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Abstract. Field programmable gate arrays (FPGAs) are fundamentally
different to fixed processors architectures because their memory hierar-
chies can be tailored to the needs of an algorithm. FPGA compilers for
high level languages are not hindered by fixed memory hierarchies. The
constraint when compiling to FPGAs is the availability of resources.
In this paper we describe how the dataflow intermediary of our declara-
tive FPGA image processing DSL called RIPL3 enables us to constrain
memory. We use five benchmarks to demonstrate that memory use with
RIPL is comparable to the Vivado HLS OpenCV library without the need
for language pragmas to guide hardware synthesis. The benchmarks also
show that RIPL is more expressive than the Darkroom FPGA image
processing language.

Keywords: domain specific languages, FPGAs, data locality

1 Introduction

1.1 Memory Costs of High Level FPGA Languages

General Purpose Languages Programming with C++ for FPGAs often re-
lies heavily on the programmer’s use of language pragmas to control how data
structures should be implemented in hardware. For example when using Xilinx
Vivado HLS [13], if a 3×3 window for applying a 2D filter is needed, the pro-
grammer must use an array partition pragma to partition the 3×3 pixel window
array into individual scalar elements, to avoid its implementation using BRAM.

Image Processing Languages and Libraries Domain specific languages
(DSLs) offer potential for clearer syntax, stronger semantic checks, type-system-
based guarantees and compiler optimisation for improved code execution. Com-
pared to compiling C/C++ with HLS tools, DSLs can capture domain knowledge
to abstract hardware templates that encapsulate common data access patterns
that can more easily be analysed, e.g. for FIFO depth and bitwidth requirements.

3 Rathlin Image Processing Language
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A DSL may be an existing collection of language primitives ported to FP-
GAs, e.g. the Vivado HLS support [10] for a subset of the OpenCV [2] library.
OpenCV C++ library code is not synthesisable directly, instead OpenCV func-
tion calls in existing software code must be replaced with corresponding function
calls from the HLS library. In this restricted setting, it is not possible to use dy-
namic memory allocation e.g. in the construction of image whose dimensions are
decided at runtime. For good performance using this library, the programmer
must use explicit pragmas to guide hardware generation.

Alternatively, DSLs may be embedded within the programming model of
an existing language, e.g. the Darkroom [5] FPGA image processing DSL is
embedded within Terra [4]. Darkroom is compiled to line-buffered pipelines,
with all intermediate values in local line-buffer storage. Images at each stage of
computation are specified as pure functions from 2D coordinates to the values
at those coordinates.

Our RIPL DSL for FPGAs is implemented as a standalone language, i.e. it
has its own syntax and its stream processing based programming model is not
hindered by a programming model of any general purpose host language. The
memory performance and expressivity of HLS OpenCV, Darkroom and RIPL is
compared in Section 5.

1.2 Data Locality

Fixed memory architectures comprise very fast cache access, off chip DDR mem-
ory access, or slow disk storage. Each application must fit into a fixed mem-
ory architecture representing a single large hierarchical memory space. A com-
mon approach is to build data locality aware compilers [11], e.g. locality aware
scheduling of OpenMP tasks on multicore CPUs [9] and mapping nested access
patterns on GPUs [8]. Minimising cache misses involves profiling cache traces,
moreover trading function inlining with executable size, and managing memory
pressure. Minimising memory requirements is a particular problem for close to
sensor real-time image processing on FPGAs, where hard choices must be made
in trading off memory and processing.

1.3 FPGA Memory

An important FPGA language implementation choice is whether on chip or off
chip memory should be used to store data structures. Utilising off chip memory is
sometimes unavoidable depending on the data transforms an algorithm requires,
e.g. transposing or rotating an image, both of which require an image frame
buffer. However, frequently using off chip memory from different parts of FPGA
circuits does not scale, because only one memory read from an on chip circuit can
be performed in each clock cycle. This can sequentialise execution and hence hurt
throughput performance. Moreover, off chip memory access can take multiple
clock cycles compared to latency-free LUT RAM or one cycle to access BRAM.
On chip memory provides contention free local buffer access for different parts of
the application specific circuit, because it is distributed across the FPGA’s fabric.
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Compilers of high level real-time languages should therefore prioritise wholly on
chip memory implementations. However, the scarcity of BRAM introduces its
own set of constraints for programming language designers to consider.

Memory layout on FPGA chips is fundamentally different to fixed processor
architectures. Instead of compiling a program to map efficiently to fixed memory
hierarchies, synthesis of high level languages builds a custom memory architec-
ture on chip tailored for the needs of an algorithm. The constraint when compil-
ing high level languages to FPGAs is the available resources, e.g. on chip memory
ranges from 4Mb to 68Mb. The challenge for HLS compilers is therefore to min-
imise memory use from algorithms expressed with high level software languages.
Synthesis tools can choose to implement memory using registers, lookup tables
(LUTs), or block RAM (BRAM). Unlike cache contention issues on multicore
CPUs, there is no contention to access BRAM memory because it is distributed
across the fabric of an FPGA.

2 FPGA Memory Constraints

2.1 Image Buffer Capacity

The main FPGA resource for implementing memory is BRAM blocks. For exam-
ple, the Z-7020 chip on the Zedboard has 140 36Kb BRAM blocks amounting to
4.4Mb. The XC7K480T chip on the Kintex-7 board has 1,910 18Kb blocks and
995 36Kb blocks amounting to 34Mb. The XC7VX1140T chip on the Virtex-7
board has 3,760 18Kb blocks and 1,880 36Kb blocks amounting to 68Mb. A
single channel image pixel is 8 bits, or 1 byte. A 320×240 image with a single
colour channel is 76, 800 bytes, a 512×512 image is 262,144 bytes, a 1024×768
image is 786,432 bytes, and a 1920×1080 image is 2,073,600 bytes.

Storing entire image frame buffers on FPGAs does not scale. The cost of
buffering entire image frames on chip is shown in Fig. 1. The Zedboard can
store up to seven 320×240 frame buffers and just two 512×512 frame buffers.
The Kintex-7 can store up to five 1024×768 buffers and two 1920×1080 buffers,
and the Virtex-7 is able to store four 1920×1080 buffers. Localised pixel, row and
region buffers should instead be generated by high level language compilers.

2.2 Eliminating Intermediate Buffers With Compiler Optimisation

When compiling high level programs to FPGAs, it is important to eliminate
intermediate data structures because on chip BRAM is a scarce resource. A
motivating example is shown in Fig. 2. This C++ code applies a Sobel edge
detection filter with a nested for loop, and then brightens the result with another
nested for loop. It uses the OpenCV Mat class for two intermediate images,
image2 and image3. The xGradient() and yGradient() functions are omitted for
brevity. Whilst these intermediate image structures could be offloaded to off chip
DDR memory, this would result in a latency of multiple clock cycles for every
memory access, compared to a single cycle for on chip access. There is a need for
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Fig. 1: Storing Multiple Frame buffers with on chip FPGA Memory

FPGA language compilers to avoid wasteful memory resources on intermediate
images image2 and image3.

One data locality approach in data parallel language compilers is to start from
an imperative language with loops, and fuse the successive loops over the input
image1 into an expression tree in a single loop, to improve cache locality and on
chip register locality e.g. [6,12]. For CPU or GPU scheduling, this expression
tree can be duplicated to apply the same fused computation on image chunks in
a data parallel fashion. However for pipelined FPGA scheduling, where different
computations are applied to separate regions of an image stream, a compiler
would apply loop fusion optimisations, and then expression pipelining in the
body of those loops to create hardware pipelines of fine grained operator dataflow
graphs.

3 RIPL: An FPGA DSL for Maximising Data Locality

We take a different approach with RIPL. The language design is inspired by
streaming libraries e.g. [7], which provides stream combinators like map, fold
and sum. Composition of these RIPL primitives is a natural way of expressing
pipelines of low and medium level image processing kernels. These pipelines are
preserved during compilation and mapped into hardware as concurrent circuits.
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Mat image2 ;
/* Sobel filter */
for(int y = 1; y < image1 .rows - 1; y++) {

for(int x = 1; x < image1 .cols - 1; x++) {
gx = xGradient (image1 , x, y);
gy = yGradient (image1 , x, y);
sum = abs(gx) + abs(gy );
image2 .at <uchar >(y,x) = sum;

}
}

Mat image3 ;
/* brighten image2 */
for(int y = 1; y < image2 .rows - 1; y++) {

for(int x = 1; x < image2 .cols - 1; x++) {
newPixel = image2 .at <uchar >(y, x) + 50;
image3 .at <uchar >(y,x) = newPixel > 255 ? 255 : newPixel ;

}
}

Fig. 2: Intermediate Images using OpenCV’s Mat class

image1 = imread 512 512;
/* Sobel filter */
image2 = filter2D image1 (3 ,3)

(\ p1 p2 p3 p4 p5 p6 p7 p8 p9 ->
abs (( p1 + (2* p2) + p3) - (p7 + (2* p8) + p9))
+ abs (( p3 + (2* p6) + p9) - (p1 + (2* p4) + p7)));

/* brighten image2 */
image3 = map image2 (\[ pixel ] -> [min 255 ( pixel + 50) ]);

Fig. 3: RIPL Equivalent of the OpenCV C++ in Fig. 2

RIPL has a declarative non-terminating programming model that is con-
strained for processing infinite image stream, a programming model from which
minimal memory costs can more easily be extracted. It represents a high pro-
gramming abstraction when compared to direct hardware design with HDLs.
We term RIPLs stream combinator primitives as algorithmic skeletons [3]. They
capture the common pattern of many low and medium level image signal pro-
cessing operations such as 1 dimensional (1D) and 2D filters, combining images,
and global operations such as finding the maximum pixel value. Intermediate
images in RIPL programs are transformed to streams that are shared through
parallel hardware pipelines, rather than copying whole images for each pipeline
phase to process. The RIPL implementation is available online4.

3.1 RIPL Skeletons

RIPL skeletons abstract common data access patterns, to which the user sup-
plies functions and values. They have been designed such that dataflow analysis
can be performed on their composition, and to extract the minimal memory

4 https://github.com/robstewart57/ripl

https://github.com/robstewart57/ripl
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imread
M,N

: (M : Int) → (N : Int) → I
R
(M,N)

map
M,N,A,B

: I
R
(M,N) → ([P ]A → [P ]B) → I

R
(M∗(B/A),N)

map
M,N,A,B

: I
C
(M,N) → ([P ]A → [P ]B) → I

C
(M,N∗(B/A))

imap
M,N,A

: I(M,N) → ([P ]A → P ) → I(M,N)

convolve
M,N,A,B

: I(M,N) → (A, B) : (Int, Int) → [K](A∗B) → I(M,N)

filter2D
M,N,A,B

: I(M,N) → (A, B) : (Int, Int) → ([P ](A∗B) → P ) → I(M,N)

zipW ith
M,N,A

: I(M,N) → I(M,N) → ([P ]A → [P ]A → [P ]A) → I(M,N)

zipW ithScalar
M,N,A

: I(M,N) → P → (P → P → P ) → I(M,N)

zipW ithV ector
M,N,A,B

: I(M,N) → [P ]A → ([P ]A → P → P ) → I(M,N)

unzip
M,N,A

: I
R
(M,N) → ([P ]A → P ) → ([P ]A → P ) → (IR

(M/2,N), I
R
(M/2,N))

unzip
M,N,A

: I
C
(M,N) → ([P ]A → P ) → ([P ]A → P ) → (IC

(M,N/2), I
C
(M,N/2))

scan
M,N

: I(M,N) → Int → (P → Int → Int) → I(M∗N)

foldScalar
M,N

: I(M,N) → Int → (P → Int → Int) → Int

foldV ector
M,N,A

: I(M,N) → Int → (A : Int) → (P → [Int]A → [Int]A) → [Int]A

transpose
M,N

: I
R
(M,N) → I

C
(M,N)

transpose
M,N

: I
C
(M,N) → I

R
(M,N)

Fig. 4: RIPL skeletons

requirements of their use. The RIPL program in Fig. 3 broadly corresponds to
the OpenCV C++ in Fig. 2, though RIPLs convolve and filter2D skeletons also
mirrors edge pixels over image boundaries to apply the kernel function to edge
pixels. When compiled to hardware, the image stream image1 is incrementally
processed, first by hardware logic that computes Sobel edge detection and then
by logic that brightens each pixel in the stream.

Skeleton API The RIPL skeletons are shown in Fig. 4, using a standard nota-
tion for function type signatures, e.g. map is a skeleton that takes two arguments:
an M×N image, and function from a vector of A pixels to a vector of B pixels.
It returns an M×N image. Each skeleton is repeatedly applied over an image
stream. Types in Fig. 4 are annotated with pixel major order, vector lengths
and image dimensions. For example, [P ]A is a vector of pixels of length A, so an
argument in a function of the form λ[a, b] has an implicit type [P ]2.

An image IR
(M,N) is M pixels wide and N pixels high, and whose pixels are in

row (R) major order. RIPLs map and unzip skeletons are implicitly directional,
sliding linearly either row wise or column wise over a one dimensional vector of
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1
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(a) traversing images with map

1

2

3

4

5

6

7

(b) traversing images with imap

Fig. 5: Comparison of map with indexed map

pixels. This meta information about stream order, image dimensions and vector
lengths is not specified by the programmer; it is inferred by the RIPL compiler.

Skeletons with Non-overlapping Sliding Windows The map skeleton
slides over an image and applies the user defined function with a non-overlapping
1D vector on each execution. The zipWith skeleton is similar, though it slides a
vector window of the same length over two images in lock step. The map and
zipWith skeletons are stateless and do not carry state between executions. Their
memory costs are therefore solely determined by the length of the sliding vec-
tor that they consume. The zipWithScalar skeletons combines every pixel and
a scalar value with a user defined function, and similarly zipWithVector allows
the programmer to use a random access vector to modify an image.

As an example of non-overlapping sliding windows, the following RIPL as-
signment combines two images using zipWith with a mean average combinator.
The memory cost is 2 8 bit integers, one each for pixels p1 and p2 from images
image1 and image2 respectively.

image3 = zipWith image1 image2 (\[p1] [p2] -> [(p1+p2)/2]);

Skeletons with Overlapping Sliding Windows The imap skeleton is use-
ful for applying 1D filters to an image. It is an indexed map that slides over
contiguously positioned pixels in a non-discrete fashion. The imap syntax differs
from map, because imap applies a function from a pixel position [.] to a new
value for that position, using the current pixel value and its neighbouring pixels
using +/-, e.g. [.-1] points to the pixel to the left of [.] in an IR image. The
difference in how map and imap traverses an image is depicted in Fig. 5, which
is labelled with repeated execution counts show the difference in their data pro-
cessing rates of an image row. Fig. 6 shows the expression of a 1D blur filter in
RIPL, along with its memory cost. The hardware implementation of this imap
consumes pixels into a 3 element circular buffer, updating the mid point index
for [.], before executing the user defined blur function.

RIPLs unzip skeleton is for splitting apart an image into two images, and
shares the pixel position syntax with imap. The hardware memory generated
from unzip is similar to imap, the difference being its scheduling – the hardware
for unzip creates two image streams, which are produced by alternating the
execution of the two user defined functions.
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index

0

1

2

[.]

[.+1] [.-1]

midpoint

new pixel

output pixel

(\[.] -> ([.-1] + [.] + [.+1]) / 3)

1D blur filter in RIPL:

Fig. 6: Memory requirements of 1D blur with imap satisfied with a circular buffer

output processed stream

pixel value being computed

stream to be consumed

buffered pixels

Fig. 7: Memory Cost for convolve and filter2D

Skeletons for 2D Filters Many 2D filters can be implemented by combining
the results of two 1D filters, one in the horizontal direction and one in the vertical
direction. This implementation approach is possible in RIPL by applying a 1D
horizontal filter with imap, transposing the result with transpose, then applying
a vertical 1D filter with imap. However, this is a very memory costly composition,
because transpose generates a frame buffer. For better stream data locality, RIPL
has two 2D filters convolve and filter2D. The convolve skeletons modifies each
pixel by applying a convolution of its neighbours using a small user defined M×N

kernel. The following example applies 3×3 kernel to sharpen an image.

image2 = convolve image1 (3,3) {0,-1,0,-1,5,-1,0,-1,0};

The filter2D skeleton provides more expressivity than convolve. When using
filter2D with a 3×3 window, the programmer is provided 9 pixel values that can
be used in their own function body, as shown earlier in Fig. 3 which computes
the approximate magnitude |G| = |Gx| + |Gy| for Sobel edge detection.

The memory requirements for convolve and filter2D is shown in Fig. 7. This
has the capacity to store two rows and a further three pixels. Stream based pro-
cessing begins once one row and two pixels are streamed into the corresponding
buffer, which is when the top left pixel can be processed.

Stateful Skeletons Stateful programming is achieved with RIPL using two
skeletons, foldScalar and foldVector. They apply user defined reduction opera-
tions on images or image regions. Reducing an image to a scalar value is done
using foldScalar, e.g. finding the maximum pixel value. The scan skeleton is
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Example

Skeleton buffer size RIPL code M × N buffer size

map
M,N,A,B

A map image1 (λ[a, b, c] → ...) n/a 3

imap
M,N,A

A + 1 imap image1 (λ[.] → ([. − 1] + [.] + [. + 1])/3) n/a 4

zipW ith
M,N,A

A ∗ 2 zipWith image1 (λ[a, b] [c, d] → ...) n/a 4

zipW ithScalar
M,N,A

A + 1 zipWithScalar image1 (λ[a, b] x → ...) n/a 3

zipW ithV ector
M,N,A,B

A + B + 1 zipWithVector image1 (λ[a, b] vect → ...) n/a 3 + B

unzip
M,N,A

A + 1 unzip image1 (λ[a, b] → ...) (λ[c, d] → ...) n/a 3

convolve
M,N,A,B

M ∗ 2 + 3 convolve image1 (3,3) kernel 512×512 1027

filter2D
M,N,A,B

M ∗ 2 + 3 filter2D image1 (3,3) (λ... → ...) 512×512 1027

scan
M,N

2 scan image1 0 (λ.. → ..) n/a 2

foldScalar
M,N

2 foldScalar image1 0 (λ.. → ..) n/a 2

foldV ector
M,N,A

A + 1 foldVector image1 255 0 (λ.. → ..) n/a 256

transpose
M,N

M ∗ N transpose image1 512 × 512 262144

Table 1: Memory Costs for RIPL Skeletons

similar to foldScalar, but returns a stream of intermediate successive reduced
values. Reducing an image to a vector is done using foldVector, e.g. computing
a colour histogram with each bin initialised to 0. Maximum pixel and histogram
calculations are expressed as:

maxValue = foldScalar image1 0 (\p currMax -> max p currMax);

histogram = foldVector image1 0 255 (\p hist -> hist[p]++);

4 RIPL Memory Costs

4.1 Memory Costs for Computation

RIPL programs are compiled to a dataflow intermediary of small computational
actors and FIFOs. The memory costs for each RIPL skeleton in bytes is shown
in Table 1. The map, imap, zipWith and unzip skeletons are implemented with
either overlapping or non-overlapping sliding vectors, and hence their memory
requirements are not determined by an image’s dimensions. These costs are
calculated from their offsets in stream access, analogous to array access offset
analysis in for loops in imperative languages. The map and zipWith memory
costs are solely determined by the vector length of the λ argument in the user
defined function. The memory cost of zipWithScalar and zipWithVector is the
stored scalar or vector, and the next incoming pixel value. The memory costs
for imap are determined by the biggest X in [.+X] occurrences in the output
expression, minus the biggest Y in [.-Y] occurrences.

The memory cost for the foldScalar and scan skeletons is the folded scalar
and the next pixel from the image stream. The foldVector skeleton’s memory re-
quirements are determined by the programmer’s choice of output vector length
which is folded through through each execution, and the next pixel from the
image stream. The convolve and filter2D skeleton’s memory requirements are
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image1 = imread 512 512;

image2 = filter2D image1 (3,3)

(\p1 p2 p3 p4 p5 p6 p7 p8 p9 ->

abs ((p1 + (2*p2) + p3) - (p7 + (2*p8) + p9))

+ abs ((p3 + (2*p6) + p9) - (p1 + (2*p4) + p7)));

image3 = imap image2

(\[.] -> ([.-2] + [.-1] + [.] + [.+1] + [.+2])/3);

out image3;

image1 image2 image3

filter2d imap

1 1

(a) Edge filter then 1D blur

image1 = imread 512 512;

maxPixel = foldScalar image1 0 (\p i -> max p i);

normalisedImage = zipWithScalar image1 maxPixel

(\p maxP -> if p > (maxP-100) then 255 else 0);

out normalisedImage;

image1 image2

zipWithScalar

512x512

1

233foldScalar

1

(b) Image threshold

Fig. 8: Memory costs for dataflow FIFOs

determined by the processed image’s width. The most costly skeleton is trans-
pose, because it requires an entire image to be stored in a buffer before being
outputted with a transpose index.

4.2 Memory Costs for Communication

An addition memory cost is the depth of dataflow wires to ensure deadlock free
RIPL execution. Dataflow wires are derived by data dependencies in RIPL pro-
grams, i.e. if the output of one skeleton is used as an input to another, then
a FIFO point-to-point connection is created in hardware to support that data
sharing. When the output of one RIPL skeleton is used in just one place in a
program, only one output FIFO will be connected from the hardware implement-
ing that skeleton, shown in Fig. 8a. In these cases, the required FIFO depth is
determined by the vector length of the λ argument in the receiving skeleton.
For example, if a map takes λ[a, b, c] then the required depth is 3. The overall
memory cost for FIFOs in Fig. 8a is 2 8 bit integers.

If the output image of one skeleton is used in multiple places, then depth re-
quirements can increase, shown in Fig. 8b. This RIPL program finds the biggest
pixel value of 233 with foldScalar, which is used to threshold the original im-
age using zipWithScalar with a threshold of 233 − 100. The generated hardware
duplicates image image1 over two FIFOs, one to the dataflow actor for comput-
ing the maximum value, and the other to threshold the image. Pixel tokens are
transmitted to both FIFOs in lock step. Therefore in order for maxP to be com-
puted, the actor executing foldScalar needs to receive all tokens, so the FIFO
to the threshold actor needs capacity to buffer the entire 512×512 image for the
maxP value to be computed. The overall memory cost for FIFOs in Fig. 8b is
(2 + 512 × 512) 8 bit integers.

4.3 FPGA Memory Implementation

Once RIPL programs are compiled to dataflow graphs, actor computation code
and dataflow wires are compiled to HDL using an open source dataflow com-
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piler [1], which makes choices about how to implement memory. For scalar in-
teger values it uses FPGA slice registers used as memory. For small arrays that
the RIPL compiler generates to support convolve, filter2D and foldVector, the
dataflow compiler may also use slice registers depending on the overall mem-
ory requirements of the complete hardware design. The benefit of implementing
these memories with slice registers is that the larger BRAM blocks are avail-
able for other parts of an algorithm, and because BRAM access is one clock
cycle whilst LUTs RAM can be accessed without any latency. BRAM is used to
support larger arrays generated by the RIPL compiler to support convolve and
filter2D on big images, and for transpose which needs an entire image buffer.

FIFOs are compiled to HDL as generic memories, leaving the FPGA synthesis
tools to choose how to implement them. Rendevous single token FIFOs will be
implemented using registers or LUTs. Small FIFOs, e.g. to buffer a single row, are
likely to be implemented with LUTs, whilst large FIFO depths, e.g. to support
duplicating image streams in Fig. 8b, will likely be implemented using BRAM.

5 Evaluation

5.1 Expressivitiy

We next compare RIPL with the Vivado HLS OpenCV library. A key difference is
that RIPL supports used defined functions to be expressed, whilst HLS OpenCV
is a collection of predefined functions. For example, the HLS OpenCV hls::Max
function combines two images by retaining the brighter of the pixels at each
point, which can be expressed using RIPL’s zipWith and max in the function
body. Another example is RIPLs filter2D, which enables the programmer to
define the mid pixel point with any function, whereas hls::Filter2D only supports
convolution of a user defined kernel, equivalent to RIPL’s convolve skeleton.

Another difference between RIPL and HLS OpenCV is image sharing. When
an image is used in two places in a RIPL program, the image stream is automati-
cally duplicated and shared to both consuming skeletons. With the HLS OpenCV
model, an equivalent program would deadlock because the first function that
uses the image will consume its pixels, emptying the FIFO. The hls::Duplicate
function must be used explicitly to avoid this.

OpenCV programming requires explicit dimension and bitwidth information
for each image declaration. The hls :: Mat <> template class is used to ini-
tialise an image, e.g. hls :: Mat < 512, 512, HLS 8UC1 > defines a 512×512
single channel image, using 8 unsigned bits per pixel. In contrast, the RIPL
compiler infers the dimension of every image, by following dimension transfor-
mations performed by skeletons through the implicit dataflow paths starting
from imread, the only place where dimensions are explicit. The compiler also
infers pixel bitwidths automatically, by calculating maximum upper bounds on
bitwidth requirements as image data flows through arithmetic operators. An-
other difference is the inference of FIFO depths. The default FIFO depth in
both RIPL and HLS OpenCV is 1. However, when an image is used in multiple
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hls::Mat<512,512, HLS_8UC1> img_0(rows,cols);

hls::Mat<512,512, HLS_8UC1> img_1(rows,cols);

hls::Mat<512,512, HLS_8UC1> img_2(rows,cols);

hls::Mat<512,512, HLS_8UC1> img_3(rows,cols);

// explicit depth for img_2 to prevent deadlock

#pragma HLS stream depth=262144 variable=img_2.data_stream

// convert AXI4 stream data to hls::mat format

hls::AXIvideo2Mat(INPUT_STREAM1, img_0);

// duplicate the img_0 stream

hls::Duplicate(img_0,img_1,img_2);

// find the maximum pixel of img_1 duplicate

int maxP, minP;

hls::Point p1,p2;

hls::MinMaxLoc(img_1,&minP,&maxP,p1,p2);

// threshold the img_2 duplicate using the max pixel - 50

int threshold = maxP - 50;

hls::Threshold(img_2,img_3,threshold,255,HLS_THRESH_TOZERO);

Fig. 9: Thresholding with HLS OpenCV using a maximum pixel value

places the RIPL compiler increases the FIFOs automatically to frame buffers
(Section 4.2). The HLS compiler does not make this inference, leaving the pro-
grammer to use FPGA co-simulation to identify deadlocks. The user then pro-
grammatically uses #pragma HLS stream depth =< N > to specify the FIFO
depth to avoid deadlock. Fig. 9 shows a HLS OpenCV example that demon-
strates the need for explicit image duplication and explicit FIFO depths. The
RIPL compiler infers both of these properties automatically.

The final difference is how image processing pipelines are constructed. Pipelined
parallelism in RIPL is automatic. When two skeletons are composed in sequence
over an input image, they will execute in parallel over different regions of the
image stream. In HLS OpenCV, the programmer must specify #pragma HLS
dataflow above the function calls intended to be pipelined over the image stream.

One similarity between HLS OpenCV and RIPL is the implementation of
image data structures. An OpenCV image is a hls::Mat. The Vivado HLS FPGA
implementation of hls::Mat images uses hls::stream internally, so OpenCV images
on FPGAs are FIFOs, which is also true for RIPL. Hence random image access
is not possible in either case.

Darkroom can be used to express benchmarks 1 and 2 (✓), but not 3, 4
or 5 (✗). Global reductions are not supported, because Darkroom’s line buffers
cannot be used to store values beyond a traversing a single line. Such a buffer is
required to compute the maximum pixel value (3) and the histogram (4). RIPL
is the only language of the three compared that supports image transposition,
which again requires a frame buffer that uses 64 BRAMs.
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Benchmark
RIPL HLS OpenCV Darkroom

BRAM LUTs BRAM LUTs

1 Image brighten 0 (0%) 118 (0%) 0 450 (0%) ✓

2 Sobel 2D edge detection 1 (0%) 12273 (23%) 3 (1%) 713 (1%) ✓

3 Threshold with max pixel 64 (45%) 280 (0%) 64 (45%) 9172 (1%) ✗

4 Histogram normalisation 64 (45%) 799 (1%) 3 (1%) 2918 (5%) ✗

5 Image transposition 64 (45%) 321 (0%) ✗ ✗

Table 2: Memory Implementation and Expressivity Results

5.2 Space Performance

We use five benchmarks to compare the space performance of RIPL and OpenCV
compiled to FPGAs using Vivado HLS. The benchmarks are 1) brighten each
pixel in an image by 50, 2) 2D Sobel edge detection, 3) find the maximum pixel
maxPixel value then threshold the image with (maxPixel − 50), 4) compute a
sum histogram for an image then normalise the image using the histogram, and 5)
transpose an image. All programs are compiled for the Xilinx Zedboard XC7Z020
for 512×512 single channel images. The memory use performance of Darkroom
cannot be compared because the line buffer to Verilog compiler backend is not
publicly available.

The synthesis results in Table 2 are for RIPL and HLS OpenCV. RIPL and
OpenCV occupy very similar memory resources for image brightening (1) and
image thresholding (3). For Sobel edge detection (2), RIPL uses 2 BRAMs less
than OpenCV by instead using more LUTs. Thresholding and histogram nor-
malisation (4) in RIPL require a FIFO depth equal to the number of pixels in the
image in RIPL’s hardware backend. To support 8 bit pixels, the synthesis tools
use BRAMs in 32Kb mode, so storing a 512×512 image requires 64 BRAM blocks
for these two benchmarks. The same is true for HLS OpenCV for thresholding,
but not histogram normalisation. This is because of an optimisation built into
hls::EqualizeHist(), which normalises frame N +1 using the histogram computed
for the previous frame N . This results in more efficient BRAM use compared to
RIPL. We plan this optimisation for RIPL.

6 Conclusion

Memory resources on FPGAs can be tailored to the needs of an algorithm, so
FPGA compilers are not hindered by fixed memory hierarchies such as those on
CPUs and GPUs. They are however constrained by the limited amount of on chip
BRAM and LUT memory resources. This paper describes the memory efficiency
aspects of RIPL, our image processing DSL for FPGAs. RIPL is more concise
than Vivado HLS OpenCV, because it automatically infers upper bounds on
bitwidths and the required FIFO depths for image streams, and image streams
are automatically duplicated when necessary. Despite these abstractions, RIPL
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memory use is competitive on three of the four benchmarks expressible with
the Vivado HLS OpenCV. RIPL is more expressive than the Darkroom image
processing DSL, because Darkroom compiles to line buffers so does not support
global image reductions. Future work will explore temporal video processing
capabilities in RIPL, where new opportunities for dataflow analysis for data
locality may arise. We also wish to explore the applicability of RIPL for FPGA
acceleration of other stream based domains beyond image processing.
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