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Abstract 

The present paper describes a method of predicting the failure of a thermal barrier 

coating system due to interfacial cracks and cracks within bulk coatings. The interfacial crack 

is modelled by applying cohesive interfaces where the thermally grown oxide is bonded to 

the ceramic thermal barrier coating. Initiation and propagation of arbitrary cracks within 

coatings are modelled using the extended finite element method. Two sets of parametric 

studies were carried out, concentrating on the effect of thickness of the oxide layer and that of 

initial cracks within the ceramic coating on the growth of coating cracks and the subsequent 

failures. These studies have shown that a thicker oxide layer creates higher tensile residual 

stresses during cooling from high temperature, leading to longer coating cracks. Initial cracks 

parallel to the oxide interface accelerate coating spallation and simulation of this process is 

presented in this paper. By contrast, segmented cracks prevent growth of parallel cracks 

which can lead to spallation.  

 

Keywords: TBC, cohesive interaction, XFEM, crack growth, spallation 

 

Nomenclature 

NI(x) Conventional shape function, taking the value 1 at node I and 0 at all other nodes 

a Half diagonal length of the impression  

Ia   Enriched degree of freedom for XFEM  
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α
Ib   Enriched degree of freedom for XFEM 

c Half of the crack length 

D Damage parameter for the traction-separation model 

E Young’s modulus 

f Crack nucleation factor 

 xFα   Crack tip asymptotic function for XFEM enrichment 

GC Critical strain energy release rate (also GIC, GIIC) 

Geq Equivalent critical strain energy release rate mixed-mode failure 

GI Strain energy release rate for Mode I failure (also GII and GIII) 

C
I

K  Fracture toughness of Mode I failure 

m Loading stiffness  

P  maximum indentation load 

T Traction stress at which damage initiation occurs 

Iu  Degree of freedom for node I  

β phase angle for mixed mode failure 

δ   Crack opening/separation at which damage initiation occurs 

δz Critical crack opening at D = 1 

δeff Effective critical crack opening for mixed mode failure  

δn Critical crack opening for Mode I failure 

δslip Critical crack opening for Mode II failure 

  Material constant in equation for calculating C
I

K  
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1 Introduction 

A thermal barrier coating (TBC) system is usually made up of three layers: ceramic 

TBC, bond coat (BC) and thermally grown oxide (TGO) and the substrate. An air plasma 

sprayed (APS) TBC system will be considered here and this manufacturing method is 

commonly used for spraying TBCs onto components of land based engines. Unlike the 

electron beam physical vapour deposition (EBPVD) method, which is used in the aerospace 

industry, the APS method does not require the use of a vacuum during manufacturing, 

bringing down the investment cost for coating equipments. Nevertheless, it requires multiple 

passes of spraying to achieve the required coating thickness.   

The growth of parallel cracks within the coating and interfacial delamination cracks 

can lead to failure of coating systems. The initiation of these cracks can be predicted based on 

simulated stress distributions within the system. While this type of prediction is reasonable 

for failure analysis, it does not take into account stress relaxation as a result of the growth of 

cracks. Here, the failure of air plasma spray (APS) TBC systems for gas turbines will be 

explored by implementing models for the crack growth mechanisms both at the coating 

interfaces and within the bulk coatings.  

Stresses which are concentrated around the TGO interfaces at the end of a thermal 

cycle have been assumed to be the major cause of spallation of the TBC. Tensile stresses 

originate from the mismatch of strains between layers of the TBC system during the start up 

or the shutdown of engines. When these stresses exceed the fracture strengths of the TBC 

layers or the TGO interfaces, they create cracks within the bulk layers and weaken the TGO 

interfaces by creating delamination cracks. The fracture toughness of the TGO interfaces and 

of the TBC layers determine the propagation of those cracks and of the overall failure 

mechanism (ductile or brittle) of TBC system.  

Failures of TBC systems based on cracks created within the TBC and the TGO layers 

have been investigated experimentally by various researchers [1, 2]. Naumenko et al. [2] 

observed that failure of the APS TBC system mainly occurs within the TBC layer near the 

TGO/TBC interface because a significant amount of TBC remains attached to the substrate 

after failure, compared to EBPVD coating systems.  

Delamination and spallation failures of TBC systems have been simulated using 

cohesive bonds with predefined crack paths [3-5] but these models are unable to predict 

arbitrary crack propagation within the bulk coatings as the crack paths are defined at the pre-

processing stage. Although an iterative crack propagation scheme as presented in [6] can be 

used for modelling arbitrary propagations of cracks, excessive re-meshing around the crack 
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tip is required, and it is therefore computationally expensive especially for 3D models. 

Arbitrary crack propagation has been modelled for EBPVD systems in [7, 8] but the study 

does not implement cohesive interface for possible growth of interfacial cracks and 

delamination.  

In this paper, the extended FE method (XFEM) is applied to the simulation of 

arbitrary crack propagation within the TBC and the TGO while a cohesive interaction is 

applied at the TGO/TBC interface to investigate the degradation of interface bonding. 

Furthermore, initial cracks and discontinuities within the TBC are also implemented in the 

model and their influences on TBC spallation are studied. Initial cracks could sometimes be 

deliberately introduced to the system using proprietary spraying processes such as the 

solution-precursor plasma sprayed process (SPPS) as explained in [9] for better strain 

tolerance.  

 

2 Geometry and boundary conditions 

 Modelling has taken place regarding the initiation and propagation of cracks within 

the TBC system when it is cooled down from the operating temperature (1000°C) to 20°C. 

The TBC model consists of a nickel based superalloy cylinder with an inner (Ri) and an outer 

radius (Ro) of 3.2mm and 6.2mm respectively. The BC and the TBC with respective 

thicknesses of 100 μm and 200 μm are assumed to be coated onto the cylindrical substrate. 

The dimensions of the TGO interface have been taken as a wavelength of 48μm and an 

amplitude of 6μm; these values are within the range of the typical TGτ interface as measured 

in [10]. The current TBC model does not take account of out of plane geometry variations of 

complex TGO interfaces and relevant stress developments as shown in [11]. Geometries of 

the TBC system are shown in Fig. 1 (i) and (ii). Only one half of a period of a sinusoidal 

interface is used as FE unit cell as shown in Fig. 1 (i). Mesh and boundary conditions for a 

unit cell are illustrated in Fig. 1 (iii). Periodicity of a unit cell and symmetry boundary 

conditions are applied. Although generalised plane strain elements (CPEG4) are more 

suitable for constructing a 2D representation of a coated cylinder with prismatic surface 

features and of a finite length, the commercially available XFEM enrichment scheme in 

Abaqus [12] is not formulated for CPEG4. Therefore, a specially-developed user defined 

element (UEL) [12] was required. For simplicity, a plane strain element (CPE4) was used 

instead by assuming the cylinder is constrained against axial expansion or contraction. 

Elements with the full integration scheme for displacement based FEA tend to overestimate 

the element stiffness matrix as a result of shear locking [13]. Hence, a reduced integration 
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scheme with fewer Gauss (integration) points is advised for such simulations and it is 

therefore chosen for the current problem. 

The TBC system is assumed to be defect-free during the pre-processing stage for the 

first part of analysis. Initial TBC cracks were implemented in the second part of the analysis 

in order to understand their influences on spallation. Two types of APS TBC cracks were 

considered for implementation at the pre-processing stage: cracks which originate from the 

intersplat boundaries, which are parallel to the TGO interface (parallel cracks), and cracks 

that are perpendicular to the interface (segmented cracks) as shown in Fig. 2 (i) and (ii) 

respectively. The formation of cracks is driven by maximum principal stresses of the TBC 

systems under thermal cyclic load.  

Various researchers [14-16] have explored the relationship between the failure of the 

TBC system and the thickness of the TGO layer. To observe the relationship between crack 

growth and TGO thickness, parametric studies were carried out with different TGO 

thicknesses varied from 1 to 4µm while keeping the aspect ratio the same as for the 

sinusoidal TGO interface for the initially crack-free model. The TGO thickness, for the 

model with initial defects, is set to 4μm, which is assumed as the critical TGO thickness for 

the spallation, to simulate the final spallation of the TBC. The TBC system is considered to 

be stress-free at the end of the steady state due to the stress relaxation within the BC in 

accordance with the assumptions made by Rösler [17]. 

XFEM enrichment was applied to the TGO and the TBC layers based on the principal 

stress criterion. The adhesion between the TGO and the TBC layer and subsequent 

degradation of the interface from interfacial crack opening is modelled by using the cohesive 

interaction method [12] (CIM). The CIM is only applied to the TGO/TBC interface since it 

has been shown experimentally [2] that spallation of the TBC in the vicinity of the TGO is 

most common for APS TBCs. 

 

3 Crack growth modelling using XFEM   

Until recently, crack nucleation and propagation have been modelled within Abaqus 

using virtual crack closure or cohesive methods. These methods allow crack growth along a 

predefined path following the element boundaries. This has limited the potential of modelling 

arbitrary crack growth within the model. Moreover, computationally demanding mesh 

optimisation is required around the crack tip where stress concentrates. By using a 

displacement interpolation scheme [12] as shown in Eq (1), XFEM can model initiation of 

cracks without specifying predefined crack paths. It was introduced by Belytschko and Black 
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[18] by further enhancing the partition of unity method introduced by Melenk and Babuska 

[19].   

      









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 
tip

tip

H

NI

N

NI
α
I

1α
αII

NI
I

h b xFa sgn(x)u(x)Nxu  (1) 

where NI(x) is a conventional shape function used in elements, regardless of whether XFEM 

enrichment is used. Iu  represents the degrees of freedom (dof) of nodes for the FE 

calculations within ordinary isoparametric elements, while Ia  and α
Ib  are enriched dof for the 

implementation of discontinuities within the elements. sgn(x) is a Heaviside distribution. NH 

are nodes belonging to the elements cut by a crack. Ntip are nodes belonging to the element 

within which a crack tip lies.  xFα  is a crack tip asymptotic function. More details for the 

XFEM can be found in [20]. 

For propagating cracks, the traction-separation model (explained in Section 4) is 

applied using phantom nodes. Phantom nodes are superimposed onto the nodes of the 

elements through which the crack has passed. These phantom nodes at opposite sides of the 

crack will be separated causing opening of the crack face as the loading is applied. The 

magnitude of the separation of the crack surface before the complete failure is governed by 

the fracture toughness of the material. For propagating cracks, the crack tip asymptotic 

singularity is not considered. This means that a crack only initiates when all nodal values 

(stress or strain) for the element are higher than user-defined critical values, and the crack tip 

always lies at the element boundary.  

In terms of engineering applications, XFEM can be used to predict arbitrary solution-

dependent crack initiation and propagation within structures under loading. It can be used in 

parallel with cohesive failure models. Here, it is used to model crack propagation within the 

TBC and TGO in conjunction with the CIM model for the propagation of a delaminating 

crack at the TGO/TBC interface.  

 

4 Traction-separation damage model   

A linear traction-separation law [21] as shown in Fig. 3 was applied as a damage 

model for both cohesive nodes of the TGO/TBC interface and XFEM enriched elements. The 

model has been applied extensively in [5, 7, 8] to simulate either interfacial cracks or cracks 

within coating layers. k from Fig. 3 is the cohesive stiffness and it is the ratio of the traction 
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stress (T) and separation (δ ) at which damage initiation occurs. Damage or crack initiation 

can be determined by either a critical principal stress/strain or a critical separation criterion. 

Stresses between the crack surfaces reduce while the cohesive interface or the crack plane is 

separating during degradation. If unloading is applied at point Y (refer to Fig. 3), the cohesive 

stiffness is reduced to (1-D)×k for the next loading step. D is the damage parameter and it can 

be derived as follows. 

 D is zero during the elastic loading region (OX) and if the unloading occurs at this 

region both traction and crack separation should go back to zero. Damage initiates at point X 

where D is 0 and final failure point is Z where D is 1. To illustrate this, the damage parameter 

is derived for unloading at point Y as shown in Fig. 4. The loading stiffness (m) after 

unloading at point Y will be  

  



y

u

δ
T  D1m  (2) 

 However, 



y

u

δ
T  is the stiffness of the undamaged crack (k). Hence m can be 

expressed in terms of k. T
u

 is the stress when there is no cohesive damage whereas T
d

 is the 

actual traction stress with cohesive damage. 

 The damage parameter D can be related to the crack separation distances. The slope m 

is written again as  

OR
YRm   (3) 

Since ZQX and ZRY form a pair of similar triangles, YR can be written as    




z

yzuT
ZQ

ZR
QXYR  (4) 

Substituting Eq (2) & (4) into (3),       





y

u

δ
T  D1y

z

yzuT 


 (5) 

By simplying Eq (5), the damage parameter can be related to crack opening displacement as   δδδ
δδδ

D
zy

yz


  (6) 

Final failure occurs when the strain energy release rate due to the crack opening is 

higher than the critical strain energy release rate (GC). The strain energy release rate can be 

calculated as the area under the traction-separation graph (Fig. 3). The type of failure largely 
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depends on the value of GC; high and low GC are related to the ductile and brittle failure 

respectively. 

 

Critical crack opening (δz) depends on the fracture stress (T) and fracture toughness    

( C
IK ) and relationship for Mode I failure is shown in Eq (7). 

 
TE

K  2
δ

2C
I

z   (7) 

 

5 Traction-separation damage model for mixed mode loading 

If a shear mode of failure is taken into account, the effective critical separation (δeff) 

can be expressed using normal crack opening (δn) and tangential crack opening (δslip) as 

shown in Eq (8). This effective separation can be used to define failure criterion as an 

alternative stress based criteria as follows. For mixed mode failure, a quadratic stress or strain 

criterion can be used for damage initiation in traction-separation model [12] and the former is 

used here to derive mixed mode failure parameters. The crack nucleates when the parameter 

(f) as shown in Eq (9) becomes unity. 

2
slip

2
neff δδδ 

 
(8) 

2

c

2

c Ĳ
Ĳ

ı
ı

f 





  (9) 

where ı and Ĳ are nodal direct and shear stresses and c and c are critical direct and shear 

stresses. The Macaulay bracket means only tensile direct stress is considered for crack 

initiation. If 
ı
Ĳ

tanβ  , then the effective traction stress for damage initiation can be 

described as in Eq (10), where β is the phase angle for mixed mode failure. 

0.5

2
2
C

2
C2

C βsin
Ĳ
ıβcosıT





   (10) 

For mixed mode damage evolution, the critical energy GC is the equivalent critical 

strain energy release rate (Geq). This can be calculated in various ways [12]; a B-K 

(Benzeggagh and Kenane) law for Geq is shown in Eq (11) as an example. 

  n

IIIIII

IIIII
ICIICICeq GGG

GG
GGGG 





  (11) 
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where GIC and GIIC are critical strain energy release rates of direct and shear modes of failure 

respectively and GI, GII and GIII  are energy release rate for a direct and two shear modes of 

failure respectively. n is a constant power, which is usually determined empirically.  

 Currently, it is assumed that the initiation and evolution of damage are independent of 

failure mode, due to lack of experimental data. Once experimental data for the shear strengths 

and mode dependent energy release rates of the coatings are available in future, they can be 

implemented in the mixed-mode failure model as shown by the framework above.  

 

6 Material properties  

6.1 Elastic and thermal properties 

To model time dependent material properties of a complex TBC system, a user 

defined material subroutine (UMAT) is required [22]. Due to current limitations of the 

XFEM code implemented within Abaqus [12], it is not possible to couple UMAT with 

XFEM code. A more complicated user defined element (UEL) is required for this purpose. 

As a first attempt, the coating layers are currently considered to be elastic during the cooling 

stage and the system is also assumed to be stress-free at the beginning of the cooling stage. 

Elastic and thermal properties for the substrate, the TGO and the coating layers are given in 

Table 1. The system used for the study is an APS TBC system. It includes IN-738LC 

superalloy substrate, yttria stabilised zirconia (YSZ) ceramic coating, beta (NiAl) - gamma 

(Ni) BC and alumina (Al2O3) TGO. Please note that elastic and CTE of TBC are measured at 

room temperature. However studies[23-27] have shown that sintering at high temperature 

could modify the elastic modulus significantly and hence either empirical sintering model 

[22] or physical models [28] should be considered for further studies.  

Despite the simplifications made in this study, significant research [29-31] has 

showed the effects of dilational strain, due to growth of an oxide layer during the steady state 

at high temperatures, on residual stress state within TBC systems. These stresses are further 

distributed due to creep relaxation of bond coat as demonstrated in [32-35]. Hence, further 

work is expected to couple the current analysis with thermo-mechanical analysis of TBC 

system with time dependent material properties and oxide growth like models in [22, 34] 

using the user defined element (UEL) feature within Abaqus [12].  
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6.2 Tensile strengths of coatings  

To apply the traction-separation law, the maximum stress and cohesive interface 

stiffness for damage initiation and the critical strain energy release rate for damage evolution 

and failure have to be defined. Tensile strength was taken as the maximum stress for damage 

initiation by assuming that both the TGO and TBC are brittle with no yielding at the point of 

failure. Tensile strength of the TGO is 260MPa as reported by Munro [36]. The strength does 

not vary significantly for the temperature range between 20°C and 1000°C although it falls 

linearly to 10MPa between 1000°C and 1400°C [36]. It is assumed that TGO formed within 

the TBC system is comparable to bulk alumina (mass fraction of Al2O3 ≥ 0.995 and a 

nominal grain size of 5μm) used for experimental testing in [36].The fracture stress of the 

YSZ TBC is largely dependent on its yttria content as demonstrated in [37]. It was observed 

that at a high concentration of yttria, the tensile strength is almost equal to the flexural 

strength. Since no reliable temperature dependent tensile strengths are available, the 

temperature dependent flexural strengths of YSZ with 6.5 mol% of yttria in [38] are taken as 

the fracture strength of the TBC. The strength of the sintered YSZ varies from 150 MPa to 

50MPa between 20°C to 1000°C. Please note that the specimens used for the experiments in 

[36, 38] are made up of bulk coating materials whose dimensions are much larger than actual 

coating layers. The tensile strength of coatings could be size-dependent and it should be 

investigated further.  

 

6.3 Interfacial tensile strength 

Coating failure is strongly dependent on the adhesion strength of the interface under 

tensile loading. Various techniques have been proposed to estimate the tensile adhesion 

strength of the TBC. The most common standardised methods are DIN 50160 and ASTM 

D7234-05 both of which are tensile pull tests.  These have been applied in [39, 40] to obtain 

TBC bond strength. An experiment following the DIN 50160 standard is shown in Fig. 5. It is 

doubtful that the measured bond strength represents the actual adhesion strength at the 

coating interface as the measured values [39, 41] are much lower than analytically or 

numerically predicted mismatch stresses at the interface. To obtain reliable strength data from 

a pull test, the bonding strength of the epoxy has to be stronger than that of the coating in 

order to avoid failure at the epoxy interface. Moreover, because of the porous nature of APS 

TBC, the adhesive can seep into the coating and this might alter the strength of the 

coating/metal interface. Finally, at the point of coating failure, the ratio of failure load to 

coated area is taken as the bond strength without considering the area of any initial flaws. 
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Therefore, the predicted bond strengths from pull tests such as the one in [39] are much lower 

than maximum out-of-plane tensile stresses (normal to the coating interface) simulated using 

FE models.   

An alternative method for bond strength, which is based on experimental spallation 

tests and the FE method, is proposed as follows. It is assumed that the coating delaminates 

when the mismatch stress, due to cooling, exceeds the critical stress as explained in [26]. 

Experimentally, the critical thermal load for delamination can be obtained by applying 

different thermal cycles to the TBC system. According to data from spallation tests [42], 

delamination occurs after cooling down from heating at 1000°C for  1050h. When the same 

thermal cycle was applied to the FE model of the TBC system [22], the maximum tensile out-

of-plane stress at the TGO/TBC interface is found to be 196.5MPa at the end of cooling. This 

stress is taken as the delamination strength of the interface.    

 

6.4 Interfacial cohesive stiffness 

Unlike physical properties (e.g. the tensile strength or toughness of materials), the 

cohesive stiffness for traction-separation model is an assumed property without a direct 

physical interpretation. Some researchers investigating adhesive joints [43] have suggested 

the use of a stiffness value which is equal to the ratio of the modulus of the adhesive to its 

thickness. However, the physical thickness of the adhesive has no relevance to the case of a 

cohesive bond as in the model applied here. Therefore, a sensitivity study was carried out to 

obtain a useful interface cohesive stiffness.  This is chosen to give values of out-of-plane 

stress at the cohesive interface, within the linear elastic region, close to the stress values 

predicted from the model with completely tied interfaces. The value of traction stress for 

damage initiation at the TGO/TBC interface is assumed to be 3 GPa to ensure the mismatch 

stresses will not initiate delamination cracks and affect the stress distribution. Cohesive 

stiffnesses ranging from 1.5×108 to 1.5×1011 MPa/mm were applied at the TGO/TBC 

interface within the sensitivity study.  

Maximum difference between out-of-plane stresses at the TGO/TBC interface given 

by a cohesive interface model and by the model with a tied interface is plotted for different 

cohesive stiffnesses as shown in Fig. 6. For a cohesive stiffness of 1.5×1011 MPa/mm, the 

difference is less than 1.5% and this value was therefore chosen as the cohesive interface 

stiffness for the studies carried out here. Although a larger cohesive stiffness can be chosen, 

an overly stiff interface will need a very small crack opening (for the current case the opening 
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is less than 1.31 ×10-10 mm for a cohesive stiffness of 1.5×1012 MPa/mm) before the damage 

starts. This can lead to numerical instability. 

 

6.5 Critical strain energies and fracture toughness 

The critical strain energy release rate can be related to the bulk/interfacial fracture 

toughness (C
I

K ) and modulus (E) as EG C
C

2

I
K   for plane strain Mode I failure. The fracture 

toughness values for a TGO film (thickness = 0.38µm) and bulk TBC (thickness = 1mm) 

were measured by Stollberg, et al. [44] using the nanoindentation method. The relationship 

between nanoindentation test data and fracture toughness value can be shown by Eq (12). The 

corresponding values are 2.22±0.31 and 1.3±0.29 mMPa . Yamazaki et al. [45] 

investigated the TGO/TBC interface toughness and estimated it to be around 3.5 mMPa . 

In the absence of the physical elastic modulus for the TGO/TBC interface, the apparent 

modulus of the interface acquired from the load-depth indentation curve according to ISO 

14577 is used by Yamazaki et al. [45]. The modulus is obtained by equating fracture 

toughness measured by the nanoindentation technique to the value measured from a 4 point 

bend test [45]: 

 

EP

c

aC 
3I

K   (12) 

where   is a constant, E is the elastic modulus or apparent elastic modulus for interfacial 

toughness, a is half diagonal length of the impression, P is maximum indentation load and c is 

half of the crack length. 

 

7 Results and discussion 

7.1 Parametric study of the influence of TGO thickness on crack growth within bulk 

coatings 

 For initially defect-free systems, after cooling down from 1000°C to 20°C, principal 

stresses within the TBC systems for different TGO thicknesses are presented in Fig. 7. The 

stress contours are significantly different from those relating to the crack-free models [14, 34, 

46], which show stress concentrations at the peak and valley regions of the TGO interfaces. 

However, for the current models, stresses at the peak region of TBC/TGO interface are 

relaxed by crack formations and stresses are found to be concentrated at the flank of the 

interface instead. The changes in crack propagation direction for the TBC cracks are not as 
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significant as the changes in direction for TGO cracks, which are growing towards the 

TGO/TBC interface. Thicker TGOs can lead to higher mistmatch stresses within the TBC 

system[14], which cause propagation of longer cracks. From the current study, the TBC crack 

propagates completely through the periodicity plane AB of the model when the TGO is 

thicker than 2μm. Therefore, coalescence of cracks within the TBC and the spallation of the 

TBC are expected when the TGO becomes thicker due to oxidation of the system at high 

temperature.   

 As shown in Fig. 7, there are multiple regions with stresses which are higher than the 

tensile strength of the coatings, and these stresses can cause initiation of further cracks. 

However, in this case, new cracks are not generated due to the limitations in the XFEM 

enrichment within Abaqus [12]. Formation of new cracks is not allowed in the vicinity of the 

existing crack until the complete separation of the existing crack face occurs. This could be 

because formation of multiple cracks within an element is not currently supported by Abaqus. 

In other words, XFEM is not suitable for modelling failure caused by multiple cracks which 

nucleate simultaneously. As seen from the damage parameter contours for XFEM cracks 

shown in Fig. 8, the existing cracks have some regions with damage parameters less than 1. 

This prevents the initiation of new cracks near the regions of the existing cracks.  

 

7.2 Parametric study of influence of TGO thickness on crack growth at the TGO/TBC 

interface 

The damage status of a delamination crack at the interface can be studied by 

monitoring the contact opening variable within Abaqus. For mixed-mode failure, the 

effective opening (δeff) can be calculated from direct (CτPEσ, δn) and shear crack opening 

(CSLIP, δslip) variables as shown in Eq (8). The crack opens when δn or δslip is higher than δ 

and the complete failure occurs when δeff reaches the critical separation (δz) as shown in  

Fig. 3. For this case, (δ) and δz are 1.31x10-09 mm and 1.597x10-3 mm respectively. δn 

and effective separations along the TGO/TBC interfaces are plotted for systems with different 

TGO thicknesses as shown in Fig. 9 & Fig. 10 respectively. Generally, tangential separations 

are around half an order to an order of magnitude higher than normal separations (Fig. 9 & 

Fig. 10). None of the models show a completely delaminated interface while contact 

separations in both directions are higher for thicker TGOs. However, the separations for the 

model with 4μm TGτ are lower compared to the values from the system with 3μm TGτ 

because of higher stress relaxation at the interface for 4μm TGτ model from the formation of 

multiple cracks (Fig. 8).  
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7.3 Influence of initial parallel TBC cracks on crack growth within the TBC system 

For the system with an initial parallel crack, the existing crack has little effect on the 

initiation of the TGO crack and its propagation. The TGO crack grows towards the 

TBC/TGO interface as shown in Fig. 11(i) in a similar manner to the initially damage-free 

models of Fig. 8. Tensile principal stresses, due to CTE mismatch, are observed near the 

flank of the TGO/TBC interface [Fig. 11 (i)] and this makes the initial TBC crack grow 

towards the valley. Once the TBC crack reaches the periodicity plane (AB), a rapid 

separation of the TBC cracked planes occurs according to a linear traction separation law. 

Principal stress distribution before and after the complete TBC spallation is demonstrated in 

Fig. 11 (ii). Numerous cracks near the TBC flank after the spallation can be explained by the 

limitations of Abaqus XFEM enrichment [12]. The elements at the region where those cracks 

occur have stresses higher than maximum principal stress before spallation. Nevertheless, 

initiation of cracks is not allowed due to limitation explained in 7.1. After spallation, the 

damage parameter (STATUSFEM) becomes unity for the existing TBC crack and nucleation 

of multiple cracks in its vicinity is possible.  This results in the spontaneous appearance of 

multiple cracks at the TBC flank as shown in Fig. 11 (ii) after complete spallation has 

occurred. 

 

7.4 Influence of initial segmented TBC cracks on crack growth within the TBC system 

Fig. 12 shows the maximum principal stresses and cracks within the bulk coating for 

the system with two initial segmented cracks. When cooling is applied to the system, opening 

of the initial cracks is not expected to occur. This is because the in-plane (parallel to the TGO 

interface) mismatch stress within the TBC is compressive due to its lower CTE compared to 

the BC and substrate. The initial cracks also have no effect on the propagation direction of a 

TGO crack, which is growing towards the TGO/TBC interface in a similar manner to the 

damage-free models (Fig. 7). In the vicinity of one of the initial segmented cracks, two 

parallel cracks are developed during cooling. The propagation of one of the cracks is stalled 

once it reaches the crack surface of the initial segmented cracks. It can also be observed that 

if a parallel TBC crack penetrates the TBC/TGO interface, interface separation initiates and 

the interfacial bond weakens. Normal and effective contact openings at the interface (Fig. 13) 

significantly increase at the point where TBC crack penetrates the interface (y/b = 0.72 in 

Fig. 13). At that point, the delamination crack is expected to nucleate and this can lead to 

local separation of the TBC from the substrate. 
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8 Conclusions  

The conclusions made from the presented parametric studies are as follows. 

 

 The thicker the TGO is, the longer the parallel cracks within the TBC and the TGO 

will be. Coalescence of these cracks within the TBC can lead to partial spallation of 

the TBC. 

 The delamination crack opening at the TGO/TBC interface, as observed from contact 

openings at the interface, also becomes larger when the TGO becomes thicker. 

 In general, tangential contact separations at the TGO/TBC interface are an order of 

magnitude higher than normal separations. This observation indicates that it is 

necessary to implement mixed mode interfacial failure.  

 Inclusion of initial segmented cracks in the TBC increases the strain tolerance of the 

TBC and reduces the risk of spallation as the cracks prevent the propagations of 

parallel cracks. As a result, the lengths of the parallel cracks are significantly shorter 

for the model with initial segmented cracks (Fig. 12). This confirms that using a 

spraying method which creates segmented cracks after deposition (e.g. SPPS), is 

likely to be beneficial for coating life. 

 On the other hand, initial parallel micro-cracks within a TBC leads to complete 

spallation of the TBC and the deposition process has to be optimised to reduce this 

type of crack. 

 

The proposed algorithm presented can be utilised to predict the failure of TBC systems. 

However, various sets of data (e.g. fracture toughness and interfacial bond strengths) for 

mixed-mode fracture behaviour of bulk coatings and interfaces are not currently taken into 

account due to a lack of experimental data. Moreover, improvements in the XFEM element 

formulations would enable time dependent creep deformation during steady state to be 

modelled.  
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Fig. 1: (i) A TBC system with a sinusoidal TGO with periodicity in the circumferential direction 
(Cells bounded by double-dashed line are used for a FE unit cell); not to scale (ii) A detailed 

geometry of the TGO interface (iii) Mesh and boundary conditions of a unit cell (uθ represents 
displacement in the circumferential direction) 

 
 

 
 

Fig. 2: (i) Parallel and (ii) segmented initial cracks within the TBC  
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Fig. 3: Linear traction-separation law 
 

 
 

Fig. 4: Damage parameter and unloading process 
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Fig. 5: Adhesion tensile pull test (DIN 50160) 
 
 
 
 

 

 
Fig. 6: Maximum difference between out-of-plane stresses at the TGO/TBC interface given by a 
cohesive interface model with different cohesive stiffness and by the model with a tied interface 
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Fig. 8: Status of XFEM elements for the models with different TGO thicknesses (The value is between 1 and 0; 1 
means the element is completely cracked with no traction stress across the cracked surfaces) 
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Fig. 9: Normal separations at the TGO/TBC interface for the models with different TGO 

thicknesses 
 
 

 
 

Fig. 10: Effective separations at the TGO/TBC interface for the models with different TGO 
thicknesses 
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Fig. 11: i) Tensile principal stresses at the tips of growing TBC and TGO cracks ii) complete TBC spallation of the system with an initial 

parallel TBC crack after cooling to 20°C from 1000°C (4μm TGO) 
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Fig. 12: XFEM cracks within the TBC systems with initial segmented cracks after cooling to 
20°C from 1000°C (4μm TGO)  

 
 
 
 

 
 

Fig. 13: Normal and effective contact openings at the TGO/TBC interface for the system with 
initial segmented cracks within the TBC  
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Table 1: Elastic properties and CTEs of coatings and substrate 
 

Temperature 
(°C) 

Substrate [47] TBC [24, 48] TGO [36] BC [48] 

 
E 

(GPa) 
v 

CTE, 
K1.106 

E 
(GPa) 

v 
CTE, 
K1.106 

E 
(GPa) 

v 
CTE, 
K1.106 

E 
(GPa) 

v 
CTE, 
K1.106 

20 - - - 120 0.18 10.0 400 0.23 6.62 202.9 0.27  20. 
24 206 0.28 11.23 - - - - - -    
50 - - - - - - - - - 202.7 0.27  50. 
93 195.1 0.27 11.97 - - - - - -    
200 - - - - - - 390 0.23 - 199.92 0.27 200. 
204 190.3 0.27 13.23 - - - - - -    
316 184.8 0.28 14.4 - - - - - -    
400 - - - - - - 380 0.24 -    
500 - - - - - - - - - 184.8 0.27 500. 
538 175.1 0.3 16.2 - - - - - -    
600 - - - - - - 370 0.24 -    
700 - - - - - - - - - 167.72 0.27 700. 
760 157 0.3 - - - - - - -    
800 - - 18.38 - - - 355 0.25 -    
871 151 0.29 - - - - - - -    
982 140 0.3 19.42 - - - - - -    
1000 - - - - - - 325 0.25 - 131.6 0.27 1000. 
1200 - - - - - - - - 8.7 100.52 0.27 1200. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


