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ABSTRACT

Reflection and extensibility in object-oriented programming
languages can be supported by meta-object protocols (MOP)
that define class-based interfaces over data representation
and execution features. MOPs are typically dynamic in the
sense that type-based dispatching is used to select between
feature implementations at run time leading to a significant
difference in execution speed compared to non-MOP-based
languages. Defining a corresponding static-MOP would seem
to be a solution whereby type-dispatching can occur at com-
pile time. Such an approach requires the integration of a
static type system with a MOP. This paper introduces a
new reflective and extensible language called JMF written
in Java that aims to generate efficient code through the use
of a static-MOP. The contribution of this paper is to char-
acterise a static-MOP and to show how it integrates with a
type system for JMF.

CCS Concepts

•Software and its engineering → Reflective middle-

ware; Extensible languages; Classes and objects;

Keywords

reflection; meta-object protocol; type-checking

1. INTRODUCTION
Dynamic features including reflection [14, 10, 13] are be-

coming increasingly important in programming languages in
order that applications can adapt to changes in their envi-
ronment [3], to support tools such as debuggers [17], and to
support domain specific languages (DSLs). These require-
ments, addressed by metaprogramming [5], would otherwise
require modification to the underlying language execution
engine in order to support variation points and instrumenta-
tion leading to multiple language implementations and cor-
responding compatibility problems [16].
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Many languages provide reflective features to support in-
trospection and intercession to facilitate adaptation of struc-
ture and behaviour. Such features are often made available
via a metaobject protocol (MOP) [9] which is an interface
that gives users the ability to incrementally modify the be-
haviour of a language. A MOP can be derived by analysing
the key orthogonal execution mechanisms of a language.

There are several approaches to implementing a MOP that
can be broadly categorised into: (a) providing access to the
language interpreter via continuation-passing, for example
[2]; (b) code-rewriting, for example [12, 7]; (c) type-based
extension of language features via an interface. MOP-based
reflective features are often suited to interpreted or dynam-
ically typed languages, e.g., [17], Smalltalk, CLOS, Python
[1], Lua [8].

2. PROBLEM AND HYPOTHESIS
AMOP is a mechanism to allow the key execution features

of an OO language to be extended. Since inheritance is
an intrinsic feature of most OO languages, it makes sense
to use inheritance at the type level to define a MOP. The
particular features to be extended will differ from MOP to
MOP; however, since they seem to be ubiquitous in OO
languages, this paper addresses a MOP in terms of object
creation, slot access and update, and message passing.

MOPs are typically used to support multiple object rep-
resentation and to abstract away from the details of repre-
sentation management. Consider a program that wants to
mix two different types of class: those with small storage re-
quirements and those with large sparsely populated storage
requirements. In the first case we want to use an array and
in the second case to use a hash-table. A language support-
ing MOPs might allow the following1:

class Point metaclass Array(Int) {
names = [’x’,’y’];

}

class Employee metaclass Sparse {
name:Str;
...
salary:Float;

}

In each class definition the declaration of the meta-class de-
termines how object creation, slot access and update, and
message passing will occur for instances of the class. For ex-
ample if p is an instance of Point then storage(p) is an array
and p.x:Int is storage(p)[0] whereas if e is an instance of

1Since JMF and Java concrete syntax are similar, JMF key-
words are underlined.



Employee then storage(e) is a hash-table and e.name:Str is
get(storage(e),"name").

Many MOP-based languages are dynamic in the sense that
the language feature switching mechanism occurs at run-
time. This is most often a result of the reflective nature
of the languages resulting in types being run-time entities.
Therefore in the general case it is not possible to statically
determine the type of a program expression since its type
may only exist at run-time. However, this is not always the
case. In particular, a MOP-based language will have a de-
fault MOP whose types are statically known. Since many
such languages are bootstrapped, being able to efficiently
compile expressions that use the default MOP ought to re-
sult in a significant speed improvement.

The hypothesis of this work is that it is possible to ex-
tend a standard dynamic MOP in such a way as to allow
type-based static analysis of a program and consequently
generate efficient code for the language features governed by
the MOP. To accommodate reflection, it will not always be
possible to perform static analysis, in which case the default
dynamic switching mechanism can be employed.

The hypothesis is to be evaluated in the context of a new
language called JMF that is a MOP-based OO language
written in Java to be compiled to the JVM. If the hypoth-
esis holds then the code generated on the JVM will have a
similar performance profile to equivalent Java code in the
case that meta-types can be statically determined.

The first step is to define a dynamic MOP for JMF and
to show how the MOP can be extended with static features.
This paper describes the result of taking the first step as
follows: section 3.4 describes core JMF, type dispatching
and and how it is implemented in Java; section 4 shows how
the JMF default dynamic MOP is implemented and section
5 shows how this is extended to produce dynamic MOPs
for Sparse and Array; section 6 describes JMF type-checking
and the associated default static MOP and section 7 extends
this for Sparse and Array.

3. CORE JMF
JMF consists of a core collection of Java objects that serve

the same function as the classes defined by the Java package
java.lang.reflect. Each Java object must implement an in-
terface called Obj as defined in section 3.1. This paper uses a
subset of the JMF core relating to MOP definition and use;
an overview of the core is given in section 3.4. A syntax for
JMF programs is necessary in order to perform static anal-
ysis, this paper uses a subset both to provide examples and
to define how the static MOP is defined. Section 3.2 pro-
vides an example of how a simple class is defined using the
JMF syntax and subsequently extended using core classes
via Java.

3.1 Everything is an Object
JMF is defined as a collection of Java objects that all

implement an interface called Obj:

public interface Obj {
public Obj get(String name);
public Obj of();
public Obj send(String name , Obj ... args);
public Obj set(String name , Obj value);
public Obj slots ();

}

The operation of() returns the class of an object in the
same way that getClass() does in Java. The operations

get(n) and set(n,v) are used to access and update named
storage. The operation slots() returns a list containing slots
(essentially name-value pairs) of the receiver. The send(n,v

,...,v) operation sends a named message to the receiver.

3.2 A Simple Program
The following is an example of a JMF program that uses

the default MOP:

class Point {
x:Int;
y:Int;
inc():Point {

x := x + 1;
y := y + 1;

}
}
p:Point = Point.new();
p.inc();

Dynamic MOP dispatch is implemented using the Java oper-
ations send, get and set. The JMF class definition for Point
is translated to the equivalent Java program as follows:

1Obj x = send(Attribute ,"new", send(Str("x"), Int);
2Obj y = send(Attribute ,"new", Str("y"), Int);
3Obj name = Str("Point");
4Obj supers = list(Obj);
5Obj atts = list(x,y);
6Obj Point = send(Class,"new",name ,atts ,supers);
7

8send(Point ,"addOperation",
9Op("inc", (self , so) ->
10set(
11set(
12self ,
13"x",
14send(
15get(self ,"x"),
16"+",
17Int (1))),
18"y",
19send(
20get(self ,"y"),
21"+",
22Int (1))))));
23

24Obj p = send(Point ,"new");
25send(p,"inc");

The builtin operations Str and Int are used to map between
Java values and JMF objects. The class Point is created by
sending a new message to Class (since no explicit meta-class
was supplied in the class definition for Point, the default
meta-class is used) supplied with the name of the new class,
its attributes and the super-classes. The builtin operation
list takes any number of arguments and returns an JMF
object representing list. By default, attributes are like Java
fields and inheritance is the same as Java in the case where
a class has a single super-class.

Operations that are added to classes (lines 8-22) work
the same way as Java methods. Note that the operator Op

is used to map between Java closures and JMF operations
where the closure must have at least 2 arguments: the first
is the receiver of the message that invokes the operation and
the second works like super in Java.

3.3 Dynamic Dispatch
The Java code shown above uses dynamic dispatch to de-

termine the implementation of language features in terms of
Java methods send, get and set. These have been inserted by
default when translating from JMF to Java since there has
been no static analysis of the original JMF code. Dynamic



dispatch checks for Class in order to prevent meta-recursion
[11]. The definitions of the methods are as follows:

public static Obj get(Obj o, String n) {
i f (o.of().of() == Class)

return o.get(n);
else return send(o.of(),"get",o,Str(n));

}

public static Obj set(Obj o, String n, Obj v) {
i f (o.of().of() == Class)

return o.set(n,v);
else return send(o.of(),"set",o,Str(n),v);

}

public static Obj send(Obj o, String n, Obj ... vs) {
i f (o.of().of() == Class)

return o.send(n,vs);
else return send(o.of(),"send",o,Str(n),list(vs));

}

The definitions above show that the dynamic dispatch mech-
anism is fixed for objects whose meta-class is Class. Other-
wise, an appropriate message is sent to the class of the ob-
ject which must implement a suitable implementation, i.e.
a MOP.

3.4 An Overview of the JMF Core
The JMF Core consists of a collection of bootstrapped

classes that are shown in figure 12. The syntax of the dia-
gram is a variation on standard class diagrams: boxes are
classes, edges with open arrows relate sub-classes to super-
classes, full edges with arrows are labelled with the name of
an attribute of the source class, dashed edges relate a class
with its meta-class. Note that JMF classes define addition
features including operations, constraints, constructors, and
daemons, that are not shown.

The following conventions are used: a class with no super-
class relation inherits from Obj; a class with no explicit meta-
class is an instance of Class; attributes with simple types
are shown within the class box; classes whose name has a
white background are abstract; a class that is surrounded
by a box is a meta-class; an attribute with a prefix * means
that the corresponding class is a container for the elements
of the attribute type; an attribute with a prefix :: means
that the owning class is a name-space with corresponding
operations to index the values of the attribute by name;
an attribute with a suffix $ means that the owning class
transitively inherits the values of the the attribute via a
correspond operation; an attribute with a suffix means that
the attribute is a specialisation of an attribute with the same
name that is defined by a super-class; a package is shown
using UML-style package notation; a type [T] represents a
list of elements of type T.

For example, the class Slot is a sub-class of NamedElement
and therefore inherits the attribute named name of type Str,
and has an additional attribute named value of type Obj.

The class Class is an instance of itself, is a name-space for
attributes, is a container of constructors, and inherits from
the meta-class Classifier.

The meta-classes InheritsOf, ContainerOf, NameSpaceOf,
FunctionOf, ListOf, and TableOf are all polymorphic in the
sense that they are instantiated to produce classes by pro-
viding one or more types. For example TableOf(String,Int)

2The diagrams in this paper are created by a walker written
in JMF that translates JMF packages to dot files that are
processed by GraphViz.

is an instance of TableOf whose instances are tables mapping
strings to integers.

A class that inherits from ContainerOf(X)[contentName=’x

’] is shown on the diagram as the source of an edge labelled
*x with target X. Similarly NameSpaceOf(X)[contentName=’x’]

is shown using an edge-label ::x. A class that inherits from
InheritsOf(X)[inheritedName=’x’] is shown with an edge la-
bel x$ and implicitly defines an operation named allX in the
source class that constructs a list of all the inherited values
of the attribute named x.

The package Kernel is an instance of the class Package

and is its own meta-package. The entire diagram shows the
contents of the package Kernel.

4. THE DEFAULT DYNAMIC MOP
A MOP allows the programmer to extend key aspects of

the language. In the case of JMF we choose to have a dy-
namic MOP that supports new, get, set, and send. The
MOP definition for new controls the representation for in-
stances of a class. This is in contrast to Java where there is
a single representation for objects generated by java.lang.

Class.newInstance(). Having allowed a class to control the
representation of its own instances, the MOP must provide
get and set in order to support state access and update.
Finally, the behaviour of a class of objects is controlled by
the MOP definition of send.

The default JMF MOP defines the semantics of the lan-
guage and must be defined in Java. The definition involves
a Java class called ConcreteObj that implements the Obj in-
terface:

class SlotTable extends Hashtable <String ,Obj > {}

class ConcreteObj implements Obj {
Obj of;
SlotTable slots = new SlotTable ();
public ConcreteObj(Obj of) { this.of = of; }
public Obj get(String n) { return slots.get(n); }
public Obj set(String name ,Obj value) {

slots.put(name ,value);
return this;

}
public Obj send(String n,Obj ... vs) {

return sendCO(0,flatten(of),this ,n,vs);
}
public Obj of() { return of; }

}

The default representation for objects uses a hash-table to
represent the slots. The implementation uses the operation
sendCO which is defined below.

The next step is to define an operation that creates new
instances of classes that are governed by the MOP. A new
instance is created by sending new to a JMF class, therefore
the definition of new is owned by a meta-class. The basic
meta-class is Class and the following code is part of the
JMF bootstrap:

1send(Class,"addOperation",Op("new",Class_new));
2

3static Obj Class_new(Obj type ,Obj so ,Obj args) {
4Obj atts = send(type ,"allAttributes");
5ConcreteObj o = new ConcreteObj(type);
6for(Obj att : iterate(atts)) {
7Obj value = get(get(att ,"type"),"default");
8set(o,att.get("name").toString (),value);
9}
10return send(type ,"initObj",o,args);
11}



Figure 1: The JMF Kernel

The operation added to Class in line 1 is implemented by the
Java static operation Class_new. All classes provide an oper-
ation called allAttributes that is the equivalent of java.lang
.Class.getFields(). The Java method iterate translates a
JMF list to a Java iterator and is used in line 6 to process
each attribute. An attribute has a name and a type. A new
slot is added to the concrete object containing the default
value associated with the type (lines 7 and 8). Finally, the
class is sent an initObj message that applies a constructor
with the appropriate arity to args in the context of the new
object o.

The default JMF MOP is completed by operations defined
by Class:

Op("get" ,(c,o,n) -> o.get(n.toString ()))
Op("set" ,(c,o,n,v) -> o.set(n.toString (),v))
Op("send" ,(c,o,m,vs) -> o.send(m.toString (),vs))

It remains to define the default mechanism for delivering a
message. The operator sendCO is defined below. It is sup-
plied with an array of classes cs together with an index that
represents the current position in the array. Each JMF class
is the bottom element of a lattice that has its top element as
Obj. The operator flatten maps a class to an array by per-
forming a depth first, left to right, lattice traversal. Such a
traversal can encounter the same class multiple times, how-
ever the class will occur in the resulting array only once by
ignoring all but the last occurrence. Sending a message n

to an object o with arguments vs is handled by sendCO(0,

flatten(o.of()),o,n,vs):

1 Obj sendCO( int i,Obj[] cs ,Obj o,String n,Obj vs) {
2 i f (i == cs.length)
3 return send(o,"noOperationFound",n,vs);
4 else {
5 Obj op = lookupOp(cs[i],n,length(vs));
6 i f (op != null) {
7 Obj so = new Obj() {

8 public Obj get(String n) { return o.get(n); }
9 public Obj of() { return Class; }

10 public Obj send(String n,Obj ... args) {
11 return sendCO(i+1,cs ,o,n,list(args));
12 }
13 public Obj set(String n,Obj v) {
14 return o.set(n,v);
15 }
16 public Obj slots () { return o.slots (); }
17 };
18 return send(op ,"invoke",o,so ,args);
19 } else return sendCO(i+1,cs ,o,n,vs);
20 }
21 }

If the lattice is exhausted (line 2) then no operation is de-
fined. Otherwise, the ith class is examined to see if it con-
tains an operation with the name n and whose arguments
match vs. If an operation is found then it can be applied to
the arguments using the message invoke. The first two ar-
guments to invoke are the target of the message and a super
object. The super object can be used as the target of a mes-
sage that will continue the current lattice traversal. Lines
7-17 create an object that performs the required behaviour
of a super object.

5. IMPLEMENTING A DYNAMIC MOP
The default JMF MOP defined above uses a hash-table for

storage that is pre-populated with values for all attributes
defined by a MOP-compliant class. The two classes shown
in section 2 are different: Point uses a fixed size array for
the storage and Employee uses a hash-table that is not pre-
populated. This section describes how these classes are sup-
ported by two different MOPs.

5.1 The Sparse MOP
The Sparse MOP uses a Java hash-table as object stor-



age and populates the table incrementally unlike the default
MOP defined in section 4. Figure 2 shows the desired ar-
rangement for a particular sparse-class instance where only
the name slot has been given a value. The meta-class named
Sparse is created by defining a class in JMF that inherits
from Class:

class Sparse extends Class {}

The meta-class Sparse must override the new operation de-
fined by Class so that new sparse-class instances implement
the Obj interface appropriately. This is done in Java:

1 send(Sparse , "addOperation", Op("new",Sparse_new));
2

3 public static Obj Sparse_new(Obj c,Obj so ,Obj args) {
4 SlotTable storage = new SlotTable ();
5 return new Obj() {
6 public Obj get(String n) {
7 i f (storage.containsKey(n))
8 return storage.get(n);
9 else {

10 Obj att = send(c,"getAttributeNamed",Str(n));
11 return get(a,"initial");
12 }
13 }
14 public Obj of() { return c; }
15 public Obj send(String n,Obj ... vs) {
16 i f (n.equals("clear") {
17 storage.clear ();
18 return this;
19 }
20 return sendCO(0,flatten(of),this ,n,vs);
21 }
22 public Obj set(String name , Obj value) {
23 storage.put(name ,value);
24 return this;
25 }
26 public Obj slots () {
27 slots = theObjNil;
28 for (String n : storage.keySet ()) {
29 Obj s=send(Slot ,"new",Str(n),storage.get(n));
30 slots=send(slots , "cons", s);
31 }
32 return slots;
33 }
34 };
35 }

The object storage is created on line 4 as a standard SlotTable

and the new instance is created on lines 5-34. Notice how
the get operation checks whether the name exists in the ta-
ble and returns the initial value for the appropriate attribute
type if the slot has yet to be set.

The sparse MOP implements a pseudo-operation called
clear that is detected on line 16 and which clears the storage.
If the message is not clear then the default message passing
MOP is used.

5.2 The Array MOP
The Array MOP uses a Java array as object storage. Each

element of the array must be of the same JMF type. A
class that conforms to the Array MOP declares the names
of the slots that will be associated with successive elements
in the array. Figure 3 shows the desired arrangement for
a particular point instance: the class Point is an instance

Figure 2: The Sparse MOP

Figure 3: The Array MOP

of the meta-class Array(Int) which itself is an instance of
the meta-class Array. The rest of this section provides the
implementation in terms of JMF and Java code.

Each array class (such as Point) must specify a collection
of names. The following class called AType is used as a mixin:

class AType extends Class { names :[Str]; }

The meta-class Array is used to create new array types by
supplying the type of the elements. The constructor for
Array is supplied with a classifier t that types the elements
of the array. Note how the supers are set to [AType] thereby
mixing in the names attribute:

class Array extends Class {
type:Classifier;
Array(t:Classifier) {

name := ’Array(’ + type + ’)’;
attributes := [];
type := t;
supers := [AType ];

}
}

When an instance of an array type (such as Point) is created,
the MOP must arrange for a Java array to be used for the
object storage. This is achieved below by adding a Java-
defined operation called new to AType:

1send(AType , "addOperation", Op("new",AType_new));
2

3public static Obj AType_new(Obj c,Obj so ,Obj args) {
4Obj[] storage = new Obj[length(get(c,"names"))];
5Obj type = get(c.of(),"type");
6for ( int i = 0; i < storage.length; i++)
7storage[i] = get(type , "initial");
8return new Obj() {
9private int index(String name) {
10int i = 0;
11for(Obj n : iterate(get(c,"names")))
12i f (n.toString ().equals(name)) return i;
13return -1;
14}
15public Obj get(String name) {
16return storage[index(name)];
17}
18public Obj of() { return c; }
19public Obj send(String n,Obj ... vs) {
20return sendCO(0,flatten(of),this ,n,vs);



21}
22public Obj set(String name , Obj value) {
23storage[index(name)] = value;
24return this;
25}
26public Obj slots () {
27slots = theObjNil;
28for (Obj n : iterate(get(c,"names"))) {
29Obj s = send(Slot ,"new",n,storage[index(n)]);
30slots = send(slots , "cons", s);
31}
32return slots;
33}
34};
35}

The storage for the new object is created in line 4 and ini-
tialised with values in lines 6-7. The new instance is created
on lines 8-34 as a Java object that implements the Obj in-
terface.

6. ADDING TYPES TO JMF
The previous section has defined two different dynamic

MOPs using JMF. A dynamic MOP is a meta-class that re-
defines some of the operations that are provided by Class:
new, get, set, or send. Since the MOP is dynamic, there
is no scope for efficiencies that would be possible via static
analysis of the JMF code. In order to achieve such efficien-
cies, the MOP must be statically available and be defined
in terms of the syntax of JMF and its type system. This
section analyses the key parts of the JMF and an associated
type-checking relation that are used to define a static MOP.

6.1 JMF Expressions and Types
JMF is a Java-like language that contains constructs for

class definitions, operations, commands and expressions. The
key expressions that relate to a static MOP are defined be-
low:

e ::= e.n slot access
| e.n := e slot update
| e.n[n ,...](e ,...) message passing
| ... more expressions

The syntax of slot access and update are straightforward,
but the syntax of message passing includes an optional se-
quence of type names after the message name. This allows
operations to be polymorphic. In particular it solves an issue
with reflective languages whereby the type of an expression
can depend upon its run-time value, for example if opera-
tion new defined by Class must return a value whose type
depends upon the receiver, for example:

let c:Class = Point
in c.new().x

A question arises regarding the type of the expression c.

new() since it depends upon the run-time value of c. A
pragmatic solution is to require the programmer to supply
the type when sending the message, therefore the type of
the operation new defined by the class Class is: Λ[t]()->t

and the type is explicitly supplied:

let c:Class = Point
in c.new[Point ]().x

A JMF type t is a JMF class such as Int, Class and Obj.
Three special types are used that are created by instantiat-
ing meta-classes:

FunctionOf([t,...],t) which denotes a function defined in
terms of its argument types and its return type. This class
is written (t,...) -> t

ListOf(t) which denotes lists whose elements are of type t.
This class is written [t].

Λ[n,...]te which denotes a type function whose body is the
type expression te.

A type expression is defined as follows:

te ::= c a JMF class
| n reference to a named type
| [te] a list type
| (te ,...) -> te a function type
| Λ[n ,...] te a type abstraction

Given a type environment ρ that maps names to types, a
type expression te can be mapped to a type ρ(te).

6.2 The JMF Type-Check Relation
The JMF expression type-checker relates an expression e

with a type t in the context of an environment ρ that maps
names to types: ρ ⊢ e : t. The environment contains all of
the core JMF classes and the user defined classes that are
referenced by the expression. The type checker is defined by
a collection of rules.

The rules are defined recursively on the structure of the
expressions. The details of those rules that do not relate
directly to a static MOP are not important, but consider a
rule that types an if-expression:

IF-1

ρ ⊢ e : Bool, ρ ⊢ e1 : t1, ρ ⊢ e2 : t2
t1.inherits(t2)

ρ ⊢ if e then e1 else e2 : t2

The rule states that an if-expression has a type t2 when the
test expression e is a boolean and when the consequent and
alternative expressions have types t1 and t2 respectively and
when t1 inherits from t2. Those rules that are relevant to
the static MOP of JMF are defined below.

Slot access is defined by a rule named GET that uses an
operation named typeCheckGet to calculate the type of the
slot reference:

GET

ρ ⊢ e : t
t.typeCheckGet(n) = t’

ρ ⊢ e.n : t’

The default static JMF MOP for slot access is defined by
Class as follows:

typeCheckGet(n:Str):Classifier =
find a:Attribute in allAttributes () when a.name=n {

a.type
} else undef

Therefore the default type check behaviour for e.n selects the
attribute a with the name n from those defined and inherited
by t.of() where t is the type of e. The result is the type
of the attribute a.t. If no attribute can be found with the
appropriate name then the result is undef which denotes a
type error.

Type checking slot update uses typeCheckSet and then en-
sures that the slot type and the value type conform:

SET

ρ ⊢ e1 : t1
ρ ⊢ e2 : t2

t1.typeCheckSet(n,t2) = t’

t2.inherits(t’)

ρ ⊢ e1.n := e2 : t’

The default static JMF MOP for slot update is defined be-
low:



typeCheckSet(n:Str ,c:Classifier):Classifier =
find a:Attribute in allAttributes ()
when a.name=n && c.inherits(a.type) {

a.type
} else undef

The final element of type checking is message passing which
uses typeCheckSend to ensure that the argument types match.
Note that we take into account the optional type arguments
that can be passed to the type checker in case the type of
the operation is polymorphic:

SND

ρ ⊢ e : t
ρ ⊢ ei : ti

t.typeCheckSend(n,[ρ(n1),...,ρ(nk)],[t1,...,tn])=t’

ρ ⊢ e.n[n1,...,nk](e1,...,en):t’

The corresponding definition of typeCheckSend in the class
Class must find an operation with the appropriate name
and where the types of the supplied arguments match those
of the operation domain. In the following definition it is
assumed that the type of the operation is of the form Λ[n1

,...nk].te:

typeCheckSend(n:Str ,ts ,dom:[ Classifier ]):Classifier =
find o:Operation in allOperations ()
when o.name = n && o.arity () = dom.length () {

let t:Classifier = o.getType ().apply(ts)
in i f ∀(t1 ,t2) ∈ dom × t.dom(). t1.inherits(t2)

then t.range ()
else undef

} else undef

7. IMPLEMENTING A STATIC MOP
The previous section has outlined JMF type-checking and

defined the default static MOP. This section defines 3 static
MOPs: section 7.1 extends the Sparse dynamic MOP; sec-
tion 7.2 extends the Array dynamic MOP; section 7.3 defines
a complete MOP as a JMF class.

7.1 Static Sparse MOP
The Sparse MOP does not need to redefine typeCheckGet

or typeCheckSet since the default implementation can use
the attributes. However, the pseudo-message clear must be
caught since it will not exist as an operation that can be
detected by the default message passing MOP:

typeCheckSend(n:Str ,ts:[ Classifier ]):Classifier {
i f n = ’clear ’ && ts = []
then self;
else super.typeCheckSend(n,ts);

}

7.2 Static Array MOP
The AType meta-class is completed by defining the type

checking operations. The definition of typeCheckSend does
not need redefinition and is inherited from Class. Type
checking slot access and update must be redefined since the
attributes are implicitly defined via the names attribute:

typeCheckGet(n:Str):Classifier {
i f names.contains(n)
then of().type;
else undef;

}

typeCheckSet(n:Str ,c:Classifier):Classifier {
i f names.contains(n) && c.inherits(of().type)
then self;
else undef;

}

Figure 4: The Static MOP

7.3 A Self Contained JMF-Defined MOP
The previous section showed how to extend a dynamic

MOP with static features in order to perform type checking.
The examples of Array and Sparse were implemented using
a mixture of Java and JMF code. The JMF language is
intended to be self contained and this section shows how
a full MOP that defines a new form of attribute that is
equivalent to static in Java can be defined as a collection of
JMF classes.

The motivation for this MOP is shown in figure 4 that
shows a printer instance with id p1. All printers are priced
in the same range so the min and max values are defined as
slots on on the class Printer and are accessible as conven-
tional slots via each instance such as p1.

In order to be a static class, ProductType is defined as
an instance of the meta-class called Static which uses the
following mixin:

class StaticMOP extends Class {

typeCheckGet(n:Str):Classifier =
find a:Attribute in of().attributes when a.name=n {
a.type

} else super.typeCheckGet(n);

typeCheckSet(n:Str ,type:Classifier):Classifier =
find a:Attribute in of().attributes when a.name=n {
i f type = a.type
then self
else null

} else super.typeCheckSet(n,type);

get[T]( target:Obj ,n:Str):T =
find a:Attribute in of().attributes when a.name=n {
get(n)

} else super.get(target ,n);

set(target:Obj ,n:Str ,value:Obj):Self =
find a:Attribute in of().attributes when a.name=n {
set(n,value)

} else super.set(target ,n,value);
}

The class StaticMOP defines a full MOP by allowing the meta-
class slots to be included in type-checking, slot access and



slot update. The MOP is added as a mixin by the meta-class
Static:

class Static extends Class {
Static(name:Str ,staticAtts :[ Attribute ]) {

self.name := name;
self.attributes := staticAtts;
self.supers := [StaticMOP ];

}
}

Given the definitions above, the meta-class ProductType is
defined as follows:

class ProductType metaclass Static {
minPrice:Int;
maxPrice:Int;

}

The class Printer is an example of a product type and each
instance will have a different printer id but share the same
max and min price.

class Printer metaclass ProductType {
printerId:Str;
minPrice = 100;
maxPrice = 200;
Printer(id:Str) { printerId := id; }

}

p1 := Printer(’p1’);

8. CONCLUSION
This paper has described the separation of a MOP into

a static-MOP and a dynamic-MOP. The latter is a well-
known approach to providing reflection and intercession in
dynamic languages. The former is a new concept that is
a pre-requisite to efficient compilation based on type infor-
mation. The approach is similar to that described by [6]
which introduces the idea of exotypes for abstracting away
from data layouts in Lua, although exotypes are not fully
integrated into the bootstrap as in JMF.

The code given in this paper is taken from an implemen-
tation of JMF that is based on the XMF language of the
XModeler toolkit [4]. Unlike JMF, XMF is a compiled dy-
namic language that has no type-checker; the motivation for
developing static MOPs in JMF is based on the limitations
of XMF. JMF is under development; the current snapshot
is at https://github.com/TonyClark/JMF where the boot-
strap is defined in value.Obj.

Dynamic approaches to achieving efficiency in MOP-based
languages include caching and optimistic optimisation [15].
These solutions can adapt when types are dynamically mod-
ified and this provides an interesting challenge for a static-
MOP based approach. One option is to index code that is
statically determined in a way that can be modified if the
indexing types change: this is an area for further investiga-
tion.

This paper has demonstrated that static MOPs can be
implemented in JMF. However, much work remains in or-
der to achieve the overall aim: demonstrate that JMF can
be compiled to the JVM and produce code that approxi-
mates the efficiency of Java. The static MOP will need to
be extended with the ability to produce code in addition to
type checking, and the JMF bootstrap must be completely
amenable to static analysis.
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[7] R. Douence and M. Südholt. A generic reification
technique for object-oriented reflective languages.
Higher-Order and Symbolic Computation, 14(1):7–34,
2001.

[8] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes.
The evolution of lua. In Proceedings of the third ACM
SIGPLAN conference on History of programming
languages, pages 2–1. ACM, 2007.

[9] G. Kiczales, J. Des Rivieres, and D. G. Bobrow. The
art of the metaobject protocol. MIT press, 1991.

[10] P. Maes. Concepts and experiments in computational
reflection. In ACM Sigplan Notices, volume 22, pages
147–155. ACM, 1987.

[11] N. Papoulias, M. Denker, S. Ducasse, and L. Fabresse.
Reifying the reflectogram. In 30th ACM/SIGAPP
Symposium On Applied Computing, 2015.

[12] B. Redmond and V. Cahill. Supporting unanticipated
dynamic adaptation of application behaviour. In
ECOOP 2002?Object-Oriented Programming, pages
205–230. Springer, 2002.

[13] B. C. Smith. Reflection and semantics in a procedural
language. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and
Computer Science, 1982.

[14] B. C. Smith. Reflection and semantics in lisp. In
Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
pages 23–35. ACM, 1984.

[15] G. T. Sullivan. Aspect-oriented programming using
reflection and metaobject protocols. Communications
of the ACM, 44(10):95–97, 2001.

[16] E. Tanter. Reflection and open implementations.
Technical report, Citeseer, 2004.

[17] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and
O. Niestrasz. Pinocchio: bringing reflection to life with
first-class interpreters. ACM Sigplan Notices,
45(10):774–789, 2010.


