
An Open Workflow Environment to Support Learning Data
Science

BOISVERT, Charles, DOMDOUZIS, Konstantinos and LOVE, Matthew

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/14850/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

BOISVERT, Charles, DOMDOUZIS, Konstantinos and LOVE, Matthew (2016). An
Open Workflow Environment to Support Learning Data Science. In: Apprentissage
Instrumente de l’Informatique, Font-Romeu (France), 30 January - 2 February 2017.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/77595292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

An Open Workflow Environment to Support

Learning Data Science

Charles Boisvert1, Konstantinos Domdouzis2, and Matthew Love3

1 Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK,
c.boisvert@shu.ac.uk

2
k.domdouzis@shu.ac.uk

3
m.love@shu.ac.uk

Abstract. The vast majority of visual tools to learn computing focus
on imperative and object-oriented programming. This paper outlines a
graphical tool and language which is makes functional programming ac-
cessible to inexperienced learners, while also supporting open access to
the data and executable results for study and deployment. We believe
that both the broadening of the range of programming paradigms and
the open approach embedded in the tools make the materials valuable
for learning.

Keywords: computer science education, open data, data science, work-
flow, functional programming

1 Introduction

The increasingly complex and broad agenda of ’big data’ raises the bar of what
our students need to learn and practice. Yet the teaching community is not
responding fast to the challenge. The strongest focus of the numerous courses
and software tools is learning procedural and object-oriented programming, with
multiple visual, block-based environments such as ALICE [3], and studies like
those of Kölling [6].

By contrast, for example, the nifty assignments repository of computing as-
sessment ideas ([11], [10]) contains 101 assignments, collected for their quality,
but only 7 of these incorporate work with a real data set. So the practice has
not yet disseminated to analysing and processing data.

Of particular concern to us, at Sheffield Hallam University’s Data Intelligence
group, is adapting our tools, teaching methods and resources in order to facilitate
access to and process of data by students at any level. We also believe that such
facilitation could support the broader public, such as school pupils or citizen
groups. Two authors of this paper worked particularly with Open Data with a
local advocacy group [8].

To pursue this idea, we are now developing the Open Piping project, an open-
source functional programming environment [2] and visual workflow interface for
data processing.

2 Open piping: lowering the barriers to data science

Open Piping is a system of ”pipes” - of graphical functional programming for
SOA and data processing applications. Visual worklow environments are com-
mon ([9], [7]), including some in commercial and scientific use ([5], [1]). But in
many cases, the value of the tools is limited due to the poor transparency of
the processes and technology they implement - sometimes, though not always,
deliberately so.

Take the case of the popular - until its end in 2015 - Yahoo pipes [9]. Any
member of the public could define, share and execute workflows, but to execute
the process so defined on systems of their choice, had to go through a complex,
uncertain process of exporting the pipe in JSON, then compiling it with a utility
such as pipes2py [4]. When Yahoo support for pipes ended, users had no choice,
if they still wished to run their processes, but to recreate them or work through
this export, compilation and redeployment in another environment.

2.1 Open by design

Our ambition is to propose a graphical tool that can prolong the availability
of open data with a system for user-defined processes, which would include, by
design, the transparency and flexibility needed to apply user-defined processes
in a range of languages and environments. Open piping aims to be at once:

– Open. By which we mean, Open Source; the system’s source code is available
under the GNU licence. But the notation used to define the process - a
simple S-expression defining a function, encoded in JSON for convenience -
is itself open. The executable process, defined from the function, can then be
made available by transforming it in any of a range of target programming
languages.

– Interoperable. The openly available, human-readable JSON format for spec-
ifying and interchanging S-expressions, ensures the interoperability of the
system with any manner of services, such as alternative end-user interfaces,
new languages or new process hosting and remote execution tools.

– Easy to use. The user interface makes it easy to define workflows and shows
clearly the relation between workflow, resulting S-expression, and executable
functionality.

– With resulting processes easy to deploy. The ability to choose from multiple
languages and standards for services and content integration, would facilitate
the re-use of user-defined processes in different environments, such as within
content-management systems, as web or application widgets, or within a
service-oriented architecture.

Altogether, these characteristics ensure that users can easily define the pro-
cesses they want to operate on data, while also retaining control of these pro-
cesses to use them in new environments.

2.2 Open piping architecture

An end-user would program a service by defining a function in a visual functional
language. The language offers access to a set of pre-defined primitive functions,
which at once define the primary graphical blocks available to the end-user,
provide basic access to processing capabilities, and limit that access to a chosen
set.

The user’s visually-defined function is translated into an S-expression in
JSON. The S-expression can be compiled into an executable function in any
number of languages, provided that calls to the primitive functions can be de-
fined and securely executed. Currently this project demonstrates the compilation
from the S-expression to JavaScript, but multiple environments common on web
server and clients are considered - e.g. JQuery, PHP, node.js, etc. Once com-
piled, the resulting process can be executed, but could also be deployed in new
systems.

Fig. 1. Open piping principle

This architecture has several advantages:

– Limits to processing capabilities are not inherent to the language used, but
instead to the environment in which the functions are deployed, for example
by setting a processing time limit.

– The execution environment is limited by the set of pre-defined functions,
supporting secure remote execution.

– The visual language is loosely coupled to the execution environment, by pro-
ducing a function definition in an open syntax; this ensures that changes to

the visual interface, to the target language, and to the execution environment
are independent.

The tools so far let the user define a function, then traverse the user’s tree to
produce the matching S-expression. The S-expression is translated in JavaScript
and users can run the resulting code, displaying the result.

Functions defined are a small set of mathematical and logic primitives: arith-
metic and boolean operations, plus conditional execution and function definition.
A set of test S-expressions is provided to test the language and the compilation
process.

The language remains limited, in particular as it does not yet support higher-
order functions. But it demonstrates how end users can be supported with vi-
sual, yet flexible, access to develop in a functional language. We believe there
is an opportunity to develop tools that demonstrate a broader range of pro-
gramming paradigms, and allow learners to experience and compare such differ-
ent paradigms. Furthermore, we intend to support open access to source code,
standards used, executable results, and deployment environments, enabling au-
tonomous learning through accessibility.

References

1. E. H. Beni. A survey on workflow middleware.
2. C. Boisvert. Open piping project software. https://github.com/boisvert/open-

piping. Accessed: 2016-10-10.
3. S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool for introductory program-

ming concepts. In Journal of Computing Sciences in Colleges, volume 15, pages
107–116. Consortium for Computing Sciences in Colleges, 2000.

4. G. Gaughan. A project to compile yahoo! pipes into python.
https://github.com/ggaughan/pipe2py. Accessed: 2016-10-10.

5. D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn.
Taverna: a tool for building and running workflows of services. Nucleic acids
research, 34(suppl 2):W729–W732, 2006.

6. M. Kölling. The problem of teaching object-oriented programming. Journal of
Object Oriented Programming, 11(8):8–15, 1999.

7. D. Le-Phuoc, A. Polleres, G. Tummarello, and C. Morbidoni. Deri pipes: visual
tool for wiring web data sources.)ˆ(Eds.):Book DERI pipes: visual tool for wiring
web data sources(2008, edn.), 2008.

8. M. Love, C. Boisvert, E. Uruchurtu, and I. Ibbotson. Nifty with data: Can a
business intelligence analysis sourced from open data form a nifty assignment?
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’16, pages 344–349, New York, NY, USA,
2016. ACM.

9. T. O’Reilly. Pipes and filters for the internet. http://radar.oreilly.com/2007/02/
pipes-and-filters-for-the-inte.html. Accessed: 2016-10-10.

10. N. Parlante. Nifty assignments. http://nifty.stanford.edu. Accessed: 2016-01-12.
11. N. Parlante, J. Popyack, S. Reges, S. Weiss, S. Dexter, C. Gurwitz, J. Zachary,

and G. Braught. Nifty assignments. In ACM SIGCSE Bulletin, volume 35, pages
353–354. ACM, 2003.

