminates zeroes and enhances oonngtiesdi4, 15,

16, 17, 18].

The high-frequency minimization algorithm is applied further redutiregsize of high-frequency sub-
matrix by 2/3.This process hinges on defining three key values and maljiphése by three adjacent
entries inH (the matrix of high frequency coefficients) which are then summed over pngdsicigle
integer values as shown in Figure 4 [16, 18].

Intermediate array (input)

j = [D. [; [D: [0 [Ds [Ds | v [ Dorm-2] Do Do |
e >
>
T Tt == <
#__.___-ﬁ___._____“_b > M(1) M(2) ... Mi(p)
Scan matrix row-by-row Minimized array (output)

with size nxm

Figure 4: High-Frequency Minimization Algorithm used to compress coefficientsR. ., D) from matrixH
(i.e. matrixH scanned rovy-row for compression)



Thus, each set of the three entries fidnare converted into a single value which are then stored into a
new coded arrayMinimized-Array). Assuming thadv is the length oH,i = 1,2,...,N — 3, andj is the
index of new coded array, the following transformations define the high frequency encoding[15-18]:

Minimized Array; = KiH; + K;H ;1) + K3H 5 4)

The key value¥,, K,, K;are generated by a key generator algorithninafl7,18] described through
Equations 5, 6, 7 and 8 below. Because the keys are data-dependenttdf, mazli matrix will have
their unique set of keys if their max) are distinct.

M = 1.5 max(H) %)
K =1 (6)
K, = K, + M + Factor (7
K; = Factor * M(K; + K,) (8

WhereFactor = 1 andK; = lare integer values. The quanti®actoris a scaling factor to enlarge the
degree of separation between the 3 generated keys. The keys themselves aghtheofesichtriplet
summationin the minimized-array. The original values of each triplet can lagemrecovered by
estimating theH values (See Section 5) for theltinimized-Array. Following the models above, the
Minimized-Array for the example in Figure 3 can be illustrated in the following Table 1.

Table 1: From the example of Figure 3: each high-frequency sub-matrompressed independently

Assume M=2 (Maximum value in high-frequency sub-matrix: Horizontal) , the Keys values will be: K;=1,
K,=5, K5=18 for both high-frequencies components. Horizontal and Vertical

High-Frequency Sub-matrix Compressed Size Comments
Minimized-Arraywvericay={-1,0,0, O, ... 0} compressed size 16 48(original size)/3 =16 data
Minimized-Arrayorizontai={2,0,0, 0,00} compressed size 6 | 16(original size)/3 = 5.3 (last zero is alone)

Our compression method createsew array of header dath which is used later by the decompression
algorithmto estimate the original data values. This information is kept in the heatle® obmpressed
file as a string. Figure 5 below illustrates the concept through a numerical example.

—D|Min'\mized-array |

2

-1

-1 -10
-2 12
4

H

oOlh|N| -

30
Matrix

30

[ 1,2,-1,0,30,4,-1012 |
Limited-Data

Figure5: Limited-Data appearing iH are kept in the header file for recovery.

Per above example in Figure-3, the Limited-Data can be estimated from dugiesficy sub-matrices
(Horizontal and Vertical). Limited-Dag@ica)y = {-1,0} and Limited-Dat@orizontai={2,0}.



The encoded triplets in thdinimized-Array may contain large number of zeros which can be further
encoded through a process proposed by [18]. For example, assume the following émicadezed-
Array={125, 0, 0,0,73, 0, 0,0,0,0, -17}.The zero array will 183{0,5,0} where the zeros in red refer to
nonzero data existing at these positions and the numbers in black refernanber of zeros between
two consecutive non-zero dafeo increase the compression ratio, the number 5 can be broken up into 3
and 2 to increase data redundancy. Thus, the equivalent zero array woll@,lie 3, 2,0} and the
nonzero array would be {125,73,-17}. According to this method Mimmized-Array both Horizontal

and Vertical can be illustrated in Table 2.

Table 2: EachMinimized-Arrayis coded to zero-array and nonzero-array

High-Frequency Sub-matrix Zero-Array Nonzero-Array
Minimized-Arrayvericay={-1,0,0, 0 ... 0} | ZerQvericay={0,5, 5, 5} Nonzero-Arrayerticay={ -1}
Minimized-Arrayyorizontai={2,0,0, 0,0, 0} | ZerQuoerizonta={ 0, 5} Nonzero-Arrayorizontai={2}
Note: the 0" refers to the nonzero data in Nonzero-Arrays

The final step of compression is arithmetic coding which computes the probabditydata and assigns
a range to each data (low and high)generate streams of compressed kijsThe arithmetic coding
applied here takes a stream of data and converts into a single floating point value.ptihésdntthe
range between zero and one that, when decoded, returns the exact original stream of data.

5. The Fast-Matching Sear ch Decompression Algorithm
The decompression algorithm is the inverse of compression. First, decode thezBtirkniay for both

horizontal and vertical components by combining the zero-array with the non-zeroSacand, decode
high-frequencies from the Minimized-Array using the fast matching search (&lg&)thm [18]. Third,
inverse the DST and DCT to reconstruct the original 2D image. The imagdsearassessed on their
perceptual quality and on their ability to reconstruct the 3D structures compistngtie original images.
Figure 6 illustrates the decompression method.

Decompression: FMS

» [Decoded High-Frequencyvericany |

Decompression: FMS R

Decoded High-Frequency(Horizontsi) ‘

A

Zero-Armay(yertical) and Nonzero-
ArTayyericsy Combined for decode
Minimized-Array yerica

Zero-Array porizoma) and Nonzero-
IArTaYyarizontay) Combined for decode ¥
[Minimized-Array torizontal) | ] Savep <8 double>

1 2 3 4 5 6 7 8
1 1 [ [] 0 0 0 [
2 38 0 o 0 0 0 0 o
Decode Low-Frequency coefficients I—P 3 3 9 L) L ? L, 9 9
4 % 0 0 0 0 0 0 1]
5 8 0 0 o 0 0 0 o
6 2 0 0 0 0 0 o o
7 2 0 o o 0 0 0 o
B 0 0 0 o 0 L 0 0
[ Savep <8 double> ‘m <p <828 doubl
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 04560 0 0 0 0 o o |1 2 2 n 2 2 2 2
2 674610 -0.8571 0 0 0 0 0 0 2 23 23 24 24 24 24 24 24
H 839082 -11547 0 0 0 0 0 0 3 29 29 29 30, 30 30 30 30/
1 1079120 -13131 0 0 0 0 0 0 4 38 38 38 E B 29 29 39/
5 136.2062 -13131 0 0 0 0 o 0 5 48 48 48 48 45 43 49 49/
6 148.5715 -11547 0 0 0 0 0 0 6 52 52 52 52 53 53 53 53/
7 165.5982 -0.8571 0 0 0 0 0 0 7 58 58 58 58 59 59 59 9
8 1628493 -0.4560 0 0 0 0 0 0 8 57 57 57 58 58 58 58 58
Inverse DST applied to each column Inverse DCT applied to each row (Final Decompressed Image)




Figure 6: The steps in the decompression algorithm.

The Fast Matching Search Algorithm (FM$gas been designed to recover the original high frequency
data. The compressed data contains information about the compression Kéysufld k) and Limited-

Data followed by streams of compressed high frequency data. Therefore, the FMS algalithmppi

each compressed high frequency data and decodes it using the key values and compares whether the resu
is expressed in the Limited-Data. Given 3 possibleesdiom Limited Data, there is only one possible
correct result for each key combination, so the data is uniquely decddedlustrate the FMS-
Algorithm through the following steps A and B [18]:

A) Initially, the Limited-Datais copied into three separated arrays given that we used three keys for

B)

compression. The algorithm picks three items of data (one from each LimitedaDdtapply

these taEquation (4) using the three compression keys. The method resembles an intéecbnnec
array D,where each value is combined with each other value, similar to a network as shown in
Figure7(a).

Since the three arrays of Limited-Data contain the same values, thatBlAT1, A2=B2=C2
and so onthe searching algorithm computes all possible combinations of A wijtB Kvith K,

and C with kg that yield an intemdiate array D. As a means of an example consider tlitadkim
Datal=[A1 A2 A3] , Limited-Data2=[B1 B2 B3] and Limited-Data3=[C1 C2 C3]. Then,
according to Equation (4) these represent H(L), H(L+1) and H(L+2) résggciThe equation is
executed 27 times {827) testing all possibilites. One of these combinations in array D will
match the value in the compressed data. The match indicates that the unique condjidaBon
and C are the original data. If we apply this to our example, LimitedsBDats={-1,0} (See
Table 1) number of possiblites for A=[-1,0], B=[-1,0] and C=[-1,0] as shown in Table 3.

Table 3: All possible data computed according to Equation (4) to generate Aneaip(K,=1,K,=3 and k=4)

Limited-Data;(A) | Limited-Datay(B) | Limited-Datay(C) | D-Array
-1 -1 -1 -8
-1 -1 0 -4
-1 0 -1 -5
-1 0 0 -1
0 -1 -1 -7
0 -1 0 -3
0 0 -1 -4
0 0 0 0

The searching algorithm used in the decompression method is called Binay Skgarithm. It
finds the original data (A,B,C) for any input from compressed datdMieimized-Array". For
binary search, the D-Array should be arranged in ascending order.

The decompression algorithm compares a value from the Minimized-Arrayvetimiddle of
element of the array “D”. If the value matches, then a matching element has been found and its
position is returned (i.e. the relevant A,B and C are the decompressed dat@ afeerfl2]
Otherwise,if the search is less than the middle element of “D”, then the algorithm repeats its
action on the sub-array to the left of the middle element or, if the ialgesater, on the sub-



array to the right. There is no probability ofNot Matched”, because the FMS-Algorithm
computes all compression data possibilities as shown in Figure-7(b).

Limited-Data; Limited-Data; Limted-Data;

Apply Eq. (4) testing all possible combinations

|:> (A, Band C) to generate compress data D-Array

| Sort array in ascending order

|DllDle3|D4| Dk

D-Array

‘Ai‘ 32| Cs A2| Bz‘ Cz ‘

Ala[G]  [AB[G]

(a) Estimate all possible compressed data saved in D-array (i.e. each pessjiriessed data connected with their relevent
original data)

IENEEEREEE Dy
\ \ D-Array
[A] B[ G A B:] G
v ¥
[ATB[G]  [A3[C]

Compressed data in
file
(Minimized-Array)

Binary Search Algorithm Function |

(b) Decompression by using Binary Searching algorithm

Figure7: (a) and (b) FMS-Algorithm for reconstructing high frequency data fronited-Data. A, B and C are the original data
which are determined by the unique combination of keys.

Once the horizontal and vertical high frequency components are recovered by the FMiBrAJgbey
are combinedo regenerate the 2D matrix (See Figure 6). Then each data from the imatttiplied by
each data iQ (Equation 5) followed by the inverse DST (Equation 4) appleelach column. Finally,
we multiply each data by followed by the inverse DCT (Equation 2) applied to each row to retioser
original 2D image as shown in Figure 6. If we compare the results in Figure 6 with the onsiginad8ix
of Figure 2, we find that there is hot much difference, and these differences afbexat image quality.
For this reason, our technique is very attractive for image compression.

6. Experimental Results

The experimental results described here were implemented in MATLAB R20134saradl C++ 2008
running on an AMD Quad-Core microprocessor. We describe the results in two partaefiegiply the
method to general 2D images of different sizes and assess their perceivedywadimaland RMSE.
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Additionally, we compare our compression method with JPEG and JPEG2000 through theatienali
of 2D images, 3D surface reconstruction from multiple views and RMSE error measures.

Second, we apply the compression and decompression algorithms to 2D images that contaadstructur
light patterns allowing 3D surface data to be generated from those patterns. dideas that a high-
guality image compression is required otherwise the resulting 3D structuréhfzadrecompressed image

will contain apparent dissimilarities when compared to the 3D structt&ined from the original
(uncompressed) data. We report on these differences in 3D through visualizatgiaratzsld measures

of RMSE-root mean square error.

6.1. Resultsfor 2D Images

In this Section, we apply the algorithms to generic 2D images, that is, irtfzagedo not contain
structured light patterns as described in the previous section. In this case, the qualitpoittession is
performed by perceptual assessment and by the RMSE measure. We use images with zes\firgsi
2.25MB to 9MB. Also, we present a comparison with JPEG and JPEG2000 highligitetidgferences
in compressed image sizes and the perceived quality of the compression.

Figure 8 (a) gives an indication of compression ratios achieved with our appvbigehn (b) is shown

details with comparative analysis with JPEG2000 and JPEG. First, the decoded 'kmi®/ by
JPEG2000 contains some blurring at places, while the same image decoded by our approacB and JPE
are of higher quality. Second, the decoded 'eyes' image by JPEG algorithm hablsmmartefacts
resulting in a lower quality compression. Also, the same image decoded by our AgprdalEG2000

at equivalent compression ratios, has excellent image quality. Finally, the degotiedhage by
JPEG2000 is slightly degraded, while our approach and JPEG show good image quality.

Compressed size: 107.7 KB Compressed size: 59.4 KB

a5

Compressed size: 59.9 KB

Original size: 2.25 MB Original size: 3 MB Original size: 9 MB
Compression ratio: 95% Compression ratio: 98% Compression ratio: 99%

(a) Compressed and decompressed 2D images by our approach

10



Our approach: RMSE5-95

JPEG2000: RMSE=2.71

JPEG: RMSE=3.2

JPEG2000: RMSE=2.83

JPEG: RMSE=6.66

Our approach: RMSER34

our approach: RMSE-94

g A

T4

JPEG2000: RMSE=3.49

e

JPEG: RMSE=5.02

(b) Details of compression/decompression by our approach,JPEG200BEGdespectively

Figure 8: Compressed images by JPEG and JPEG2000 at equivalent compressieddihs with our approach.

Additionally, we applied our compression techniques to a series of 2D images ahduisdesk
123DCatch software to generate a 3D model from multiple images. The objectivgpésftom a direct
comparison between our approach and both JPEG and JPEG2000 on the ability to pé&rform
reconstruction from multiple views. Images are uploaded to the Autodesd $er processing which
normally takes a few minutes. The 123D Catch software uses photogrammetricueshpigneasure
distances between objects producing a 3D model (i.e. image processing is@erigr stitching a plain
seam with correct sides together). The application may ask the user to selacincpaints on the seam

that could not be determined automatically [25, 26]. Compression sizes and RMSE for all images used are

depicted in Table 4.

Table 4: Compressed sizes and 2D RMSE measures

. Quantization Average

Image Nl.meer _Orlglngl parameters Qompr@ed compr essed size of each Average
N of images image size ood in DST image size . 2D

ame (MB) o N (MB) Image RMSE

Y |[Cb|Cr (MB)

Baby 1 3 05| 5|5 0.059 0.0594 5.95
Eyes 1 9 05| 5|5 0.059 0.0599 4.84

Girl 1 2.25 05| 5|5 0.1077 0.1077 5.94
Apple 48 336 2 515 1.94 0.0414 8.33
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Face 28 200.7 1 515 1.72 0.062 5.68

Figure 9shows two series of 2D images for objects “APPLE’, and “FACE” (all images are available from
123D Catch website). We start by compressing each series of images whose emhgressand 2D
RMSE measures are shown in Table 4. A direct comparison of compression witd&®BEREG2000 is
presented in Table 5. It is clearly shown that our approach and JPEG2000 camarresmhivalent
compression ratio, while the JPEG technique does not. It is important to stress that both owretectthiq
JPEG depend on DCT. The main difference is that our approach is based onitb@MSW and the
coefficients are compressed by the frequency minimization algorithm, whiderszour technique far
superior to JPEG as shown in the comparative analysis of Figure 10.

Figure9: (a) and (b) show series of 2D images used to generate 3D modeldhZagd.

In our method, DCT with DST are applied on an image as one block. The used lomdseqloek size
for colour was 154150, the scalar quantization for DCT was 1, 5 and 5 for each layer (Y,C8rand
respectively. Furthermore, the quantization matrix used after DST perfamnaggressive quantization,
this means that approximately 50% of the coefficients are zeros (ileftthettom of the image matrix
contains lot of zeros after the quantization proeesse Equation 5).
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(8 3D model for series of APPLE images decompressed by our apgfaimages, average 2D RMSE=8.33, total compressed
size=1.94MB). The compression ratio for the 3D mesh is 99.4% for connectiniyertices

(b) 3D model for series of FACE images decompressed by our appr@icha@es, average 2D RMSE=5.68, total compressed
size=1.72MB). The compression ratio for the 3D mesh is 99.1% for connecéinityvertices

Figure 10: (a) and (b) Successful 3D reconstruction following compressiombggproach. Images were compressed to the
same size by our approach, JPEG and JPEG2000.

Table 5: Comparison of 3D reconstruction for images compressed to the sarméateéhat JPEG failed to reconstruct the 3D
structure as the images were too deteriorated.

Multiple Original size | COmPressed 2D RMSE
2D images (MB) MB
(MB) Our approach | JPEG2000 | JPEG
APPLE 336 1.94 95 6.58 FAIL
FACE 200.7 1.72 5.1 3.39 FAIL

6.2. Resultsfor Structured Light Imagesand 3D Surfaces
3D surface reconstruction was performed with our own software developed witlhMBR group [19,
20, 21]. The justification for introducing 3D reconstruction is that we make use of a new set of
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metrics in terms of error measures and perceived quality of the 3D vidigalizo assess the quality of
the compression/decompression algorithms. The principle of operation of GBIRRrface scanning is
to project patterns of light onto the target surface whose image isleeldoy a camera. The shape of the
captured pattern is combined with the spatial relationship between thesdigitte and the camera, to
determine the 3D position of the surface along the pattern. The main advaritdgemethod are speed
and accuracy; a surface can be scanned from a single 2D image and processed into i suféae
milliseconds [22]. The scanner is depicted in Figure 11.

(b)

Figure 11: (a) depicts the GMPR scanner together with an image captured dgntleea (b) which is then
converted into a 3D surface and visualized (c). Note that only the poofitims image that contain patterns (stripes)
can be converted into 3D; other parts of the image are ignored by the®i3traction algorithms.

Figure 12 shows several test images used to generate 3D surfaces both alegegcolour. The top

row shows two grayscale face images, FACE1 and FACE2 with size 1.37MB and dimai3$idns

1040 pixels. The bottom row shows colour images CORNER and METAL with size 3.75MB and
dimension1280 x 1024 pixels. We use the RMSE measure to compute the differences between
decompressed images and original ones. The RMSE however, cannot give an absolute indication of which
is the ‘best’ reconstructed image or 3D surface, as errors may be concentrated in a region that may or may

not be relevant to the perception of quality. To get a better assessmentitgf gueahnalyse 3D surface
images at various compression ratios.
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Figure 12. Structured light images used to generate 3D surfaces. Top row graysagds FfeCE1 and
FACE2, and colour images CORNER and METAL respectively. Images ezenpressed to the same size by

=

our approach, JPEG and JPEG2000.

Table 6: Structured light images compressed by our approach

Il\rlna?r(}:]: Originsa_nlz(lamage Original Image size ComSp_;?d 5 SRR | A s
(MB) DCT DST (KB)
FACE1 137 1 é 1181',775 2125 igi
FACE2 1.37 i é 175.’56 2122 g:é?
CORNER 3.75 E g gi g g g ﬂ? 57-%6 1()'_356
veraL | o1 et Gee et s | Tos

Table 6 shows the compressed size for our approach using two different yajuestization. First, the
guantization scalar for FACE1 and FACEZ2 is 1. This means that after DCT eachieoei$ divided by

1, this means rounding off each floating-point value to integer. Similarly, B®ar the quantization
equation is applied witk (Equation 5).

The colour images are defined by using colour transformation [5, 23] into Yioh@at. We then apply

the proposed approach to each layer independently. For this reason, after DCT the questaiati for
colour images is {1, 5, 5} for each layerf Cb andCr respectively.




FACEL: Compressed size 18.75 Kbytes (texture and shaded) Compressdd 3kbytes (shaded)
3D reconstructed FACE1 from decompressed image by our approach

FACE2: Compressed size 15.6 Kbytes (texture and shaded) Compress@d83ideytes (shaded)
3D reconstructed FACE?2 from decompressed image by our approach

(5] compressed_7.8Kbyes - Windows Photo Viewer

] Compressed_117Kbytes - Windows Photo Viewer

B & e 5 ¢ | X LHEES L@i e
2D decompressed images zoomed-in, to show the details: FACE1 and BAGi§Rer compression ratio

Figure 13: Top: FACE1 shows decompressed 3D surface with texture and shaded sdssmtsize 18.7KB and
11.7KB. Middle: FACE2 shows decompressed 3D surface with texturshaaidd at compressed size 15.6KB and
7.8KB. Bottom: details of 2D images FACE1 and FACE2 respectively at the lighgaression ratio.

Figure 13 shows the visualization of the decompressed 2D images using differenforaduestization.
These decompressed images are converted to 3D surfaces. FACE1 on top of Figure 18 tivamnghéf
are higler quality surface per 3D RMSE. In fact, some parts of 3D surface have disappeamgiteat hi
compression ratio. But in FACE?2 in the middle, the 3D reconstructed imdmghat compression ratio
is approximately the same as for low compression ratio. This means that 3D retmmstiepends on
the structured light's quality in an image. Figure 13 (bottom) shows zoomed-in regiotie ftwo
images, the structure light patterns are clearly present at 99% compression ratio.
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CORNER: Compressed size 21.2 Kbytes (texture and shaded) | Compressed Size=14.7 Kbytes (shade
3D reconstructed CORNER from decompressed image by our approach

METAL: Compressed size 27.5 Kbytes (texture and shaded) | Compressed Size=12.1 Kbytes (shad

3D reconstructed METAL from decompressed image by our approach

1) 20_comer_12.1K - Windows Photo Viewse

Bum v Open v

g7 = \t!“"ﬁ@l‘,"'ﬂ e

2D decompressed images zoomed-in, to show the details: CORNER and MEN&her compression
ratio

Figure 14: (Top) shows decompressed 3D surface of CORNER with texturesizedied at compressed sizes
21.2KBand 14.7KB. (Middle) shows decompressed 3D surface of MENi#tL texture and shaded at compressed
sizes 27.5KB and 12.1KB. (Bottom) zoomed-in details for 2D images CORN&ERIBMAL respectively at higher
compression ratio.

Figure 14 shows 3D reconstructed surfaces for CORNER and METAL images respeClivébp, the
quality of CORNER 3D surface at 99% compression ratio. But the 3D surfgzeight) has some
artefacts; this type of artefacts not present in the original and deasegr&D image at lower
compression ratio. Artefacts appear when the structure light pattemstaiearly defined in the image,

or are degraded after compression and decompression. In Figure 14 middle, the decompreséed MET
image is converted to a 3D surface. The reconstructed 3D surface of middle righadeddgr all cases

in which compression ratios exceed 99%.To analyse 2D colour image compressipopmed-in the
decompressed 2D images. It is shown that the structure lights are eigdoly at higher compression
ratios of 99%.
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JPEG2000 - 18.75 Kbyted JPEG2000 - 11.7 Kbyte] JPEG2000 - 15.6 Kbyte] JPEG2000 - 7.8 Kbytes

JPEG2000 - 21.2 Kbytes | JPEG2000 - 14.7 Kbytes

Figure 15: Top: 3D reconstructed surface for FACE1 and FACE?2 respectively dBiEG2000. Bottom: CORNER
image successfully 3D reconstructed, while METAL image failed 3D reconstiuctio

Table 7: Compression and decompression for 3D reconstruction by JPEGROQIPEG at higher compression
ratios All images were compressed to the same size by the techniques.

Compr essed JPEG2000 JPEG
Image :
- Size 2D 3D 2D 3D
(KB) RMSE | RMSE RMSE RMSE

FACE1 11.7 6.3 1.8 FAIL FAIL

FACE2 7.8 3.2 2.66 FAIL FAIL
CORNER 14.7 5.7 0.63 FAIL FAIL
METAL 13.4 4.17 FAIL FAIL FAIL

For a comparative analysiwe compressed and decompressed the 2D images by JPEG2000 and JPEG,
then converted ta 3D surface. Table 7 and Figure 15 describe the compressed and decompressed results
respectively for JPEG2000. The comparison is based on applying the same compression ratios betwee
JPEG2000 and our approach and show the visualization for the two methods. While the JPHEnalgorit
simply failed to compress the images at the required ratio. Also, the important poinetés ribat
JPEG2000 [24] cannot decompress some 2D images to equivalent quality for 3D reconstrittion or
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does, the 3D surface contains some degradation. Additionally, Figure 16 shows the compressed 2D
images by JPEG2000 with zoomed in image details.

(] 1.jp2000_32% - Windows Photo Viewer (=] 11,jp2000.9 - Windews Phato Viewer

B = (ua @ ] B = e

=] Comer j5g2000_13 - Windows Photo Viewer —

o — B & (eslch=psy 5 ¢ | X
2l = (“";'.EL"” weEs 0 = i

Figurel6: Details of 2D decompressed images by JPEG2000: Top: FACEL onttiseclefirly blurred leading
to degraded 3D reconstruction. Bottom: METAL image on the right is blueratkering it unable to reconstruct
a 3D surface.

7. Conclusions

This paper has presented and demonstrated a new method for image compression and illestrated th
quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE. Our compression algorithm
is based on DCT applig¢d each rowof an image, then followed by DST which is appliecgach column

of the matrix. After the transformation stage, the minimization of Figguency algorithm is used to
reduce the number of high-frequency coefficients. The compression stage is thentezbmpile
arithmetic coding. In the decoding stage, the ®aching-Search algorithm based on binary search is
used to recover the original data. The results show that our approach intrbdtieesmage quality at

higher compression ratios than JPEG and JPEG2000cas more accurately reconstruct 3D surfaces

than both techniques. A slight disadvantage of the proposed method is that it momptex than both

JPEG2000 and JPEG. This is because our approach uses two types of transfotinag, regiither JIPEG
nor JPEG2000 rely on a search method.
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The most important aspects of the method and their role in providing high quaditye iwith high
compression ratios are identified as follows:

1.

2.

10.

The one-dimensional DCT can be applied to an image row (i.e. larger bloclkesgje&qually,

the one-dimensional DST can be applied to each column of the output from DCT.

The user can ignore the scalar quantizatoremove higher frequency coefficients (i.e. keeping
more coefficients increases image quality).

The two-dimensional quantization (cf. Equation 5) provides a more aggressive quantization
removing most of matrix contents as about 50% of the matrix entries are zero. Apiplyioger

the DST can keep image quality at higher compression ratios.

The final transformed matrix is divided into: low-frequency sub-matrix, and horizantl

vertical high-frequency matrices.

The minimization of high frequency algorithm produces a Minimized-Array used to eepdat)

three values from the high-frequencies sub-bands by a single integer value. This pahoess r

the coefficients by 2/3 leading to increased compression ratios.

Since the Minimized-Array for both vertical and horizontal high-frequencies contaigs |
number of zeros, we applied a new method to eliminate zeros and keep nonzero data. The process
keeps significant information while reducing data up to 80%.

At decompression stage, the Fast-Matching-Search algorithm is the engine for estimating the
original data from the minimized array and depends on the organized key values and the
availability of a set of unique data. The efficient C++ implementation allows this algotit

recover the high-frequency matrices very efficiently.

The key values and unique data are used for coding and decoding an image, without this
information images cannot be recovered. This is an important point as a compressed image is
equivalent to an encrypted image that can only be reconstructed if the keys are available. This has
applications to secure transmission and storage of images and video data.

Our proposed image compression algorithm was tested on true colour and YCbCr layered images
at high compression ratios. Additionally, the approach was tested on images resulting in better 3D
reconstruction than JPEG2000 and JPEG.

The experiments indicate that the technique can be used for real-time applications such as 3D data
objects and video data streaming over the Internet.

Future work is focused on efficient implementation of the decoding steps and thaatappito video
compression. Research is underway and will be reported soon.
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