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In this paper we introduce analytical solutions of interband polarization, which is the selfenergy of the Dyson 

equation for the Photon Green's functions and apply them to study photoluminescence of Coulomb correlated 

semiconductor materials. The accuracy of the easily programmable solutions is proven by consistently explaining 

the low temperature s-shape of the luminescence peak of dilute bismide semiconductors. The different roles of 

homogeneous versus inhomogeneous broadening at low and high temperatures are described, as well as the 

relevance of many body effects, which are in very good agreement with experiments.   
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1. INTRODUCTION 

Photoluminescence is one of the main techniques to understand and 

develop new materials such as dilute bismides, where the 

incorporation of a small amount of Bi leads to a large bandgap 

reduction, making GaAs1-xBix an excellent candidate to extend GaAs-

based technology to create tunable mid-infrared laser diodes and 

detectors [1]. As a matter of fact, recent research suggests that trains of 

pulses from semiconductor disk lasers, that can be based on both 

dilute nitrides and bismides, when combined with photoconductors 

might lead even to THz generation [2,3]. In contrast to dilute nitride 

systems, where a small amount of nitrogen modifies the conduction 

bands [4], the corresponding band anticrossing effects in dilute 

bismides modify the valence bands [5-9].  An interesting feature of 

these materials is the anomalous energy emission peaks at low 

temperatures, following an unusual s-shape behaviour that is 

associated with disorder and localization effects, which have been seen 

in both dilute bismides [8] and nitrides [4]. A simple and efficient 

method to describe this and other light emission effects in those 

materials is missing and we propose analytical solutions for the Photon 

Green's functions approach [10-12], delivering a microscopic, fully 

quantum mechanical solution. Note that, in spite of its success to 

accurately explain experiments such as both single beam and 

nonlinear pump-probe photoluminescence [13], as well as being a 

powerful tool to design optical devices and solar cells [14] and multi-

photon absorption [15], the method usually requires intensive 

numerical methods. Therefore, in this paper, we aim at two goals: first 

we deliver analytical solutions of the Dyson equations for the Photon 

Green's functions to study photoluminescence of Coulomb correlated 

semiconductor materials. In contrast to previous approaches, our 

formalism does not require large numerical inversion schemes or 

Monte Carlo simulations, which have been applied to explain the 

(Stokes) shift between emission and absorption [16]. Second, the 

accuracy of the easily programmable solutions is proven by means of a 

consistent description of the luminescence spectra and the low 

temperature s-shape of the luminescence peak of dilute bismide 

semiconductors as function of scattering mechanisms. The different 

roles of homogeneous versus inhomogeneous broadening at low and 

high temperatures are explained as well as the relevance of many body 

effects in very good agreement with experiments. We explain the 

disappearance of the s-shape with decreasing homogeneous 

broadening, which can be attributed to different scattering channels 

such as electron-electron, electron-phonon, electron-impurity and 

electron-alloy disorder scattering.  This is consistent with recent 

experimental findings in which rapid thermal annealing improves the 

sample quality and reduces scattering mechanisms that contribute to 

the broadening, thus reducing the measured s-shape-like features in 

InAsN(Sb) samples [17].  Furthermore, it has been recently found 

experimentally that  the addition of antimony reduces the broadening 

of Photo luminescence  emission and Photo reflectance resonances  

[18].  This has been attributed to an improvement of the alloy quality 

after antimony  incorporation due to its reactive surfactant properties 

[19, 20]. The scattering processes cited above can all be described by 

selfenergies [21, 22]. The real and imaginary parts of the retarded 

selfenergies lead respectively to energy shifts (bandgap re 

normalisation) and to the dephasing that characterises homogeneous 

broadening. Depending on the approximation used for the scattering 



mechanisms, the resulting expressions may become sufficiently 

complex. Furthermore, the different samples had quite different levels 

of residual scattering, due to imperfections and impurities. Thus even if 

we had used the selfenergies in Ref. [21, 22], parameters would have to 

be adjusted.  Thus, since one of our main goals is to deliver expressions 

simple enough to be easily programmed by a broad audience, we 

describe dephasing/scattering globally by a simple density and anisotropy  parameter Γ, given in Appendix D.  Note however that, 
even though this reduces the fully microscopic approach, we are fully 

able to explain the origin of e.g. the s-shape in luminescence spectra. In 

our approach stronger disorder translates mostly into larger alloy 

disorder scattering that increases the homogeneous broadening described by the parameter Γ in the equations that follow. Our 
analytical solutions can thus simply and elegantly explain the evolution 

of the luminescence spectra as function of excitation, temperature and 

increasing level of disorder. This paper is organized as follows. We 

start with the equations in Ref. [11] and outline the derivation of 

analytical approximations, which are possible due to the screened 

Coulomb potential chosen. Next, we reproduce experimental 

luminescence from a number of independent teams with very good 

accuracy. A short summary follows. We focus on bulk dilute bismides, 

but superlattices can also in many cases be described with this 

formalism by treating them as anisotropic bulk media [23]. 

2. MATHEMATICAL FORMALISM 

The quantum mechanical Poynting vector describing light emission 

can be expressed in terms of the Photon Green's Function, leading to 

the optical power density spectrum, which can be directly compared 

with photoluminescence experiments [10,11], 

 = ℏ / � ��< .                                                                               (1) 

 

The transverse polarisation function P is the selfenergy in the Dyson 

equation for the Photon Green's Function and the lesser Keldysh 

component P< is proportional to the carriers recombination rate, while 

Pr is related to absorption/gain and refractive index change. To find 

analytical solutions, we start by following the step by step procedure in 

Ref. [11], where only numerical solutions are given and approximate 

the full frequency dependent population inversion factor by = tanh( ℏ − . Under quasi-equilibrium in each band, the 

occupation functions are characterized by chemical potentials,  and ℎ, = + ℎ . Homogeneous broadening is accounted through  which is the dephasing due to the various possible scattering 

channels. The material resonance energy is = ℏ + �, where ⁄ = ⁄ + ℎ⁄ . The bandgap Eg is given by the sum of the 

fundamental band gap  � , and a many body renormalisation term �. The integro-differential equation for P< reduces to 

 �< = −�8�|Π|Ω {∑ Λ , } ⃗ },                                                              (2)                                                   

 ℏ − + � Λ , + ∑ �  ⃗− ′⃗⃗⃗⃗ Λ ′, = � ,′⃗⃗⃗⃗      (3)     

 

where Π is the matrix element of the velocity operator. Numerical 

complications due to the singularity introduced by the Kubo-Martin-

Schwinger (KMS) relation [11], are eliminated exactly because the 

resulting factor � = / + � ( ℏ −  is positive and 

finite, where = �� . The Yukawa potential is the approximation 

typically used for the screened potential in 3D. However, the 

corresponding Schrödinger equation does not have known analytical 

solutions. In contrast, the Hulthén potential, � = − ′− /

exp −  has known analytical solutions which have 

successfully reproduced bulk nonlinear absorption spectra [32]. We 

thus used it here for luminescence calculations.  Its three-dimensional 

Fourier transform also has an analytical expression,   

 � = − �Ω ′ { ′ + � } ,                                                                    (4) 

 

where  is the sample volume, ′ is the Trigamma function [24],  is 

the screening wavenumber and ′ = / .  Analytical 

approximations for  and  are given in Appendix A. The bandgap 

renormalisation including Coulomb hole and screened exchange 

corrections reads  

 � = − ′ − ∑ � ( + ℎ ,                                                   (5)                                         

 

where the Fermi functions , ℎ  are evaluated at the peak of the 

spectral function for each particle. More details are given in Appendix 

C.  This goes beyond previous analytical approaches for absorption in 

bulk and superlattices that had a phenomenological term for the 

bandgap shift [23, 25, 26] and also, in contrast to those, here we can 

take into account a reduction in the Coulomb interaction due to phase 

space filling through the factor . Note however that in the range of 

carrier densities used in the numerical results presented in this paper, ≈  i.e. ′  ≈ .  Next we Fourier-transform Eq. [3] to real space 

and expand Λ ,  in the basis of eigenstates of the Hamiltonian, 

 − [ℏ ∇ +  � ] = ,                                                                (6) 

 

leading to a closed expression for the output power density, 

 = ℏ |Π| /+ exp ℏ − ∑| = | ℏ − � − , 
                                                                                                                                                    (7) 

                      

where = � (ℏω−E −Eν + , but for practical applications, leading to 

feasible luminescence spectra without the need of a frequency and 

momentum dependent dephasing, we  replace it by any other 

analytical representation of the Dirac delta function to which it reduces 

for → .  We choose  � = �  cosh �⁄⁄  (see Appendix B). 

 

Real space representations of the Hulthén potential eigenstates are 

known [23-27] and among the various possibilities, we choose easily 

programmable forms of the solutions at r=0. 

 = + (� ℏ − {∑ � − �√�= − +�∫ (��√c (��√ −c √ �−� − � �∞ },                                          (8) 

 

where = ℏ |Π|� � , =− − − �−  , = (ℏ − � /  , = � −  and � ,  denote, respectively the exciton Bohr radius 

and binding energy. When a small fraction of As atoms is replaced by 

Bi, the resulting fundamental bandgap �  can be obtained from  ⃗ ∙   
bandstructure combined with the valence band anticrossing model for 

GaAs1-xBix alloys. The interaction of the Bi impurity state with the 

valence band of GaAs can be described by a × matrix obtained by 

diagonalising the full ×   ⃗ ∙   free-carrier Hamiltonian [9, 28-

30]. Details of the solution are given in Appendix E. 



 

 

The effect of bismuth ions on the conduction band of GaAs1-xBix alloy is 

taken into account through the virtual crystal approximation. 

Fluctuations in the alloy composition are described here by a Gaussian 

distribution in the dilute Bi mole fraction x. If � is the nominal Bi mole 

fraction, and �,  is the expression in Eq. 8, the inhomogeneously 

broadened spectrum reads 

 

� ℎ = √ �� ∫ �,+ �− � − �−�� �.                                             (9) 

3. NUMERICAL RESULTS AND DISCUSSION 

Figure 1.a shows a comparison of our calculations with experiments 

for different compositions of dilute bismide and Fig. 1.b depicts the 

evolution of the spectra for different temperatures to demonstrate that 

by using standard material parameters taken from the literature, 

together with our many body corrections, we deliver the correct 

spectra and use the same parameters in all other curves.  Our theory is 

predictive. Furthermore, note that even though inhomogeneous 

broadening is necessary to obtain the correct spectral shape in Fig.1. 

and Fig.1.b, it is not used here as a fit parameter for fine tuning of the 

theory vs experiments comparison, since in all curves shown the same 

fixed value � = .  is used.  The choice of homogeneous 

broadening is explained in Appendix D. 

Fig.1. Top panel: Calculated Luminescence spectra of GaAs1-xBix on 

GaAs for different Bi mole fractions, from left to right x=1.16, 1.8, 2.34, 

3.04 and 3.83 % fractions at 10 K. The inset depicts experimentally 

measured data from Ref. [8]. The number of carriers used in the 

calculation is 1015 cm-3.  Bottom panel: Calculated Luminescence 

spectra of GaAs1-xBix on GaAs for with a Bi mole fraction x=1.4 %. From 

top to bottom the temperature is T=150, 175, 200, 225, 250, 275 and 

300 K. The right inset depicts experimentally measured data from Ref. 

[7].  The curves in the left inset compare the following cases:   many 

body calculations (black-solid), experiments (red-dashed) and free 

carrier calculations (blue-dot-dashed). 

 

Figure 2 depicts the evolution of the luminescence peak energy as a 

function of temperature, leading to the so called "s-shape" at low 

temperature.  It is clear that many body effects give much better 

agreement with experiment. 

 

 

 

 

 

 

 

Fig.2. Comparison of luminescence peak energy of GaAs1-xBix on GaAs 

as a function of temperature with experimental data extracted from 

Ref. [8] (red circles). Comparing our full expressions (black squares) 

shows the relevance of many body effects against free carrier 

calculations (blue diamonds).  The number of carriers used in the 

calculation is 1015 cm-3 and the temperature is 10K. 

 

We attribute the remaining deviations between theory and 

experiments to the fact that dephasing is actually carrier density, 

frequency and momentum dependent, while we have used a simple 

density and anisotropy dependent formula for  for all curves. As 

explained in Appendix A-C a full frequency and momentum 

dependence would not allow for analytical solutions.   Note that a 

density matrix approach would provide only momentum dependent 

occupation functions and the steps that allowed the introduction of the 

frequency dependent θ and ℬ would not be possible. This justifies 

using a Green's functions approach. The explicit expression for  is given in Appendix D.  Figure 3 shows that the "s-shape" feature 

vanishes with decreasing homogeneous broadening (→ smaller ). 

Thus if scattering channels such as electron-impurity and electron-

defect scattering are reduced, e.g. by rapid thermal annealing the 

feature should accordingly be smaller. This is qualitatively consistent 

with recent experimental findings in InAsN(Sb) systems, where s-like 

features disappear with annealing, improving the sample quality [17]. 

Fig.3. Comparison of luminescence peak energy for the GaAs1-xBix on 

GaAs sample of Fig.2 for increasing homogeneous broadening. The 

number of carriers used in the calculation is 1015 cm-3 and the 

temperature is 10K. From top to bottom, the homogeneous 

broadening increases by = 0.01, 1, 1.5, 2 . 



Note also that the s-shape dip towards lower energies for the peak 

luminescence is predicted only for sufficiently low excitation densities. 

It vanishes at sufficiently high carrier densities as seen in Fig.4, 

consistently with experiments [16]. 

 

Fig.4. Comparison of luminescence peak energy for the GaAs1-xBix on 

GaAs sample of Figs. 2 and 3 for increasing carrier density.  The circles 

squares and triangles are respectively for increasing carrier density n = 

0.0015, 0.15 and 1 × 1017 cm-3. 

 

In other words, by increasing the excitation power, the s-shape 

disappears. Mathematically the s-shape stems from an interplay 

between the density dependence and the homogeneous broadening, 

controlled by the occupation factor. If the chemical potential is 

removed from our calculations, a Varshni-like plot is obtained i.e. no s-

shape.  The analysis is completed by clarifying the role of 

inhomogeneous broadening in Fig.5. Note that, even though 

inhomogeneous broadening is not the origin of the s-shape, inclusion 

of some inhomogeneous broadening gives an overall better agreement 

between theory and experimental spectra and with the peak emission 

positions.  This is consistent with the fact that from fundamental 

thermodynamics, even high quality alloy samples are expected to have 

concentration fluctuations [31]. As previously discussed all plots in this 

paper have the same level of inhomogeneous broadening (�=0.003), 

except of course the (blue-diamonds) curve in Fig.5. 

Fig.5. Comparison of luminescence peak energy for the GaAs1-xBix on 

GaAs with experiments from Ref. [8] (red circles). The number of 

carriers used in the calculations is 1015 cm-3 and the temperature is 

10K. The curves marked by black squares and blue diamonds are 

calculated respectively with inhomogeneous and homogeneous 

broadening only. 

 

In summary, in this paper we delivered analytical solutions for the 

interband polarization function, which is the selfenergy in the Photon 

Green's function equation and used them for a successful comparison 

with different types of luminescence experiments from independent 

research teams.   We have shown that the development of an s-shape 

feature for the peak luminescence can be controlled by the 

homogeneous broadening and is reduced with increasing excitation 

power in very good agreement with experiments as well as the 

interplay between a relatively small amount of alloy fluctuation 

described by inhomogeneous broadening and many body effects. This 

illustrates the power of our analytical solutions, which are sufficiently 

simple to allow a large number of researchers to reproduce and apply 

them to systematic simulations of experiments for a plethora of new 

optical materials and devices based on them.   

 

     

 

APPENDIX A: Analytical expressions for the chemical potential and 

inverse screening length Let’s assume that the electron λ = e  and hole λ = h  bands are in 

quasi-equilibrium with carrier density = = ℎ at temperature T, 

or equivalently = /  and thus characterized by chemical 

potentials  and ℎ.  Introducing the dimensionless density , a Padé 

approximation gives [33] = + ln + + .                                                     (A1) 

The screening wavelength is given by = + ℎ , where 

= √ � �� = √ �� �⁄��+ � �� ��+ +� ,                                                                     (A2) 

with = . , = .  and = . .  and  denote, 

respectively the background dielectric constant and the electron 

charge and   

 = [( ∥, �ℏ⁄ ( ⊥, �ℏ⁄ / ]⁄ .                             (A3) 

APPENDIX B: Analytical expressions for the polarisation function 

We start from expressions in Refs. [10, 11], simplifed to the two band 

case 

� ∕< = � |Π|Ω ∑ � ∕< , , ⃗                                                               (B1) 

where , ,  and Π denote, respectively the electron charge, the speed 

of light, the sample volume and the velocity matrix element. The 

retarded matrix element satisfies the integro-differential equation [11], � , = � , − ∑ � , �  ⃗−  ⃗ ′� ′, ⃗ ,                   (B2) 

where � is the screened. Furthermore, 

{� , } = ∫ ′� ̂ , ′ ̂ℎ , − ′ { − ′ −ℎ − ω′ }.                                                                                                                  (B3) 



Under quasi-equilibrium conditions  denotes a Fermi function and  

spectral function for each particle (electron-e) or (hole-h) reads ̂ , = ℏ − � +� �.                                                                                       (B4) 

Next, we use the relation − ′ − ℎ − ′ = {[ − ′ ][ − ℎ − ′] +′ ℎ − ′} tanh[ ℏ − / ],                                                      (B5) 

neglecting the term in between braces and evaluating the dephasings 

at the peak of the corresponding spectral functions, the frequency 

integration can be performed analytically, leading to  

� , ≡ �ℏ − +�    .                                                                                     (B6) 

Here, = + ℎ . = + ℎ ,  = + ℎ and � = tanh[ ℏ − / ]. The equation for � ,  reduces to ℏ − + � � , + � ∑ �  ⃗−  ⃗′ ⃗ ′ � , = �.        (B7) 

Using the version of the KMS relation derived in Ref. [11], 

�< = − � { }− [� ℏ − ],                                                                                       (B8) 

and introducing the auxiliary variable 

Λ , = � ,− [� ℏ − ],                                                                                     (B9) 

leads to the relation �< , = − �{Λ , }, and the 

corresponding integro-differential equation ℏ − + � Λ , + � ∑ �  ⃗−  ⃗′ ⃗ ′ Λ , = ℬ,           (B10) 

where ℬ = − a [� ℏ − / ]− [� ℏ − ] = + [� ℏ − ]. 
Note that all numerical difficulties with typical applications of the KMS 

relation, such as the division by two small numbers are eliminated 

since ℬis always a positive number. Previous work has used a matrix 

numerical inversion technique to solve the equation for the retarded 

polarization for the absorption with further use of the KMS relation, 

successfully describing both single beam and pump and probe 

luminescence of quasi-two dimensional quantum wells [11, 12]. In 

contrast we show here an exact analytical solution. We start by 

simplifying the notation, including the phase space filling factor in the 

dielectric constant ϵ′ = ϵ /ϑ as in Eq. 4 of the main text for the 

Hulthén potential. 

Next, we make a Fourier transform in a form that preservs units (  is 

the sample volume), = Ω� ∫ −�  ⃗∙   ,         = �  ∫ �  ⃗∙  ,     (B11) 

[ + � − � + ℏ ∇ + � ]Λ , = ℬ ,                           (B12) 

where denotes the Dirac delta function. Next, we expand Λ ,  

in the basis of eigenstates of the Hamiltonian, 

− [ℏ ∇ + � ] =  ,       Λ , = ∑ � ,       
                                                                                                  (B13) 

leading to 

Λ , =  ∑ − Ωℬ �∗ =ℏ −��−��+� .                                                           (B14) 

At this point, we Fourier-transform back to k-space and introduce Λ = ∑ Λ , ⃗ , obtaining 

 Λ = ∑ − Ωℬ| � = |ℏ −��−��+�  .                                                                              (B15) 

The relations  

�< = −� 8�Ω |Π| {Λ } and = ℏ / � ��< , yield                                                   

= ℏ |Π| − � [ ℏ − ] ∑| = | (ℏ − � , 
                                                                                                                                              (B16) 

where = � (ℏ −��−�� +  reduces to a Dirac delta function for →  and the velocity matrix element is expressed in terms of the 

dipole moment matrix element and the fundamental bandgap as |Π| = ( � ℏ⁄ | |�| |. 
At this point we replace the Lorentzian by � = �  cosh �⁄⁄  for 

the following reasons: note that even though general conclusions can 

be drawn Refs. [10, 11] these are based on numerical solutions in 2-D 

k-space for which no know analytical solution exists.  A previous study 

[34], has shown that in order to obtain realistic looking luminescence 

spectra, the spectral function  ̂   must retain its Lorentzian-like form, 

and a frequency and momentum dependent dephasing must be used.  

Such dephasing would introduce r-dependent terms when we Fourier 

transform the polarization equation to real space. These extra terms 

would lead to a problem without analytical solutions. Furthermore, in 

order to have a simple parameter  and the realistic-looking 

luminescence spectra, see Fig.1, the hyperbolic secant is necessary. 

Note that the most successful description of e.g. nonlinear absorption 

in the 3D case has been obtained with analytical approximations [28, 

29]. This cannot be done in a numerical solution because important 

spatial frequencies (high k-values) would be cut out of the matrix 

inversion and numerical integrations in k-space. The eigenstates and 

eigenvalues of the Hulthén potential are known [35] and as the 

expressions above show, we need solutions that do not vanish at r=0, 

so after the decomposing into radial and angular parts,  = �, �  ,                                                                                 (B17) 

we take l=0.  The contribution from bound states reads [35] 

∑ | = | = �� − � , = − − � .              (B18) 



The integer  runs from 0 to the maximum integer in √ , = � −  and � ,  denote, respectively the exciton Bohr radius 

and binding energy. The inverse screening length  is given in 

Appendix A.  The contribution from the continuum is  

∑ | = | =  �� ∫ (��√c (��√ − c �√ �−�∞ �,          (B19) 

giving rise to Eq. (8) in the main text, where  and are defined. =
+ (� ℏ − {∑ � − �√�= − � ∫ (��√c (��√ −c √ �−� − � �∞ }.                       (B20) 

APPENDIX C: Bandgap shift with the Hulthén potential 

The poles of the spectral function Ĝ occur for each particle  at = ℏ � + � , + {Σ }. 

Within the random phase approximation and using a statically 

screened potential, the following approximation is possible for the real 

part of the retarded selfenergy. {Σ } = Σ , + Σ ,  , Σ , = −∑ �   ,                                                                              (C1) 

Σ ,  = lim → � − � = −  , 

leading to Eq. 5 in the main text. Thus the bandgap is 

� = � + �,                                                                                                            (C2) 

where � is the fundamental bandgap found in tables of material 

properties of semiconductors and  

� = − ′ − ∑ � ( + ℎ ,                                               (C3)                                        

where the fermi functions are evaluated at the peak of the spectral 

function for each particle. Note that the fundamental bandgap for the 

electrons and the bandgap shift in each band cancels out with the 
corresponding correction to the chemical potential. 

Thus  

 = ex �(ℏ��− �) + ,                                                                                (C4) 

with chemical potentials given in Appendix A. 

APPENDIX D: Density and anisotropy-dependent dephasing 

In all curves and for all temperatures we have used the same 

phenomenological dephasing that depends on the anisotropy through 

the binding energy e  given by 

Г = [Г + Г n n⁄ ] ∙ e  ,         = {  × − , n n⁄ <× − ,   n n⁄ ≥             (D1)                                                 

and n =   cm− . In all Fig.1a and its inset and Figs. 2 and 4, = . In Fig.1.b and its insets that corresponding to a different 

sample with larger residual low density broadening, = . In Fig.3 

the total homogeneous broadening  is increased arbitrarily to 

demonstrate its influence in the s-shape. 

APPENDIX E: Bandstructure  

The interaction of the Bi impurity state with the valence band of GaAs 

can be described by a ×  matrix obtained by diagonalising the full ×  k⃗ ∙ p⃗  Hamiltonian [9, 28-30].  

  � � � �� � � � � �−   ),                                                                             (E1) 

 

where H and L denote the valence band energy for the heavy and the 

light holes of the GaAs binary semiconductor. The solution of the above 

matrix equation yields four distinct energy levels heavy/light hole E / ± and spin orbit split-off ESO± energies [9]. The impurity levels 

of the heavy or light holes, and the spin orbit split off below the valence 

band maximum are given, respectively by E = .  eV and E −SO = .  eV [28]. The matrix element describing the coupling 

between the Bi- impurity level and the valence bands is   V = C √x 

with C = .  eV [9, 25-27].  = − ℏ [( + + + − ] + ∆ � ��, = − ℏ [( + − + + ] + ∆ � ��.  (E.2)      

The distinct energy levels that result from the valence anticrossing are 

thus  

ℎℎ/ ℎ = / + � ± √ / + � + � �  ,  � � = � �√�.         
                                                                                                                  (E.3) 

Note that at high symmetry point k = , H = L and that the dilute 

GaAsBi alloy band gap is given by 

 E , a = E , a − ∆E x .                                                                       (E.4) 

 ∆EV  and ∆E are the difference in valence and conduction band 

maximum between the GaAs and GaBi binaries. Their values have been 

obtained earlier as 0.8 and -2.1 eV respectively [9] through model 

solid theory.  The effective masses of the degenerate bands are 

,l [Ga s −x x]±∗ = ,l [Ga s]∗ { E  − /√ V +[E − / ] ∓ }                        m , [ a ]∗ = ∓ −                                                           (E.5) 

 � = . + .  × − ×+                                                                      (E.6) 

 

The remaining needful parameters are given in Table I below 

 

Table I. Material parameters  
me 1 2  ∞ � �(eV) 

0.067 6.986. 66.98 2.06 13.71 10.89 1.7 
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