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Abstract: In reconfigurable modular robotics, when robot modules joins to form a robotic organism, they create a dis-

tributed processing environment in a unified system. This research builds on the efficient use of these dis-

tributed processing resources and presents the manner these resources can be utilised to implement distributed

mosaic formation and object detection within the organism. The generation of mosaics provides surrounding

awareness to the organism and helps it to localise itself with reference to the objects in the mosaics. Whereas,

the detection of objects in the mosaic helps in identifying parts of the mosaic which needed processing.

1 INTRODUCTION

In reconfigurable modular robotics, the robot mod-

ules physically join together to form different shapes

of organisms which are inspired from the nature (e.g.

snake, wheel shape and walking system) as described

in (Yim et al., 2007)(Zhang et al., 2003)(Fukuda and

Nakagawa, 1988). These systems are also described

as “Networked Robotics” in (Kumar et al., 2006), be-

cause the individual robot modules establish a com-

munication network between each other. The com-

munication network helps the robot modules to share

their knowledge. In the recent research (Kernbach

et al., 2009), a complicated modular robot is pre-

sented in which robot modules share their energy,

memory and computing resources in the organism.

An example of energy sharing, in terms of physical

pull, is described in (Tuci et al., 2006) where mul-

tiple robot modules drag heavy objects. The shar-

ing of the computing resources among robot mod-

ules introduces the concept of distributed computing

in robotics (Defago, 2001) (Brugali and Fayad, 2002).

For distributing computing, the presence of a reliable

communication medium is essential. The provision

of physical communication medium in the organism

facilitates the utilisation of distributed processing re-

sources within it. In modular robotics, as the indi-

vidual robot have limited memory and processing re-

sources, so the use of vision sensors is usually avoided

because of the computationally demanding nature of

the vision algorithms. But in the robotic organism, as

a reliable communication medium and rich process-

ing environment is generated, so this facilitates the

distributed implementation of vision algorithms.

In this research a distributed modular robotic sys-

tem is considered (Replicator, 2008)(Kernbach et al.,

2008). Using the high speed communication and

computational resources within the organism, the task

of distributed vision processing is performed. A sce-

nario is considered in which a multi-processor robot

(simulating the organism) is used. The master module

in the robot becomes responsible for the robot loco-

motion and recognition of landmarks. Whereas, the

two slave modules gather the surrounding informa-

tion of the landmark by collectively generating the

image mosaic, and then detecting the objects in the

mosaic. The locations of these detected objects in the

mosaic, with reference to the landmark, can be help-

ful if later on, a robot has to reach a specific object.

To achieve this, the robot can relates the object it ob-

serves with the objects present in the mosaics. On

finding a match, it obtain clues about which direction

to proceed to find the object.

2 METHODOLOGY

To perform the distributed vision processing, a

robotic organism is required. For this purpose, a

multi-processor robot is developed which closely sim-

ulates the robotic organism. In the multi-processor

robot, three Analog Devices Blackfin processors to-

gether with evaluation board EVAL-BF5xx were



used, as shown in Figure 1. For distributed process-

ing, the entire vision processing task was divided into

three sub-tasks, where each sub-task was assigned to

an individual processing module as shown in Figure 1.

The master module performs the robot locomotion

and landmarks recognition. To recognise landmarks,

the master module was provided with the SURF fea-

tures of the landmarks. On recognising the land-

mark, the master module rotated the robot, scanned

the environment and passed the stream of images to

slaves 1 and 2 robots. Slave 1 robot extract SURF

features, computed homographies and passed homo-

graphies information to slave 2 robot. Slave 2 re-

ceived the stream of images from the master robot and

the corresponding homographies from slave 1. Using

the homographies, slave 2 robot stitched the images

together to generate mosaic and finally detected the

presence of the objects in the surrounding of the land-

mark.

Figure 1: Allocation of tasks within the organism.

2.1 Homographies Computation

While rotating the robot, the master module streamed

the QVGA (320x240 pixels) resolution images to

slave 1 module. Originally, the master module

grabbed VGA (640x480 pixels) resolution images,

but to reduce the load on the communication medium

and to reduce the SURF features extraction time on

slave 1 module, the images were sent to slave 1 in

QVGA format. After extracting the SURF features,

slave 1 robot performed matching of features ex-

tracted from two consecutive images. These matching

features were processed with RANSAC “RANdom

SAmple Consensus” algorithm to remove any outlier

features. The final matching features were then used

to extract homography between the two images. Slave

1 robot forwarded these homographies information to

the slave 2 where it was used to generate the image

mosaics.

2.2 Mosaic Formation

Slave 2 received VGA resolution images from mas-

ter module and homographies from slave 1 to stitch

the images together. To form a mosaic, slave 2 com-

puted the product of all the received homographies in

incremental fashion and at each step of the product,

the corresponding image was also re-projected on the

mosaic. An example image mosaic is shown in Fig-

ure 2a. As it is difficult to process this image mo-

saic with computationally expensive recognition ap-

proach. So it was decided to identify the parts of im-

age containing the objects and consider them for pro-

cessing. This makes the approach suitable for imple-

mentation on an embedded system. For objects de-

tection, first of all the segmentation of the complete

image was performed and the region resulting from

the ground and the boundary wall was isolated. In this

case, the ground region surface and the boundary wall

appears to be the same so they will appear in the same

segmented region as shown in Figure 2b. This image

is further processed and the number of image pixels

in each column of a mosaic, contributing to the object

presence are determined and the generated profile is

shown in Figure 2c. This profile is threshold and the

columns where the profile exceeds the threshold, sig-

nals the presence of an object. Finally in Figure 2d,

the pixels contributing to the object are filled with the

Blue colour.

Figure 2: (a) Image mosaic. (b) Ground elimination.(c) Pix-
els contributing to object presence. (d) Objects detected.



3 RESULTS

This section presents the experimental results. For

experimentation, the multi-processor robot was pro-

vided SURF features of the target landmarks, that is

the building images shown in Figure 3a. The SURF

features of the landmarks were kept in the memory of

master module as it was required to detect and recog-

nise these landmarks. Some other images of unknown

objects, shown in Figure 3b, were also used around

the landmarks. These unknown objects help in gener-

ating common features between two consecutive im-

ages, when the images are processed for producing

mosaics. The arena used for experimentation is also

shown in Figure 3c.

Figure 3: (a)Landmarks.(b)Unknown objects.(c)Test arena.

Figure 4: Trajectory made by the robot organism.

During the experiment, the trajectory followed by

the robot, when it searched for landmarks and gen-

erated mosaics, is shown in the Red colour in Fig-

ure 4. The starting and ending points of the trajectory

are also indicated. The locations in the arena where

mosaics were generated for landmarks 1, 2 and 3, are

shown in Green, Yellow and Blue colour, respectively.

The robotic organism first detected object 3 and gen-

erated the mosaic for it. After detecting object 3, nine

images were transferred by the master module to slave

1 and 2. The mosaic generated by slaves 1 and 2 for

object 3, is shown in Figure 5a. The number of pix-

els profile, contributing to detect the presence of ob-

ject in the mosaic, is shown in Figure 5b. This profile

was obtained when the mosaic in Figure 5a was seg-

mented and the ground region was removed from the

segmented image, as discussed in the Methodology

Section. Finally, after thresholding this pixels profile,

the number of objects were detected in the mosaic.

The detected objects are identified by the blue pixels

and are shown in Figure 5c.

Figure 5: (a) Object 3 mosaic. (b) Pixels contributing to
object existence. (c) Object detection in mosaic.

Similarly, the mosaics information generated for

target landmarks 1 and 2 is shown in Figures 6a and

6c, respectively. All the objects in the mosaic view

are properly detected and isolated from the ground

surface as shown in Figures 6b and 6d.

Figure 6: (a) Object 1 mosaic. (b) Objects detected in mo-
saic. (c) Object 2 mosaic. (d) Objects detected in mosaic.

It can be noticed that, the objects in the mosaic

appear very small which made it difficult recognizing

them. To solve this problem, in the beginning QVGA



(320x240 pixels) resolution was selected for solving

the homographies between the images using slave 1.

But for generating the mosaics, the VGA (640x480

pixels) resolution was used by slave 2. To make the

homographies information applicable to the VGA res-

olution, every element in the homography matrix was

required to scale up by a factor of 2. This way, all the

objects were presented with their detail information

in the mosaics.

In experiments, it was noticed that, if not enough

matching features are found between the consecutive

images, then erroneous stitching of the images can

occur. An example is shown in Figure 7a. In the

beginning, the images were stitched properly. The

problem occurred when the last two images shown in

Figures 7b and 7c were stitched. The information

contributed by these images is identified by the blue

arrow. When these two images are compared with

the mosaic, it can be noticed that they are stitched at

wrong points. The two correct corresponding points

where the image stitching should be performed, are

identified with red arrow. Although there is sufficient

overlap between these images, there are no objects in

this overlapping region. This causes reduced match-

ing features between these images and false homog-

raphy was computed.

Figure 7: (a) Erroneous Stitching in Mosaic. (b) Second
Last Image for Mosaic. (c) Last Image for Mosaic.

4 CONCLUSION

In this study, a distributed mosaic formation and ob-

ject detection approach in a multi-processor robot was

presented. The overall task was distributed among

three processing modules. This distributed implemen-

tation enables the master processing module to focus

on the robot locomotion task as it can process the

images at faster rate. At the same time, the master

module utilises the processing resources of the slave

robots to perform the computationally expensive task,

that is mosaic generation and object detection. During

the experiments, it was observed that, if small number

of objects are present on the location where a robot

tries to generate mosaics, then erroneous stitching of

the images is expected. The reason for this was the

lack of common features between the two consecu-

tive images. To overcome this problem, the use of a

compass in the robot can also be made.
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