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What is the energy Simone needs for the move?  

 

To peƌfoƌŵ the ͚Biles͛, SiŵoŶe Ŷeeds to tƌaǀel aŶd spiŶ. Heƌ take-off energy therefore needs to 

incorporate these two elements: 

 

௞ ௧�௞௘-௢௙௙ܧ [1] = ௞ ௟�௡௘�௥ܧ   ௞ ௥௢௧�௧�௢௡�௟ܧ +
 

We can break this equation down a bit by considering that she moves up and forward: 

 

௞ ௧�௞௘-௢௙௙ܧ [2] = ௞ ௩௘௥௧�௖�௟ܧ  ௞ ℎ௢௥��௢௡௧�௟ܧ +  +   ௞ ௥௢௧�௧�௢௡�௟ܧ 
 

To simplify the problem, we assume that the gymnast is a point mass, i.e. the gymnast is just a point 

particle. If you wanted to do a more accurate job, you could model each segment of the gymnast 

separately and combine the values appropriately in a global reference frame (figure 1).  

 

 

 

Kinetic energy is dependent on the speed and the mass of a body:  

 

௞ ௟�௡௘�௥ܧ [3] = ଵଶ  ଶݒ݉

 

Equation 3 is for linear energy and we will use that equation to calculate ܧ௞ ௩௘௥௧�௖�௟ and ܧ௞ ℎ௢௥��௢௡௧�௟. 
IŶ the ͚Biles͛, theƌe aƌe tǁo ƌotatioŶs aďout SiŵoŶe͛s soŵeƌsaultiŶg axis and a half rotation about 



her twisting axis. A distinction needs to be made between these rotations. The somersaults occur 

throughout the flight phase but the twist only occurs in the final quarter of the flight phase. The 

equations that we have discussed so faƌ assuŵe ĐoŶstaŶt ŵotioŶ. They ĐaŶ ďe applied to SiŵoŶe͛s 

somersaults and her vertical and horizontal travel. From this, we calculate ܧ௞ ௧�௞௘-௢௙௙. The twist, 

however, is not constant – she only twists at the end. The energy required to cause a twist that is 

not constant over the flight phase must come from work done by Simone during the skill. Practically, 

this ŵeaŶs that ǁheŶ ǁe talk aďout the tǁist iŶ the ͚Biles͛, ǁe ǁoŶ͛t ĐoŶsideƌ the eŶtiƌe flight phase 

of the skill - just the final quarter. We now have a new structure to own main equation (equation 2): 

 

௞ ௧௢௧�௟ܧ [4] = ௞ ௧�௞௘-௢௙௙ܧ + ௞ ௧௪�௦௧ܧ = ሺܧ௞ ௩௘௥௧�௖�௟ + ௞ ℎ௢௥��௢௡௧�௟ܧ + ௞ ௦௢௠௘௥௦�௨௟௧ሻܧ +  ௞ ௧௪�௦௧ܧ

 

To figure out the rotational equivalent of the linear energy equations, we replace mass with mass 

moment of inertia and linear velocity with angular velocity:  

 

௞ ௥௢௧�௧�௢௡�௟ܧ [5] = ଵଶ ��ଶ 

 

A ďody͛s ŵass ŵoŵeŶt of iŶeƌtia, �, is an indication of its resistance to a change in its rotation. Think 

of it like this: the more mass something has, the heavier it is, and heavier things are harder to move 

than lighter things. Heavier things are also harder to rotate. Additionally, longer things are harder to 

rotate than shorter things. Mass ŵoŵeŶt of iŶeƌtia is a siŶgle ĐhaƌaĐteƌistiĐ that Đaptuƌes a ďody͛s 

resistance to rotation based on its mass and shape. You might already have noticed that a body will 

have a different moment of inertia depending on the axis about which it is rotated. For example, it is 

easier to twist a brush handle than it is to swing it. To give a mathematical example, the mass 

moment of inertia for a cylinder with mass ݉ = ʹ kg, length ݈ = ʹ m and radius ݎ = Ͳ.Ͳʹ m, rotating 

it as a baton twirler might, end over end, is 

 

[6] � = ௠(ଷ௥2+௟2)ଵଶ = ଶ(ଷሺ଴.଴ଶሻ2+ሺଶሻ2)ଵଶ = Ͳ.͸͸͸ͻ kg·m
2
 

 

But ǁheŶ spiŶŶiŶg the ĐyliŶdeƌ aƌouŶd it͛s ƌadius, as you ŵight a spiŶŶiŶg top, it is  

 

[7] � = ௠௥2ଶ = ሺଶሻሺ଴.଴ଶሻ2ଶ = Ͳ.ͲͲͲͶ kg·m
2
  

 



We simplified the gymnast as a point mass for linear equations. We will also simplify the gyŵŶast͛s 

shape foƌ ƌotatioŶal eƋuatioŶs. Let͛s ƌepƌeseŶt a soŵeƌsaultiŶg gyŵŶast as a ĐyliŶdeƌ ďeĐause it͛s a 

simple shape that approximates a standing human.  

EǀeŶ though SiŵoŶe͛s ŵass, ݉, is the same for the linear kinetic energies, her mass moment of 

inertia will be different for her somersaulting and her twisting. Her mass moment of inertia for 

somersaulting, �௦௢௠௘௥௦�௨௟௧, is calculated using equation 6 and for twisting, �௧௪�௦௧, using equation 7. 

Her somersaulting energy thus becomes 

 

௞ ௦௢௠௘௥௦�௨௟௧ܧ [8] = ଵଶ �௦௢௠௘௥௦�௨௟௧�௦௢௠௘௥௦�௨௟௧ଶ  

    ⇒ 
ଵଶ ቀ௠(ଷ௥2+௟2)ଵଶ ቁ �௦௢௠௘௥௦�௨௟௧ଶ  

    ⇒ 
ଵଶ (ଷ௥2+௟2)௠�ೞ೚೘೐ೝೞ�ೠ೗೟2ଵଶ  

 

And her twisting energy becomes 

 

௞ ௧௪�௦௧ܧ [9] = ଵଶ �௧௪�௦௧�௧௪�௦௧ଶ  

        ⇒ 
ଵଶ ቀ௠௥2ଶ ቁ �௧௪�௦௧ଶ  

        ⇒ 
ଵଶ ௠௥2�೟��ೞ೟2ଶ  

 

When we plug these equations into equation 4 we get 

 

௞ ௧௢௧�௟ܧ [10] = ଵଶ ௩௘௥௧ଶݒ݉ + ଵଶ ℎ௢௥��ଶݒ݉ + ଵଶ (ଷ௥2+௟2)௠�ೞ೚೘೐ೝೞ�ೠ೗೟2ଵଶ + ଵଶ ௠௥2�೟��ೞ೟2ଶ  

 

With some tidying up, we get:  

 

௞ ௧௢௧�௟ܧ [11] = ௠ଶ ௩௘௥௧ଶݒ) + ℎ௢௥��ଶݒ + (ଷ௥2+௟2)�ೞ೚೘೐ೝೞ�ೠ೗೟2ଵଶ + ௥2�೟��ೞ೟2ଶ ) 

 

Now we have the job of estimating the values of the terms. From a quick google, we estimate her 

height and mass to be height = ݈ = 1.47 m and ݉ = 47 kg.  We use the distance from her spine to 

her shoulder to represent her radius, approximately ݎ = 0.25 cm. For the velocities, we can use the 

equations of constant motion to help us out. For the vertical velocity, ݒ௩௘௥௧, we can use the 

equation:  

 



௩௘௥௧ ௙�௡�௟ݒ [10] = ௩௘௥௧ �௡�௧��௟ݒ +  ݐ�

 

Where ݒ௩௘௥௧ ௙�௡�௟ is her speed at the instant before the end of flight, ݒ௩௘௥௧ �௡�௧��௟ is her speed at the 

moment of take-off, � is the acceleration that she experiences and ݐ is the duration of flight. We 

want SiŵoŶe͛s eŶeƌgy at the staƌt of the tuŵďle so ǁe Ŷeed to ƌeaƌƌaŶge eƋuatioŶ ϭϬ to ŵake ݒ௩௘௥௧ �௡�௧��௟ the subject of the equation. 

 

௩௘௥௧ �௡�௧��௟ݒ [11] = ௩௘௥௧ ௙�௡�௟ݒ −  ݐ�

 

What terms do we know in equation 11? From looking at her performance, she seems to be in the 

aiƌ foƌ aďout ϭ s, so ǁe͛ll say that ݐ = 1 s. The value of � is -9.812 m·s
-2

 because this is the value for 

aĐĐeleƌatioŶ due to gƌaǀity ;ǁe aƌe assuŵiŶg that ͚up͛ is a positiǀe diƌeĐtioŶ aŶd ͚doǁŶ͛ is ŶegatiǀeͿ. 

Once Simone is in flight, there are no other forces acting on her and thus, no other accelerations (we 

are ignoring air resistance). How to we estimate ݒ௩௘௥௧ ௙�௡�௟? This is where we have to be a bit clever. 

Instead of modelling the entire flight phase, we can model just the first half. This is a good idea 

because we know that her vertical velocity is zero at the middle of the flight because that is the 

highest point of the flight – what goes up must come down, but it has to stop first. So, if we model 

half of the flight, then � stays the same, ݐ is halved (ݐ = 0.5 s) and ݒ௩௘௥௧ ௙�௡�௟ = 0 m·s
-1

. 

 

௩௘௥௧ �௡�௧��௟ݒ [12] = Ͳ − ሺ−ͻ.ͺͳʹ × Ͳ.ͷሻ ⇒ ݒ௩௘௥௧ �௡�௧��௟ = Ͷ.͸ m·s
-1 

 

To figure out what ݒℎ௢௥�� is, we can use an even simpler equation: 

 

݀݁݁�ݏ [13] = ௗ�௦௧�௡௖௘௧�௠௘  

 

We can do this because there are no horizontal forces acting on Simone when she is in flight (again, 

ignoring air resistance). With no forces, there are no accelerations. From viewing her performance, it 

looks like she travels a horizontal distance of about ݀�ݐݏ�݊ܿ݁ℎ௢௥�� = 3 m (the diagonal of the floor is 

16.9 m). We said before, that she is in the air for about 1 s, so ݐ�݉݁ = ݐ = 1 s. The horizontal speed 

at which she must be travel is therefore 

 

��ℎ௢௥݀݁݁�ݏ [14] = ଷଵ = ℎ௢௥�� �௡�௧��௟ݒ = 3 m·s
-1 

 



We now have everything we need except the rotational velocities, more commonly known as 

angular velocities. We could decompose the angular velocities into linear velocities applied at some 

distance from the centre of rotation. We would have tough time estimating these distances so, 

instead, it will be easier to estimate angular velocities. She somersaults twice within ݐ = 1 s, so �௦௢௠௘௥�௨௟௧ = ଶ×ଷ଺଴ଵ = ͹ʹͲ°s
-1 = Ͷߨ rad·s

-1
. We said earlier that we would consider her twist only in 

the final portion of the skill. She twists half a turn in the final quarter of the skill, so �௧௪�௦௧ =଴.ହ×ଷ଺଴଴.ଶହ = ͹ʹͲ°s
-1 = Ͷߨ rad·s

-1
. We have everything we need so we just put the values into equation 

11: 

 

௞ ௧௢௧�௟ܧ [15] = ସ଻ଶ ቆͶ.͸ଶ + ͵ଶ + ቀ(ଷ(଴.ଶହ2)+ଵ.ସ଻2)ሺସ�ሻ2ଵଶ ቁ + ቀ(଴.ଶହ2)ሺସ�ሻ2ଶ ቁቇ 

௞ ௧௢௧�௟ܧ ⇒    = ʹ͵.ͷሺʹͳ.ͳ͸ + ͻ + ͵Ͳ.ͻ + Ͷ.ͻ͵ሻ 

௞ ௧௢௧�௟ܧ ⇒    = ͵.ͻͳሺ͸ͷ.ͻͻሻ 

௞ ௧௢௧�௟ܧ ⇒    = ͳ,ͷͷͲ.͹͹ Joules 

  



What force does Simone experience on landing? 

 

Now that we know her energy, we can calculate her landing force. Her landing takes about ݐ௟�௡ௗ = 

Ϭ.Ϯ s, duƌiŶg ǁhiĐh tiŵe heƌ ǀeloĐities ƌetuƌŶ to zeƌo. Fƌoŵ NeǁtoŶ͛s Ϯnd
 law, we know 

 

ܨ [16] = ݉� = ݉ ቀ௩೑�೙�೗−௩�೙�೟��೗௧೗�೙೏ ቁ 

 

Where ܨ is a force, ݉ is the mass of the object and � is the acceleration affecting the mass. To 

calculate the force required to stop her horizontal and vertical velocities in ݐ௟�௡ௗ = 0.2 s, we will first 

combine the horizontal and vertical velocities iŶto a ƌesultaŶt ǀeloĐity. This is doŶe usiŶg Pythagoƌas͛ 

theorem: 

 

௡�௧��௟ ௥௘௦௨௟௧�௡௧�ݒ [17] = ௡�௧��௟ ௩௘௥௧ଶ�ݒ√ + ௡�௧��௟ ℎ௢௥��ଶ�ݒ  

௡�௧��௟ ௥௘௦௨௟௧�௡௧�ݒ ⇒    = √Ͷ.͸ଶ + ͵ଶ = √͵Ͳ.ͳ͸ 

௡�௧��௟ ௥௘௦௨௟௧�௡௧�ݒ ⇒    = 5.49 m·s
-1 

 

Since the final horizontal and vertical velocities will be zero, ݒ௙�௡�௟ ௥௘௦௨௟௧�௡௧ = Ͳ. Therefore, 

 

ܨ [18] = Ͷ͹ ቀ଴−ହ.ସ9଴.ଶ ቁ = −ͳ,ʹͻͲ.ͷͺ N 

 

That is more force than the bite of an adult American alligator (wiki). The force is negative because it 

is a retarding force, i.e one that is stopping Simone. The force is equivalent to almost 3 times her 

body weight. Of course, this calculation does not take into account the forces required to stop her 

rotations. 

 

  



Where does this energy come from?  

 

Where does this energy come from? This is where we come to the law of 

conservation of energy, Newton’s third law and Hooke’s law. The law of conservation 

of energy says that energy cannot be created or destroyed. In Simone’s case, she 

converts the energy that she built during her run into the energy needed to perform 

her tumble. All she is doing is redirecting her horizontal energy from her sprint, and 

the vertical and rotational energy from her flic. All of this kinetic energy comes from 

chemical energy released within her muscles, but that is a conversation for another 

day. It should be noted, that Simone’s short stature means that she can include more 

steps in her run-up than a taller gymnast. Each of these steps adds more and more 

energy. 

Now, Newton’s third law: When one body exerts a force on a second body, the 

second body simultaneously exerts a force equal in magnitude and opposite in 

direction on the first body. If this wasn’t true, then they weight of your body pushing 

down on Earth would drill you right through it. After her run, Simone performs a 

round-off to turn around and a flic to convert linear energy into rotational energy. 

When Simone pushes into the sprung floor, it is the floor’s equal and opposite force 

that shoots her up, not her muscular force. This might sound weird but try an 

experiment next time you are in a swimming pool: while floating, try to jump out of 

the water. You can use all the muscles in your body mimic a jumping movement but 

you won’t leap up like a dolphin. This is because you are pushing against the water 

and the water isn’t as good as a sprung floor at pushing back on you. The sprung 

floor can’t move anywhere so it directs the force back at you. The water is free to 

flow around the pool so it isn’t so concerned with giving you porpoise performance 

powers. 

 

The sprung floor is key to gymnasts’ energy and protection. If they were tumbling on 

a hard surface like concrete, then the force that they drive into the ground would be 

shot back at them so quickly that it could be too much for the gymnast to handle. The 

Gymnova floor that Simone tumbles on is a layer of carpeted foam, on a layer of 

plywood that is support by an array of springs. These layers lengthen the duration of 



the impact, which means that the total force exerted on Simone is spread over a 

longer time. Newton’s second law pops up again: 

ܨ [1] = ݉� = ݉ ቀ௩−௨∆௧ ቁ = ݉ሺݒ − ሻݑ ଵ∆௧  ⇒ ܨ ∝ ଵ∆௧ 
As we can see, if the duration of the impact increases, then the force per unit time 

must decrease. But, of course, gymnasts don’t want their force to be wasted, and it 

isn’t. The force that Simone exerts on the sprung floor is stored as energy potential 

energy, ܧ௣, within the compliant elements of the floor: 

௣ܧ [2] = ଵଶ ݇�ଶ 

This is Hooke’s law, where ݇ is the spring constant and � is the how far the spring is 

displaced. During the short time that Simone is in contact with the floor, there will 

come a point where the energy she is putting into the floor will be less than the 

energy that the floor is storing. At this point, the sprung floor will start to give Simone 

her energy back and rocket her up into the air. 

 

  



How does she make her body spin, and control the spin, in the air?  

 

We’ve spoken a lot about energy but now it is time introduce momentum. Here we 

can bring in Netwon’s first law: When viewed in an inertial reference frame, an object 

either remains at rest or continues to move at a constant velocity, unless acted upon 

by a net force. Put simply, things that are moving want to stay moving and things that 

are stationary don’t want to move. The key terms here are ‘momentum’ and ‘inertia’: 

momentum keep things moving, inertia is what we call a body’s resistance to 

changing its momentum. These ideas are quite intuitive, especially when you think 

about your own experience of trying to stop moving things and trying to move 

stationary things. It’s safe to say that faster things are harder to slow down and 

heavier things are harder to move. The formula for linear and angular momentum 

are: 

 

ߩ [1] =  ݒ݉

 

[2] � = �� 

 

This reflects our experiences because it says that heavier and faster things have 

more momentum than lighter and slower things. But how does this relate to 

somersaults and twists? 

The law of conservation of angular momentum can be defined in many ways but the 

jist is that that angular momentum of a body will stay constant provided that it is not 

acted upon by external forces. For Simone, this means that the momentum that she 

has when she takes off is all the momentum that can use for her aerial acrobatics. All 

of our earlier conversations about the energy at take-off explained how she makes 

sure that she has enough energy for her signature skill: the ‘Biles’. 

Let’s say that I am a gymnast and I need � angular momentum to complete one 

stretched somersault. If I wanted to do two somersaults with the same angular 

momentum, then I will need to spin faster. Angular velocity, �, is a measure of my 

https://en.wikipedia.org/wiki/Inertial_reference_frame
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Net_force


spin. According to equation 2, I will need to decrease my mass moment of inertia, �, 

in order increase my angular velocity because my momentum, �, stays constant. 

How do I do that? Well, just like heavier things are harder to move than lighter 

things, longer things are harder to rotate than shorter things. By tucking into a ball 

that is half the length of my outstretched body, then I might be able to make it around 

twice and complete my double somersault. 

Simone has oodles of momentum going into her double stretched somersault but 

she still makes use of the conservation of angular momentum. If you watch her 

perform the skill, you might be able to notice the two ways that Simone decreases 

her mass moment of inertia in order to somersault faster. The first is that she pulls 

herself into an arch. The length between the end points of an arch is always shorter 

than the length of body that is arching. This does a little but not much. The bigger 

contributor is when she snaps her arms to her hips just after her first quarter 

somersault. By snapping her arms down to her hips she now measures from head-

to-toe rather than fingers-to-toes. This is a big change in length. 

 

Let’s talk about twisting. It seems like out of nowhere, Simone suddenly twists at the 

end of her double stretched somersault. She takes advantage of a handy 

characteristic of the conservation of angular momentum: momentum is conserved 

across all axes. This means that Simone can take momentum from her 

somersaulting axis and transfer it to her twisting axis. She does this by changing the 

shape of her body and causing a tilt.  

Tilting takes momentum. If Simone tilts during a somersault she must borrow 

momentum from one of the other axes because the momentum was fixed at take-off. 

Perhaps she borrowed it from her somersault, but that would slow her somersaulting 

down – dangerous move. The other option is to borrow it from her twisting axis. But 

how can she take angular momentum from her twisting axis if she isn’t twisting? She 

goes into negative twisting. ‘Positive; and ‘negative’ are just opposite directions. A 

negative twist is just a twist in a different direction to a positive twist. When she tilts, 

she borrows momentum from her twisting axis so she starts to twist negatively. To 

stop a twist, she un-tilts, which returns the twisting momentum back to zero. 



So, how does she tilt? The answer is asymmetric arm movement. If you hold one 

arm out to the side you will tilt ever so slightly (hold a weight to feel a bigger tilt). 

Hopefully, your centre of gravity will stay over your base of support and you won’t fall 

over. As Simone enters her second somersault, you’ll see her pull her left arm 

inward to her belly button. Just like our standing experiment, she has moved one 

arm so that she will slightly tilt. This little tilt is sufficient for the half-twist that she 

needs. 

The interesting thing about twisting is that somersaults naturally want to twist. 

Gymnasts put a lot of effort into not twisting. The first reason is that real-life 

somersaults are not likely to take off perfectly so some of force will be off-axis and 

cause a turning effect. Another reason is the phenomenon of nutation. In short, the 

axis of a rotating body wobbles. If Simone kept somersaulting forever you’d see that 

she would be tilting left and right and she spun. Practically, this means that the 

gymnast is actually forced into tilting simply because they are somersaulting. 

 

 

 

  



Is there a role for a sports scientist to analyse athletes' moves and use 

physics to suggest improvements? 

 

Gymnasts are certainly aware of how the orientation of their limbs effects their 

performance, but they might not use the jargon that I have. From my coaching 

experience I have found that explaining the underlying physics can be useful for 

demystifying difficult skills and breaking them down into a manageable sequence of 

actions. Sometimes, gymnasts just want to know what to do rather than understand 

why. Studying these things is good though because it means that we can model 

performance and suggest what is possible but still undone. This idea is especially 

true in for the kind of tactical modelling done in well-defined events like track cycling, 

where models take physiological, biomechanical, atmospheric, and mechanical 

inputs into account. In gymnastics, people like Prof Maurice “Fred” Yeadon have 

modelled somersaults extensively and concluded that a triple layout somersault is 

not likely to be possible on current spring floors given the required energy from the 

gymnast. That said, such energies are possible on a tumbling track and the triple 

layout is a relatively new skill that was forever thought to be impossible. 

 

 

 


