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Dilatational viscosity of dilute particle-laden fluid interface at different contact angles

Sergey V. Lishchuk
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(Received 16 June 2016; published 22 December 2016)

We consider a solid spherical particle adsorbed at a flat interface between two immiscible fluids and having

arbitrary contact angle at the triple contact line. We derive analytically the flow field corresponding to dilatational

surface flow in the case of a large ratio of dynamic shear viscosities of two fluids. Considering a dilute assembly

of such particles we calculate numerically the dependence on the contact angle of the effective surface dilatational

viscosity particle-laden fluid interface. The effective surface dilatational viscosity is proportional to the size and

surface concentration of particles and monotonically increases with the increase in protrusion of particles into

the fluid with larger shear viscosity.

DOI: 10.1103/PhysRevE.94.063111

I. INTRODUCTION

The behavior of small particles adsorbed at interfaces

between two fluids continues to be an area of great interest

from an academic point of view as well as for its importance in

many technological and industrial applications. The capability

of the colloidal particles trapped at fluid interfaces to stabilize

emulsions has applications in many industrial sectors, such

as food processing [1], petroleum industry [2], biomedicine

[3], etc.

The rheological properties of particle-laden fluid interfaces

are known to be one of the key factors which influence

stability of particle-laden emulsions and foams [1,4,5]. Better

understanding of the rheological properties can help to enhance

the stability of emulsions and foams and facilitate their

use in fabrication of advanced materials, the examples of

which are colloidosomes [6,7], armored bubbles [8,9], liquid

marbles [10,11], bijels [12], and porous solids [13]. The study

of the rheology of particle-laden fluid interfaces can provide

new insight into their structure and properties [4,5].

Generally, particle-laden fluid interfaces are viscoelastic

[5]. It is possible to separate viscous and elastic contributions

to the surface stress by using appropriate constitutive equations

[14]. For isotropic interfaces the viscous contribution is well

described by a Boussinesq-Scriven model with surface shear

and dilatational viscosities as the material properties [15,16].

In particular, isotropic change in the surface area results in a

purely dilatational surface flow with the surface velocity field

vs = αr, (1)

where α is the dilatation rate. The corresponding rate-of-strain

tensor is isotropic,

S = αIs, (2)

where Is is the surface unit tensor. In this case the viscous

contribution to the surface stress tensor,

σ v = ζsS, (3)

contains a single material parameter, dilatational viscosity ζs .

Note that ζs is the average, effective viscosity, which has sense

on a large length scale where we can regard particle-laden

interface as continuous.

In the case of a 90◦ contact angle, dilatational viscosity can

be calculated analytically in the limits of low and high surface

concentrations of particles. The origin of excess dissipation in

particle-laden interfaces lies in modification by the particles

of the flow in the bulk fluids that surround the interface. In

the case of low concentration of the adsorbed particles the

interaction between particles can be neglected and the effective

dilatational viscosity is given by formula [17]

ζs = 5(η1 + η2)Rφ (for small φ), (4)

where η1 and η2 are shear viscosities of the surrounding bulk

fluids, R is the radius of the adsorbed particles, and

φ =
πR2N

A
(5)

is the surface concentration of the particles, where N is

the number of particles in surface area A. In the opposite

limit of high particle concentration the effective dilatational

viscosity can be derived on the base of the facts that (i)

highly concentrated particle arrays in a plane form a hexagonal

structure and (ii) the dominant contribution to the viscous

dissipation rate arises in the thin gaps between neighboring

particles. The result is [18]

ζs =
3
√

3π (η1 + η2)R

16(
√

φm/φ − 1)
(for large φ), (6)

where

φm =
π

2
√

3
(7)

is the maximum packing density of circles in the plane. The

results (4) and (6) can be used as a starting approximation

for more complicated (and common) systems in which

the interparticle interactions of different nature cannot be

neglected.

The above results were derived for the case of 90◦ contact

angle. On one hand, this allows us to exploiting the symmetry

of the system, making the derivation easier. On the other

hand, in the most common systems particles form arbitrary

contact angles with the fluid interface due to different nature

of fluids at both sides of the interface. Contact angle can be

controlled, for example, by modifying chemical composition

of the particle surfaces [19] or fluid phase [20]. This, in

turn, allows controlling particle packing density [21], their
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FIG. 1. The geometry of the system.

detachment energy [21,22], and the type of particle-stabilized

emulsions (e.g., air-in-water or water-in-air [19], oil-in-water

or water-in-oil [20]), as predicted Finkle and others [23].

Contact angle influences drag and diffusion coefficients of the

particles at fluid interfaces [24–26] as well as their electrostatic

properties [27].

This paper extends the result for the effective dilatational

viscosity of particle-laden fluid interfaces in the limit of low

surface concentration of particles, Eq. (4), to arbitrary contact

angles. At that, we simplify the analysis by neglecting the

viscosity of one of the fluids because high ratio of dynamics

shear viscosities is commonly encountered in practice, for

example, water-air or oil-water interfaces typically have shear

viscosity contrast of two orders of magnitude.

The paper is organized as follows. After formulating

the model (Sec. II) and writing the corresponding general

expression for the dissipation energy (Sec. III), we proceed

to derivation of the analytical expression for the velocity field

(Sec. IV). Numerical integration of the velocity then provides

the distribution of pressure at the surface of the particle (Sec. V)

and the effective dilatational viscosity (Sec. VI), which is the

main result of this paper. The dependence of the effective

dilatational viscosity on the contact angle is given by Eq. (66),

tabulated in Table I, and illustrated graphically in Fig. 3.

II. MODEL

We consider a system of identical rigid spherical particles

of radius R adsorbed at the flat interface between two

incompressible fluids. We assume the particles are far enough

from each other so their interactions of any nature can be

neglected.

We suppose a macroscopically thin fluid interface is located

at z = 0 and separates a high viscosity fluid (z > 0) with

dynamic viscosity η and a low viscosity fluid (z < 0) which

viscosity we shall neglect. We suppose surface tension γ to be

high enough so flow and gravity do not distort the flat shape of

the interface. We assume that the interfacial tensions favor a

contact angle θ as shown in Fig. 1. This definition of θ agrees

with the commonly accepted one for air-water interface but is

supplementary to commonly accepted definition for oil-water

interface. For consistency, we will use the same definition,

shown in Fig. 1, for all cases. Then the vertical position of the

particles’ centers is given by

zc = R sin θ, (8)

the protrusion of the particles into the large-viscosity fluid is

R + zc, and the radius of the triple contact circle is

c = R cos θ. (9)

We shall accept Eq. (5) as the definition of the surface

concentration of particles, although it no longer has meaning

of the fraction of the surface area taken by particles in the cases

when the contact angle differs from 90◦.

In small-Reynolds-number flow the velocity v and pressure

p of high-viscosity fluid satisfy the Stokes equation

μ∇2v = ∇p (10)

and the continuity equation

∇ · v = 0. (11)

We assume no-slip boundary condition at the surface of the

particle,

v = 0. (12)

Since the position of the fluid interface remains constant, the

kinematic boundary condition at the fluid interface is

v · n = 0, (13)

where n is the unit vector normal to the interface. Since we

neglect the motion of the low-viscosity fluid, the dynamic

boundary condition can be written in the following form:

∂vt

∂z
= 0, (14)

where vt is the component of the velocity tangential to the

interface.

We subject the system to the flow which in the absence

of the particles would be written in cylindrical coordinates

(r,φ,z) as

v(0)
r = αr, v

(0)
φ = 0, v(0)

z = −2αz (15)

and corresponds to the dilatational surface flow given by

Eq. (1).

III. ENERGY DISSIPATION

Particle-laden fluid interface can be viewed on a macro-

scopic scale as continuous, characterized by some effective

properties. Let us consider such “macroscopic” version of

the model described in the previous section. Then, instead of

particles straddling the interface, we will have a homogeneous

fluid interface characterized, in particular, by some effective

dilatation viscosity ζs . Consider a large sphere located some-

where at the interface and having a volume V0. The additional

contribution to the energy dissipation rate which arises due to

the dilatational flow at the interface is [17,18]

Ė = ζs(Tr S)2As, (16)

where As is the area of the fluid interface contained within

volume V0. Substituting (Tr S)2 = 4α2 in accordance with

Eq. (2), we obtain

Ė = 4ζsα
2As . (17)

We can use Eq. (17) as the definition of the effective

dilatational viscosity and determine its value by calculating the

contribution to the energy dissipation rate of the particle-laden
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interface due to the presence of the particles. This approach

was pioneered by Einstein, who used it to determine the

effective shear viscosity of dilute suspensions [28]. Similar

approach can be used to define effective surface shear viscosity

of particle-laden fluid interfaces [17,29].

The expression for the rate of energy dissipation in particle-

laden flows can be cast in a form of an integral over the surface

of the particles Ap provided the integral

α ·
∫

V

[(

∂σ
(1)

∂r

)

r + σ
(1)

]

dV (18)

over the volume V occupied by fluid inside As equals

zero [30,31]. In Eq. (18), α is the rate-of-strain tensor

corresponding to the fluid flow unperturbed by particles [in

our case it is given by Eq. (15)], and

σ
(1) = −p(1)I + η[∇v(1) + (∇v(1))T] (19)

is the contribution to the stress tensor due to the presence

of the particles. The value of the shear viscosity η generally

differs in different fluid components. This results in the

discontinuity in the stress field at the interface. Nevertheless,

it is straightforward to check that the integral (18) indeed

equals zero in the case if identical particles are adsorbed at

the interface between two fluids provided there is no extra

dissipation of energy at the interface (for example, due to

adsorbed surfactants). Then the expression for the rate of

energy dissipation can be written as [17,29]

Ė = N

∫

Ap

[(α · r) · (σ (1) · n) − 2η(α : v(1)n)]dA, (20)

where N is the number of particles adsorbed at the interface

of area As .

The velocity and pressure fields can be represented as

sums of unperturbed contributions v(0), given by Eq. (15), and

p(0), which is constant, and the perturbations due to particles,

denoted by superscript (1):

v = v(0) + v(1), (21)

p = p(0) + p(1). (22)

If the particles are far enough from each other, then the velocity

and pressure fields can be determined as a solution to Stokes

equations (10) and (11) for the flow with only one particle

present, which is done in the following two sections. Then

the effective dilatational viscosity is obtained by equating

expressions (17) and (20):

ζs =
φ

4πR2α2

×
∫

Ap

[(α · r) · (σ (1) · n) − 2η(α : v(1)n)]dA. (23)

IV. VELOCITY FIELD

This section presents the velocity field for the dilatational

flow in the presence of a spherical particle adsorbed at a

fluid interface, according to the model described in Sec. II.

Without loss of generality, we will assume that the radius of

the particle, R, is equal to 1. Our derivation is a modification

of the derivation by El-Kareh and Secomb [32] with no-slip

boundary condition at the solid wall replaced by the free-

surface boundary condition at the fluid interface.

The velocity of an axially symmetric flow is expressed in

terms of stream function 
 as [32]

v = ∇ ·
(




r
eφ

)

, (24)

where cylindrical coordinate system (r,φ,z) is used. The

stream function 
 can be decomposed as


 = ψ0 + ψ, (25)

according to decomposition of velocity given by Eq. (21). The

contribution which corresponds to the unperturbed flow with

velocity v(0) is

ψ0 = −αr2z. (26)

The general approach for solving Stokes equations in

axially symmetric systems was formulated by El-Kareh and

Secomb [32] and, in an alternative form, by Zabarankin and

coauthors [33,34]. For the stream function contribution ψ ,

which corresponds to the disturbance velocity v(1), we shall

use the general solution in the form given by El-Kareh and

Secomb [32], which tends to zero far from the particle:

ψ = 2 Re

{

1

(cosh ξ − cos η)3/2

∫ ∞

0

[

Piτ− 3
2
(cosh ξ ) − Piτ+ 1

2
(cosh ξ )

]

[A(τ ) cos[(iτ − 1)η] + B(τ ) cos[(iτ + 1)η]

+ C(τ ) sin[(iτ − 1)η] + D(τ ) sin[(iτ + 1)η]]dτ

}

. (27)

Here Pν(z) are Legendre functions of the first kind [35,36].

In Eq. (27) the toroidal coordinate system (ξ,θ,φ) is used,

in which both the surface of the particle and the fluid interface

coincide with the coordinate surfaces [25,27,37,38]. In the

meridional cross-section plane (r,z) toroidal coordinates (ξ,η)

are introduced by [39,40]

r =
c sinh ξ

cosh ξ − cos η
, z =

c sin η

cosh ξ − cos η
, (28)

where a metric parameter c is shown in Fig. 1. The azimuthal

coordinate φ is common to both coordinate systems. The

fluid interface corresponds to η = 0, and the surface of the

particle in contact with a viscous liquid (z > 0) corresponds

to a coordinate surface η = η0, where η0 = arcsin c. We can

express the vertical position of the particle’s center in terms

of η0 as zc = cos η0. Note that the contribution (26) to the

stream function corresponding to unperturbed flow is written
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in toroidal coordinates as

ψ0 = −
αc3 sin η sinh2 ξ

(cosh ξ − cos η)3
. (29)

The functions A(τ ), B(τ ), C(τ ), and D(τ ), which enter

Eq. (27), can be determined by applying boundary condi-

tions (12)–(14). Similarly to Ref. [32], we can set to zero the

value of the stream function 
 both at the surface of the particle

and at the fluid interface because they form a single stream

surface in accordance with the boundary conditions (12)

and (13):


 = 0 at η = 0 and η = η0. (30)

The no-slip boundary condition at the surface of the particle,

Eq. (12), also yields

∂


∂η
= 0 at η = η0. (31)

A dynamic boundary condition at the fluid interface, Eq. (14),

is written in terms of 
 as

∂2


∂η2
= 0 at η = 0. (32)

Taking into account that the base flow (29) satisfies free-flow

boundary conditions at the fluid interface, we can rewrite the

above equations in terms of the disturbance stream function ψ

as

ψ = 0,
∂2ψ

∂η2
= 0 at η = 0, (33)

ψ = −ψ0,
∂ψ

∂η
= −

∂ψ0

∂η
at η = η0. (34)

Application of the boundary conditions at the fluid inter-

face, Eq. (33), to Eq. (27) yields

A(τ ) = 0 and B(τ ) = 0. (35)

With this, the stream function (27) can be rewritten in the form

ψ =
2

(cosh ξ − cos η)3/2

∫ ∞

0

R(τ,ξ )k(τ,η)dτ (36)

with

R(τ,ξ ) = i
[

Piτ− 3
2
(cosh ξ ) − Piτ+ 1

2
(cosh ξ )

]

(37)

and

k(τ,η) = E(τ ) sin η cosh(ητ ) + F (τ ) cos η sinh(ητ ), (38)

where the functions E(τ ) and F (τ ) are determined by the

boundary conditions at the surface of the particle.

Using the relations

(cosh ξ − cos η)
3
2 ψ |η=η0

=
∫ ∞

0

R(τ,ξ )G1(τ )dτ (39)

and

∂

∂η
[(cosh ξ − cos η)

3
2 ψ]

∣

∣

∣

∣

η=η0

=
∫ ∞

0

R(τ,ξ )G2(τ )dτ, (40)

where

G1(τ ) = 2E(τ ) sin η0 cosh(η0τ ) + 2F (τ ) cos η0 sinh(η0τ ),

(41)

G2(τ ) = 2E(τ )[cos η0 cosh(η0τ ) + τ sin η0 sinh(η0τ )]

− 2F (τ )[sin η0 sinh(η0τ ) − τ cos η0 cosh(η0τ )],

(42)

the boundary conditions on the surface of the particle, Eq. (34),

can be cast as
∫ ∞

0

R(τ,ξ )G1(τ )dτ = −(cosh ξ − cos η)
3
2 ψ0

∣

∣

∣

∣

η=η0

(43)

and
∫ ∞

0

R(τ,ξ )G2(τ )dτ = −
∂

∂η
[(cosh ξ − cos η)

3
2 ψ0]

∣

∣

∣

∣

η=η0

.

(44)

The functions E(τ ) and F (τ ) are given by formulas

E(τ ) =
[sin η0 sinh(η0τ ) − τ cos η0 cosh(η0τ )]G1(τ ) + cos η0 sinh(η0τ )G2(τ )

sinh(2η0τ ) − τ sin(2η0)
(45)

and

F (τ ) =
[cos η0 cosh(η0τ ) + τ sin η0 sinh(η0τ )]G1(τ ) − sin η0 cosh(η0τ )G2(τ )

sinh(2η0τ ) − τ sin(2η0)
, (46)

where G1(τ ) and G2(τ ) satisfy Eqs. (43) and (44). In order to determine the explicit form of the functions G1(τ ) and G2(τ ) we

substitute Eq. (29) for ψ0 into Eqs. (43) and (44) to obtain

∫ ∞

0

R(τ,ξ )G1(τ )dτ =
αc3 sinh2 ξ sin η0

(cosh ξ − cos η0)3/2
(47)

and

∫ ∞

0

R(τ,ξ )G2(τ )dτ =
αc3 sinh2 ξ cos η0

(cosh ξ − cos η0)3/2
−

3αc3

2

sinh2 ξ sin2 η0

(cosh ξ − cos η0)5/2
. (48)
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Applying operator sinh ξ (d/dξ ) to both sides of Mehler-Fock

representations [41]

1

(cosh ξ − cos η0)1/2
=

√
2

∫ ∞

0

tanh(πτ )Piτ− 1
2
(cosh ξ )

×
cosh[(π − η0)τ ]

sinh(πτ )
dτ (49)

and

1

(cosh ξ − cos η0)3/2
=

2
√

2

sin η0

∫ ∞

0

τ tanh(πτ )Piτ− 1
2
(cosh ξ )

×
sinh[(π − η0)τ ]

sinh(πτ )
dτ (50)

and using the identity [32]

sinh ξ
dPiτ− 1

2
(cosh ξ )

dξ
= −

τ 2 + 1
4

2τ
R(τ,ξ ), (51)

we obtain the relations

sinh2 ξ

(cosh ξ − cos η0)3/2

=
√

2

∫ ∞

0

(

τ 2 +
1

4

)

cosh[(π − η0)τ ]

τ cosh(πτ )
R(τ,ξ )dτ (52)

and

3 sinh2 ξ

(cosh ξ − cos η0)5/2
=

2
√

2

sin η0

∫ ∞

0

(

τ 2 +
1

4

)

×
sinh[(π − η0)τ ]

cosh(πτ )
R(τ,ξ )dτ, (53)

which together with Eqs. (47) and (48) yield

G1(τ ) =
√

2αc3

τ cosh(πτ )

(

τ 2 +
1

4

)

sin η0 cosh[(π − η0)τ ] (54)

and

G2(τ ) =
√

2αc3

τ cosh(πτ )

(

τ 2 +
1

4

)

{cos η0 cosh[(π − η0)τ ]

− τ sin η0 sinh[(π − η0)τ ]}. (55)

As a result, the velocity field is given by Eq. (24), where

the stream function 
, Eq. (25), is a sum of the base flow

contribution ψ0, given by Eq. (29), and the disturbance

contribution ψ , given by the integral (36) with the integrand

defined by Eqs (45), (46), (54), and (55). Figure 2 depicts

stream lines of this flow at different contact angles.

V. PRESSURE ON PARTICLE SURFACE

The pressure distribution on the surface of a spherical

particle with no-slip boundary condition was found by

El-Kareh and Secomb [32] to satisfy the equation

1

μ

(

∂p

∂ξ

)

η=η0

=
1

c3 sinh ξ

{

∂

∂η

[

(cosh ξ − cos η)3 ∂2


∂η2

]}

η=η0

. (56)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

z
 /
 R

ρ / R

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

z
 /
 R

ρ / R

FIG. 2. Streamlines of the velocity field at different values of the

contact angle: θ = 135◦ (left) and θ = 45◦ (right).

Substituting Eqs (25), (29), and (36) for stream function 
,

we can write
(

∂p

∂ξ

)

η=η0

=
μ

c3

1

sinh ξ

{

(cosh ξ − cos η)3/2

×
[

∂3f

∂η3
+ 2

∫ ∞

0

R(τ,ξ )
∂3k

∂η3
dτ

]

−
3

2
(cosh ξ − cos η)1/2

× sin η

[

∂2f

∂η2
+ 2

∫ ∞

0

R(τ,ξ )
∂2k

∂η2
dτ

]}

η=η0

,

(57)

where

f = (cosh ξ − cos η)3/2ψ0. (58)

The pressure distribution on the surface of the particle can

be found by integrating Eq. (57):

p(ξ ) = p0 +
∫ ξ

0

(

∂p

∂ξ

)

η=η0

dξ. (59)

We shall neglect the integration constant p0 because does not

affect the calculated value of the effective dilatational viscosity

ζs . This follows from the Stokes equation (10), which contains

only gradient of pressure, and can also be directly verified

by substituting in Eq. (23) the contribution −p0I to the stress

tensor. We shall therefore calculate pressure using formula

p(ξ ) =
∫ ξ

0

(

∂p

∂ξ

)

η=η0

dξ. (60)

VI. DILATATIONAL VISCOSITY

In order to calculate dilatational viscosity we need to

evaluate the integral in Eq. (23). It is convenient to split it

in two parts corresponding to two terms in the integrand:
∫

Ap

[(α · r) · (σ (1) · n) − 2η(α : v(1)n)]dA = I1 + I2. (61)

The second part, I2, can be integrated analytically:

I2 ≡
∫

Ap

[−2η(α : v(1)n)]dA = 4πηα2(R + zc)(R2 − z2
c).

(62)
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FIG. 3. Dependence of the dilatational viscosity on the vertical position of the particle’s center zc (left) and the contact angle θ (right).

Solid circle corresponds to the case of 90◦ contact angle described by Eq. (4) with η1 = η, η2 = 0.

The first part,

I1 ≡
∫

Ap

[(α · r) · (σ (1) · n)]dA, (63)

can be represented in form

I1 = α

∫ (1+zc)R

0

{

ηρ

[

4ρ
∂vρ

∂ρ
− (z + zc)

∂vρ

∂z
− 2vρ

]

− 2η

[

ρ(z + zc)
∂vz

∂ρ
+ 2z(z − zc)

∂vz

∂z
− 2(z − zc)vz

]

+ [2z(z − zc) − ρ2]p

}

ρ=
√

1−(z−zc)2R

dz, (64)

where the integrand is evaluated at the surface of the particle

and can be calculated numerically using velocity given by

Eqs. (24), (25), (29), (36), (45), (46), (54), and (55), and

pressure given by Eqs. (60), (57), and (58). The effective

dilatational viscosity is then calculated by formula

ζs =
φ

4πR2α2
(I1 + I2). (65)

The final result can be represented in form

ζs = 5ηRφK(θ ), (66)

where the dependence of ζs on the contact angle is described by

the factor K(θ ). In case of θ = 90◦ the viscosity is described

by Eq. (4) with η2 = 0, and therefore we have K(π/2) = 1

exactly. In order to obtain K(θ ) for other values of the contact

angle, the numerical integration of Eq. (64) was carried out

using the algorithms implemented in the GNU Scientific

Library [42]. At that, the function R(τ,ξ ) was calculated using

the software described in Ref. [43] for small values of ξ

and by substituting the asymptotic expansion of the conical

function [44] in Eq. (51) at large values of ξ .

The numerical results for K(θ ) are presented in Fig. 3

and Table I. Increasing the protrusion of particles into the

fluid with higher shear viscosity, zc, leads to increase in the

distortion of the base flow and, consequently, to increase

in viscous dissipation of energy, which is manifested as a

monotonic growth of the effective surface dilatational viscosity

ζs(zc).

The values zc > R, not considered here, would correspond

to a system in which the particles form a flat layer without

contact with fluid interface. In the limit zc → ∞ the particles

will be far from the interface. The dilatational viscosity of this

hypothetical system can be calculated by setting equal shear

viscosities of two bulk fluids, η1 = η2, in Eq. (4), leading to

the value K(zc → ∞) = 2 which is less than the maximum

value in Fig. 3. Thus the maximum dilatational viscosity

corresponds to some value of zc at which particles do not

straddle the interface. This can be qualitatively explained by

“screening” of the flow by the particles with large zc, leading

to the increased distortion of the velocity field in some volume

“below” the particle (an example of such distortion can bee

seen in Fig. 2, where a vortex appears at θ = 45◦, which can

be considered an axisymmetric equivalent of Moffatt eddies

[45]).

We conclude this section by summarizing the conditions

of applicability of the results of this paper. It follows from

the assumptions of the model that in order for the results to

be valid the surface concentration of particles has to be small

(φ ≪ 1), and the ratio of shear viscosities of both fluids has

to be large (η1 ≫ η2). Additionally, shear rate has to be small

enough [29] to reduce the inertial effects,

α ≪
η

ρf R2
(67)

(ρf is the fluid density) and to keep the interface flat,

α ≪
γ

ηR
(68)

(γ is the surface tension). These are rather weak re-

strictions: For example, for a micron-sized particle at

an air-water interface they require the shear rate to be

small compared to ∼106 s−1, which is well satisfied in

experiments.

TABLE I. Values of the function K(θ ), defined by Eq. (66), at

different values of θ .

Contact angle θ (◦) 15 30 45 60 75 90 105 120 135

Dilatational 3.44 3.10 2.66 2.13 1.55 1.00 0.54 0.22 0.05

viscosity

factor K(θ )
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VII. CONCLUDING REMARKS

We have calculated the effective surface dilatational vis-

cosity of an interface between two immiscible fluids having

large viscosity contrast and decorated with a system of

monodisperse solid spherical particles, favoring different

contact angles at the triple contact line, in the limit of

small surface concentration of particles. The effective surface

dilatational viscosity is proportional to the size and surface

concentration of the particles and monotonically increases

with the increase in the protrusion of the particles into the fluid

with higher shear viscosity, as depicted in Fig. 3. Experimental

and computer simulation studies of dilatational rheology of

particle-laden interfaces in the dilute regime can establish the

limits of applicability of this result and, possibly, provide new

insight into the mechanisms of viscous dissipation in such

systems. The results can be used as a reference approximation

for higher-concentrated systems in which the interparticle

interactions cannot be neglected.

The derivation was carried in assumption that the viscosity

of one of the fluids is small compared to another. This is

the most common case in practice, exemplified by oil-water

and water-air interfaces. The result can be extended to the

case of comparable viscosities of two fluids by modifying

the dynamic boundary condition (14). Such extension should

be also applicable to the cases in which the larger part of

the particle is in contact with the low-viscosity fluid so the

disturbance of flow in the low-viscosity fluid is large compared

to the high-viscosity fluid, making it necessary to take into

account viscous dissipation in both fluids.

Considering the same system subjected to a different type of

flow, which corresponds to the surface shear flow, should allow

us to calculate the effective surface shear viscosity of dilute

particle-laden interfaces at arbitrary contact angles using the

similar method. The general method to deal with complications

which arise due to break of the axial symmetry of the flow has

been developed by Zabarankin and Krokhmal [34]. We may

expect that the “screening” of the flow by particles, described

in Sec. VI, would not appear in the case of the bulk fluid flow

corresponding to surface shear flow, so surface shear viscosity

would not increase as fast as dilatational viscosity with the

increase in the protrusion of particles into the high-viscosity

fluid.
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Calderon, V. Héroguez, and V. Schmitt, Langmuir 30, 9313

(2014).

[21] B. P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002).

[22] R. Ettelaie and S. V. Lishchuk, Soft Matter 11, 4251

(2015).

[23] P. Finkle, H. D. Draper, and J. H. Hildebrand, J. Am. Chem.

Soc. 45, 2780 (1923).

[24] G. Boniello, C. Blanc, D. Fedorenko, M. Medfai, N. B. Mbarek,

M. In, M. Gross, A. Stocco, and M. Nobili, Nat. Mater. 14, 908

(2015).

[25] A. Dani, G. Keiser, M. Yeganeh, and C. Maldarelli, Langmuir

31, 13290 (2015).
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