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ABSTRACT 

Ca(OH)2 particles with submicrometric dimensions (nanolimes) represent one of the most promising consolidants 

for the conservation of calcareous substrates. The nanolime treatment is similar to the limewater technique, 

traditionally used for its durability and high compatibility with the calcareous matrix but requiring a large number of 

applications and not always yielding a highly effective consolidation. Since 2001, alcohol-based dispersions of 

Ca(OH)2 nanoparticles have been synthesised to overcome the limitations of the limewater treatment. Nanolimes 

present the same high compatibility and durability of the traditional technique but superior properties in terms of 

higher consolidation, penetration and reactivity, and fewer side effects. Since their discovery, nanolimes have been 

investigated by several research groups with the aim of refining their synthesis process, properties and applications. 

This paper presents an overview of the most relevant literature about nanolime as a consolidant for calcareous 

substrates. 

 

Key words: Nanolime; Calcium hydroxide; Consolidation; Lime-water; Conservation; Nanoparticles; Synthesis; 

Calcareous substrates.  

 

RESUMEN  

Partículas de nanocal, Ca(OH)2 con dimensiones sub-micrométricas, es uno de los principales consolidantes 

emergentes dentro de la conservación de sustratos calcáreos. La nanocal se basa en la técnica de agua de cal, 

utilizada tradicionalmente por su alta compatibilidad y durabilidad con el substrato calcáreo; pero su aplicación 

requiere de un gran número de aplicaciones y la consolidación no siempre es muy eficaz. Desde 2001, dispersiones 

alcohólicas de nanopartículas de Ca(OH)2 se han sintetizado para obviar las limitaciones de los tratamientos 

tradicionales. La nanocal presenta la misma alta compatibilidad y durabilidad del método tradicional y propiedades 
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superiores en términos de mayor consolidación, penetración, reactividad y menores efectos secundarios. Desde su 

creación, estas formulaciones han sido estudiadas por varios grupos de investigación con el objetivo de perfeccionar 

su proceso de síntesis, propiedades y aplicaciones. Esta publicación revisa la bibliografía más relevante para 

identificar  áreas donde un mayor estudio es necesario. 

 

 

1. INTRODUCTION 

The recent development of nanoscience and nanotechnology has opened the way to new applications in 

many scientific fields, including that of the conservation of cultural heritage. One example of a 

nanomaterial developed over the last decades is the so-called “nanolime”, nanoscale particles of 

Ca(OH)2with potentially superior consolidation properties compared to traditional lime-based treatments. 

So far, nanolime has been studied mainly within the built cultural heritage conservation field.  

 

Scientific investigations on nanolime began around the year 2000 at the University of Florence CSGI -, in 

Italy, with the first results on its synthesis and application for the conservation of wall-paintings published 

in 2001 (Ambrosi et al. 2001). The researchers in Florence modified the synthesis methodology several 

times by reactions in diols (Salvadori and Dei 2001), aqueous solutions (Ambrosi et al. 2001) or water-in-

oil (w/o) micro-emulsions (Nanni and Dei 2003). In 2003, another research group (Ziegenbalg 2003) 

prepared nanolime from a heterogeneous-phase reaction, which was patented under the brand name 

Calosil®. Calosil® was the first nanolime product introduced to  the market in 2006 (IBZ-Salzchemie 

GmbH & Co. KG) followed by Nanorestore® (CSGI) in 2008. With these products made available to 

the scientific community, European researchers began investigating the properties and consolidation 

efficacy of nanolime. Three main EU research projects, STONECORE (2008 - 2011), NANOMATCH 

(2011 - 2014) and NanoforART (2012 - 2015) have made significant contributions to understanding the 

technologies and preparing the way for a range of applications of nanolime in the conservation field. 
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Nanolime is used mainly to recuperate the cohesion between particles in calcareous substrates such as 

wall-paintings, limestone, lime mortar, etc. In the past, organic and inorganic consolidants have been used 

for the consolidation of these substrates. The use of organic consolidants such as acrylic, epoxy, or vinyl 

resins were very common in restoration treatments since 1960 (Dei and Salvadori 2006). However, the 

low compatibility with the substrate and poor aging and durability of these treatments may cause 

unwanted degradation processes, including cracking and aesthetic changes, and may interfere with future 

treatments. In contrast, inorganic-based consolidants such as barium hydroxide and limewater have a high 

physico-chemical compatibility with the substrate and good durability, although their use requires a large 

number of applications and the consolidation is not always highly effective. The effectiveness of the 

traditional limewater technique has been controversial. Price (Price et al. 1988) concluded that the 

limewater technique does not produce a noticeable consolidation as most of the lime is deposited within 

the outer 2mm and the low amount of particles does not produce consolidating effect. Nevertheless, 

another research (Brajer and Kalsbeek 1999) demonstrated that a prolonged and uninterrupted 

application of limewater over 80 days produces a positive consolidation effect. However, this treatment is 

tedious and has to be repeated up to 40 times due to the low solubility of calcium hydroxide in water (1.7 

g/L-1 at 20°C). Other limitations are the reduced penetration depth of the lime size-particles and the 

possible decay processes associated with the use of large amounts of limewater solution (salt movement, 

etc.). The use of nanolime in alcohol allows incorporation of larger amounts of lime into the treated 

substrate with far less water, yielding better penetration and faster carbonation (Ambrosi et al. 2001). This 

paper expands on existing work (Otero et al. 2017) and reviews the considerable literature produced.  

 

2. SYNTHESIS 

Nanoparticles can be produced through either the top-down or bottom-up processes. In the top-down 

method the nanoparticles are created by "breaking" a bulk micro-scale particle until fragments in the 

nanometer range are obtained. This normally involves using a source of high energy in processes such as 

laser ablation, thermal decomposition or mechanical milling. In the bottom-up method, the nanoparticles 

are built atom by atom through chemical precipitation using several techniques for the deposition and 

crystal growth from vapour (Chemical Vapour Condensation (CVC)) and hydrogen plasma-metal reaction 
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(HPMR) and liquid phases (micro-emulsions, solvo-thermal, etc.). Most calcium hydroxide nanoparticles 

are synthesized through the bottom-up reaction by chemical precipitation from a liquid phase.  

 

A survey of different synthesis methods from literature is summarized in Table 1. In 1997, colloidal 

dispersions of calcium hydroxide in organic solvents were obtained (Delfort 1997) and, in 2000, CSGI-

group (Giorgi et al. 2000) also obtained stable alcohol dispersions of Ca(OH)2 particles. Both researchers 

found that dispersions in alcohol are far more stable and able to incorporate larger amounts of lime than 

limewater. With the aim of preparing stable nanoparticles of Ca(OH)2, the researchers at CSGI carried 

out a series of studies based on the works of Matijevic group (Pe et al. 1998) in the field of colloid 

synthesis. They reported that nucleation of nanoscale particles is affected by reaction time, high 

temperature (above 100°C) and high degree of super saturation, and it can be achieved with slow 

synthesis and peptization processes. In 2001, CSGI group (Dei and Giorgi 2001) obtained Ca(OH)2 

particles (1-2µm) by a hydrolytic method at medium-high temperature (60°C) and super-saturation. In 

order to reduce the size of particles, they synthesized calcium hydroxide nanoparticles (30-60 nm) from 

diols, which allowed higher temperatures to be reached during the process (Salvadori and Dei 2001). 

However, this synthesis method proved to be time consuming and produced a low quantity of 

nanoparticles. In the same year, they successfully obtained highly reactive and colloidal sub-micrometer 

Ca(OH)2 particles (±300nm) via an homogeneous phase following the aqueous reaction CaCl2 + 2NaOH → Ca(OH)2 + 2NaCl, heated up to 90 °C under supersaturation conditions (Ambrosi et al. 2001). But, 

this process has drawbacks: 1) slow mixing rates; 2) the necessity of removing the produced  NaCl by 

washing; and, 3) low yield of nanoparticles production. Ca(OH)2 nanoparticles (2-10 nm) were also 

obtained using w/o micro-emulsions (Nanni and Dei 2003), but low yield and high production time make 

this method less practical. The synthesis method developed by CSGI (Dei and Giorgi 2001; Ambrosi et al. 

2001; Dei and Salvadori 2006), which was commonly named "drop by drop method", was also adopted 

by several research groups with the aim of refining the synthesis process and properties (Sequeira et al. 

2006; Daniele and Taglieri 2010; Daniele et al. 2008). In 2013, the Taglieri team (Daniele and Taglieri 

2012) managed to reduce the synthesis time while decreasing the particle size (<50 nm) by adding a 

surfactant (Triton X-100) in the initial aqueous solution. In other synthesis pathways based on CSGI 
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researches, Bhattacharya (Bhattacharya 2010) obtained nanolime by hydrolysing calcium nitrate 

tetrahydrate [Ca(NO3)2·4H2O] as a precursor in diols at a high temperature (175°C) and Samanta 

(Samanta et al. 2016) synthesized nanolime using calcium nitrate dihydrate [(NO3)2·2H2O] as a precursor 

in an aqueous medium at room temperature without requiring purification, obtaining nanoparticles of 

about 250 nm.  

 

Other approaches for obtaining nanosized Ca(OH)2 use calcium alkoxides as precursors (Ziegenbalg 

2003; Poggi et al. 2016; Rodriguez-Navarro et al. 2013). Nanolime also has been developed from a 

hydrogen plasma-metal reaction method (HPMR), obtaining low cost, high purity and crystalline particles 

(10-100nm) (Liu et al. 2010), and recently the Taglieri team (Taglieri et al. 2015) synthesised nanolime by 

means of an anion-exchange process using an anion-exchange resin (OH- group), obtaining nanoparticles 

with better features in terms of size, morphology and reactivity, and reducing the synthesis time by 

eliminating purification processes.  

 

3. APPLICATIONS  

During the last two decades nanolimes have been tested as conservation treatments for various substrates. 

Most of these studies focused on the pre-consolidation of wall paintings, limestone, lime mortars, renders 

and plasters; and on the de-acidification of cellulose-based materials such as paper, canvas and wood 

(Poggi et al. 2016).  

 

The use of lime dispersions in alcohol was first reported by Giorgi et al. (Giorgi et al. 2000), who 

obtained higher consolidation effect than with aqueous solutions and less superficial white glazing. Later, 

Ambrosi and co-workers, (Ambrosi et al. 2001, Dei and Giorgi 2001) successfully tested the first 

synthesized Ca(OH)2 nanoparticles in lime mortar, limestone and wall-paintings, achieving good results 

and good re-adhesion of detached pigment flakes without side effects. The nanolime developed by CSGI 

was further tested on several Italian frescoes (Baglioni et al 2003, Baglioni and Giorgi 2006), limestone 

(Dei 2006) and a wall-painting in the archaeological site of Calakmul (Baglioni et al. 2006) in Mexico, 

achieving a good degree of consolidation. All work undertaken by CSGI between 2001 and 2006 achieved 
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better superficial re-cohesion and quicker carbonation with fewer applications than limewater and without 

any aesthetic changes; thus demonstrating that nanolime is so far the best treatment for the consolidation 

of wall paintings. 

 

Calosil® and Nanorestore® were tested by several authors in Europe since 2008. Using Calosil®, 

Drdácký (Drdácký et al. 2009) documented significant strength increase in lime mortars with far  fewer 

applications than with  limewater. Other authors (Daniele et al. 2008; Campbell et al. 2011; Daniele and 

Taglieri 2011) studied the consolidation and penetration of nanolime on limestone(s) and lime-mortars 

and found high superficial strengthening, although nanolime penetration only occurred within 200 µm-1 

mm from the surface, depending on the porosity and degree of deterioration of the treated limestone 

(Ruffolo et al. 2014). These results highlight the importance of the material's pore structure in the 

effectiveness and penetration of the product. Other authors (Borsoi et al. 2012; Rodrigues 2012) observed 

insufficient nanolime penetration, no consolidation and nanolime migration back to the surface of the 

substrate in highly porous limestone, renders and mortars. Afterwards, it was verified that this 

phenomenon occurs during evaporation of the solvent (Borsoi et al. 2015). The strength and penetrability 

of Calosil® products in plasters, lime mortars and wall paintings was also studied (Daehne and Herm 

2013). It was found that the strength of lime mortar can be increased up to seven times when Calosil® E-

25 is applied with cellulose ether gels (hydroxypropylcellulose gel) and that the addition of a low amount 

of Calosil®-Micro (contains 1-3 µm calcium hydroxide particles) enhances penetration and reduces back-

migration.  

 

Treatments combining nanolime and other products were also studied. The CSGI-team (Baglioni et al. 

2003; Baglioni et al. 2006) used a combined treatment of barium hydroxide and nanolime for the 

treatment (desulphation and consolidation) of wall paintings. This combined application was improved 

later in 2010 (Giorgi et al. 2010) with nanoparticles of both barium and calcium hydroxides. The 

combination of nanolime dispersions (CaLoSiL®) with silicic acid esters (SAE) can be used to enhance 

the affinity of SAE to a calcareous matrix (Piaszczynski and Wolf 2011). Photo-catalytic nanolime (Nuño 

et al. 2015) has been successfully used for self-cleaning coatings and environmental pollution control.  
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4. FACTORS INFLUENCING NANOLIME PERFORMANCE  

 

There are several factors influencing the effectiveness of nanolime as a consolidant: nanolime 

characteristics (concentration and type of solvent, particle size, morphology and specific surface area), 

physical and mechanical characteristics of the substrate, extrinsic factors (RH, temperature, exposure time, 

CO2 available) and application method. Some of the published literature explains its effectiveness as a 

consolidant.  

 

It has been shown that nanolimes have superior consolidation properties to limewater, including both 

higher and faster carbonation with greater penetration (Ambrosi et al. 2001; Dei and Giorgi 2001; Dei and 

Salvadori 2006). A short-chain alcohol dispersion provides the following benefits: 1) greater colloidal 

stability (Dei and Giorgi 2001); 2) solvent evaporation so that higher concentrations of Ca(OH)2 are 

attained (Giorgi et al. 2000); 3) higher amounts of lime (up to 30 times higher), resulting in an increased 

lime incorporation into the treated substrate and lower number of applications (Dei and Salvadori 2006); 

4) enhancement of carbonation kinetics and CaCO3 polymorph nucleation (Rodriguez-Navarro et al. 

2013); 5) significant reduction of the amount of water introduced into the treated material. Nanoparticles 

in an alcohol dispersion penetrate better in porous structures and carbonate faster due to their higher 

specific surface area (Sequeira et al. 2006). 

 

The role of the solvent for in-depth consolidation was studied recently (Borsoi et al. 2016). It was found 

that solvents with high boiling points improve the depth of nanolime deposition in stones with large 

pores (35–40 µm), while solvents with lower boiling points perform better in materials with finer pores 

(0.5-2 µm), which reduces nanolime migration back to the surface during the solvent drying. Comparison 

of different concentrations (5 and 25 g/L in isopropanol) of different products (Calosil®, Nanorestore® 

and Merck®) for the consolidation of lime mortars found that lower concentrations (Calosil® 5 g/L) 

yield the most significant improvement in the degree of carbonation in the pores (Arizzi et al. 2015). A 

percentage of residual water content in the alcohol medium (1:10 w/a ratio) clearly enhanced the 
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carbonation process (Dei and Salvadori 2006; Daniele and Taglieri 2010). The colloidal behaviour of 

Ca(OH)2 nanoparticles in alcohol was studied (Rodriguez-Navarro et al. 2013; Rodriguez-Navarro et al. 

2016) and showed that, upon contact with alcohol, Ca(OH)2 nanoparticles partially transform into Ca-

alkoxides via the reaction Ca(OH)2 + 2ROH  ⇄  Ca(OR)2 + 2H2O. The Ca-alkoxide conversion is time-

dependent; therefore a long period of storage will produce higher conversion. The rate of carbonation of 

Ca(OH)2 particles is reduced by this conversion, so that a freshly prepared alcohol dispersion should be 

preferred. The influence of repeated applications (1 to 6) of Calosil® with different concentrations on 

high porosity stone showed that the appropriate amount of consolidant has to be chosen in relation to 

the stone porosity; the optimal treatment for stones with large pores (±48 µm) seems to be 2 applications 

of Calosil® at 25 g/L concentration (Slizkova et al. 2012). 

 

Relative humidity, temperature, and exposure time strongly influence the carbonation kinetics and the 

precipitation of CaCO3 polymorphs (López-Arce et al. 2010). It was shown that the nucleation of 

polymorphs varies as a function of RH and time, and the optimum carbonation rate is achieved at high 

RH (75-90% RH). The full carbonation may be achieved in 9-10 days at room temperature, ambient CO2 

concentration and high RH values (75%) (Baglioni et al. 2014). An important factor in the consolidation 

of porous substrates using nanolime is the availability of sufficient CO2 in the pores of the treated 

material for the calcium hydroxide to fully carbonate. Some research groups investigated the possibility of 

increasing the amount of CO2 in the pores of treated substrates. For example, the Taglieri team (Daniele 

et al. 2008) achieved full and faster carbonation by adding sodium bicarbonate (NaHCO3) to the alcohol 

solution. However, the addition of NaHCO3 may induce the formation of salt efflorescence. Other 

researchers (Lopez-Arce and Zornoza-Indart 2015) obtained good results and a full conversion in 21 days 

by creating a CO2-rich atmosphere in a yeast-sugar environment.  

 

5. CONCLUSIONS  

The paper gives an overview of the available literature about nanolime as a consolidant for calcareous 

substrates. There is no question that nanolime represents one of the most promising materials for the 
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conservation of calcareous substrates because of its compatibility and minimal side effects. However, it is 

clear that more technical and practical knowledge needs to be acquired. The main conclusion is that 

whilst nanolime appears to be an effective consolidation treatment for superficial consolidation, when an 

in-depth consolidation is needed, as in the case of large portions of weathered porous substrates, the 

results vary significantly between materials. In-depth consolidation is influenced by several factors such as 

substrates' porous structure and nature, nanolime concentration, nature of solvent, RH, time, CO2 

exposure, additives, storage and application method. The interaction between all of these factors requires 

further study. Furthermore, the literature lacks data on the long-term performance of nanolime treated 

materials. The popularity of nanolime is growing and future investigations will hopefully contribute to 

addressing its current limitations. 
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Table 1. Brief summary of literature on the synthesis of nanolime 

Year Research group Synthesis Inorganic precursor(s) Synthesis media Processing T (°C) PS (nm) 

  
route 

     

2001 CSGI group CP-HS CaCl2 and NaOH aqueous high T, wash. and pept. 60 1-2 (µm) 

2001 CSGI group CP-HS CaCl2·2H2O and NaOH diols high T, filtration, wash. and pept. 195 30-150 

2001 CSGI group CP-HS CaCl2·2H2O and NaOH aqueous high T, wash. and pept. 90 300 

2003 CSGI group CP-HS CaCl2·2H2O and NaOH w/o microemulsions wash. and pept. ≤ 15 2-10 

2010 Bhattacharya et al. CP-HS Ca(NO3)2·4H2O and NaOH diol (1,2-ethanediol) hot vacuum filtration and pept. 115 35 

2010 Liu et al. CP-HPMR melted Ca ingot and H2O H plasma Ca vapour reacts O, CaO reacts with H2O room T 10-100 

2012 Taglieri et al. CP-HS CaCl2 and NaOH aqueous & Triton-X100 wash. and pept. 90 <100 

2015 Taglieri et al. CP-HS CaCl2⋅2H2O and AER (OH) aqueous pept. room T <100 

2016 Samanta et al. CP-HS Ca(NO3)2·2H2O and NaOH aqueous pept. room T 350 

2016 CSGI group CP-HPS calcium metal alcohol and H2O (high P & T) high P reactor (High P & T) 65-130 200 

CP (chemical precipitation), HS (homogeneous synthesis), HPS (heterogeneous phase synthesis), HPMR (hydrogen plasma metal reaction), H (hydrogen), Ca (calcium),  CaCl2 (calcium chloride), NaOH (sodium hydroxide), w/o (water in oil), 

Ca(NO3)2 ·4H2O (calcium nitrate tetrahydrate), CaO (calcium oxide), w/o (water in oil), P (pressure), T (temperature), PS (particle size), AER (anion exchange resin), wash (washing with deionized water), pept (peptization process) 

 


