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Abstract We investigate the existence of black hole and soliton solutions to four

dimensional, anti-de Sitter (adS), Einstein–Yang–Mills theories with general semi-

simple connected and simply connected gauge groups, concentrating on the so-called

regular case. We here generalise results for the asymptotically flat case, and compare

our system with similar results from the well-researched adS su(N ) system. We find

the analysis differs from the asymptotically flat case in some important ways: the

biggest difference is that for � < 0, solutions are much less constrained as r →∞,

making it possible to prove the existence of global solutions to the field equations in

some neighbourhood of existing trivial solutions, and in the limit of |�| → ∞. In

particular, we can identify non-trivial solutions where the gauge field functions have

no zeroes, which in the su(N ) case proved important to stability.

Keywords Hairy black holes · Solitons · Semisimple gauge group · Anti-de Sitter ·
Einstein–Yang–Mills theory · Existence

1 Introduction

Research into Einstein–Yang–Mills (EYM) theory, which concerns the coupling of

gauge fields described by the Yang–Mills (YM) equations to gravitational fields

described by Einstein’s equations, has become abundant in the literature in the last

couple of decades. This work began in considering asymptotically flat, spherically

symmetric, ‘hairy’ black holes [1] and solitons (‘particle-like solutions’) [2], coupled

to a gauge field with structure group SU(2). This field of enquiry first emerged in the
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1980s and thus the asymptotically flat EYM su(2) and su(N ) systems are now well

understood in a variety of cases—see e.g. [3–8].

The problem with asymptotically flat EYM systems is that they have some tricky

properties which provide analytical and numerical difficulties when obtaining solu-

tions. First, global solutions are not abundant: due to strong constraints on the boundary

conditions in the limit r → ∞, and at the origin in the case of solitons (see e.g.

[9]), regular solutions may only be found for certain discrete points in the boundary

parameter space [10–13] and so global solutions are hard to find both numerically

and analytically. Connected to this is their stability: su(N ) purely magnetic solutions

decouple into two sectors upon a linear perturbation, and spectral analysis shows that

su(2) solutions possess n unstable modes in each sector, where n is the number of

nodes (zeroes) of the gauge field; and in addition, these su(2) solutions must possess

at least one node [14–17]. This is related to the discrete nature of the globally regular

solutions which are separated by continua of singular solutions: a small perturbation

will turn any existing regular solution into a singular one. A node in the gauge field

corresponds to a reversal of the field direction—in a physical sense, we may intuit that

this will lead to the instability of solutions. This instability result can be extended to

general compact semisimple gauge groups, so that any global solutions that could be

found would be necessarily unstable [18].

However for � < 0, the picture changes completely. Here, because of the ‘box-

like’ geometry of anti-de Sitter (adS) space, it is much easier to set up the ‘balancing

act’ occurring between the repulsive YM forces and the attractive force of gravity,

whereas for � ≥ 0, the geometry is ‘open’ and hair will in general destabilise and

radiate away to infinity or else collapse inwards. It can be shown that in the adS case,

we in general get a continuum of solutions in the parameter space [19–22], making

them much easier to find and to analyse. Connected to this, we may also find nodeless

solutions, and can show that at least some of these are stable in the cases of su(2)

for spherically symmetric [22] and non-spherically symmetric [23,24] perturbations.

Also we have established linear stability for su(N ) spherically symmetric [25] and

so-called ‘topological’ [26] solutions. For a review of recent solutions, see [27].

Furthermore, adS solutions have been considered recently for other applications:

due to the adS/Conformal Field Theory (CFT) correspondence, gravitational theories

in the bulk of adS space can be translated into particle theories on the boundary, mean-

ing that results concerning hairy black holes (in particular) may provide insight into

Condensed Matter Physics (CMP) phenomena (for a review of adS/CFT holography,

see [28]).

Quite recently, the literature has been replete with special cases of hairy solutions

in adS EYM theory, including cases such as dyons (possessing a non-trivial electric

sector of the gauge potential) [29–31], and topological black holes [32] of the kind

first considered in [33]. This work has solely considered the gauge group SU(N ).

However, in the case of asymptotically flat, spherically symmetric solutions with a

general compact gauge group and for the case of the so-called regular action (defined

in [34] and referred to as ‘generic’ in [35]—see Sect. 3), it is found that the field

equations are very similar to the su(N ) case, and many qualitative features of the

solutions carry over as well [34].
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Therefore, it seems logical to perform the same experiment on the asymptotically

adS, spherically symmetric EYM system for a general compact semisimple gauge

group, and to see how many features are present in both the general case and the

specific su(N ) case. Also strongly motivating this work is the possibility of exploring

a very wide class of matter theories, both for the sake of CMP, and for further refinement

of the “no-hair” theorem (see Sect. 9) which is relevant to gravitational physics. For

the regular case at least, which is the main case considered in the literature so far, we

see that it is not even necessary to know the YM one-form connection explicitly in

order to obtain the field equations—all the information one needs is essentially in the

Cartan matrix of the Lie algebra of the structure group G which represents the gauge

field, making it easy to apply to a wide spectrum of EYM theories.

The outline of this paper is as follows. First, in Sects. 2 and 3 we will describe how

we use our ansätze to carve down the general field equations for four dimensional adS

EYM theory with a general compact gauge group in the case of the ‘regular action’,

which we will describe later; and we show that in doing so, it coincides with the

principal action—this allows us to simplify the field equations considerably. In fact,

they become very similar in form to the field equations for su(N ) [9]. In Sect. 4, we

consider the boundary conditions needed for our solutions to be regular at r = rh

(or r = 0) and as r → ∞. In Sect. 5, we examine the asymptotic limit of the field

equations r →∞ in a ‘dynamical systems’ sense, which turns out to be much simpler

than it was for asymptotically flat space. Then in Sect. 6 we identify some trivial

embedded solutions, which are important to our final results.

In Sect. 7, we prove the existence of solutions locally at the boundaries, which are

unique and analytic in their boundary parameters. Finally, in Sect. 8, after proving that

solutions may be regularly integrated out from the initial boundary into the asymptotic

regime, we finish by establishing our main results: that global nodeless black hole and

soliton solutions may be found in a neighbourhood of some trivial solutions found in

Sect. 6, which are everywhere regular and uniquely and consistently specified by their

boundary conditions; and that nodeless black hole and soliton solutions can be found

in the limit |�| → ∞ (Sect. 8.2), anticipating a later investigation into the stability of

these solutions. In Sect. 9 we present our conclusions.

2 Spherically symmetric, purely magnetic Yang–Mills connections for
asymptotically adS spacetime

For asymptotically flat space, it is found [34] that we can reduce our attention from

considering all possible conjugacy classes of bundle automorphisms by restricting

focus to those for which the YM fields decay sufficiently fast at either boundary

(r →∞, and/or r = 0 if the solution is a soliton). These are called ‘regular models’

in [36] and correspond to the ‘zero magnetic charge’ case in [37]. A conjugacy class of

SU(2) bundle automorphisms is characterised by a generator W0 which is an element

of the Cartan subalgebra h—for regular models, W0 must be an A1-vector, i.e. the

defining vector of a sl(2)-subalgebra of g. There is a remarkably wide variety of such

actions for the case of su(N ), as noted by Bartnik [36]; and such A1-vectors are finite

and have been tabulated [38,39].
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The presence of a non-zero � does not directly affect the automorphism classes on

the bundle structure, and therefore some similar results to [34] will here be derived, as

we describe how to express the field equations for these regular models. But � does

make a difference asymptotically, and so we find a big difference in the regularity

requirements for solutions in the limit r → ∞ (as may be expected from previous

treatments of su(N ) [9]); as such, we note that the definition of ‘regular models’ as

given above must be amended a little for asymptotically adS space.

Let G from here on be a compact semisimple connected and simply connected gauge

group with Lie algebra g. To consider spherically symmetric EYM connections is to

consider principal SU(2) automorphisms on principal G-bundles E with base manifold

M (our spacetime), such that the automorphisms project onto isometry actions in

M whose orbits are diffeomorphic to 2-spheres. Since there is no natural action of

SU(2) on E , we must consider all conjugacy classes of such automorphisms. These

conjugacy classes are in one-to-one correspondence to integral elements W0 of a closed

fundamental Weyl chamber W (�) belonging to a base � of the roots of g with respect

to a chosen Cartan subalgebra h [35,36,40].

Let g0 be the (real) Lie algebra of the structure group G of the bundle E , so that

g = (g0)C, its complexification. Also, let {τi }, i ∈ {1, 2, 3} be the standard basis of

su(2) defined using the Pauli matrices, with commutator relations [τi , τ j ] = ǫi jkτk ,

for ǫi jk the Levi-Civita antisymmetric symbol. Then W0 may be chosen such that

W0 = 2iλ(τ3), (1)

where λ is the homomorphism from the isotropy group Ix0 of the SU(2)-action on M

at the point x0 ∈ M , determined by

k ·π0 = π0 ·λ(k), ∀k ∈ Ix0 if π0 ∈ π−1(x0), (2)

where π−1(x0) is the fibre above x0 and the central dot notation denotes the adjoint

action.

The subject of possible classes of connections over principal bundles has been

covered in the literature by Wang et al. [41–43]. For instance, it is known that we may

write the metric in common spherical Schwarzschild-type co-ordinates (t, r, θ, φ) as

ds2 = −μS2dt2 + μ−1dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (3)

Note that we here consider only static solutions, meaning all field variables are func-

tions of r alone.

In addition, Brodbeck and Straumann [35] show that in this case a gauge may

always be chosen such that the Yang–Mills one-form potential is locally given as

A ≡ Aμdxμ = Ã +W1dθ + (W2 sin θ +W3 cos θ) dφ. (4)

In the above, Ã is a one-form defined on the quotient space of the manifold which is

entirely parametrised by the (t, r) co-ordinates, representing the ‘electric’ part of the
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connection. Here we consider the purely magnetic case, and hence we set Ã ≡ 0. We

note that for � = 0 this sector is not available in regular models [34]; it is available

for � < 0 but we find in the su(N ) case that the condition Ã = 0 still yields a rich

space of solutions [9].

Also, we have W3 = − i
2

W0 as the constant isotropy generator, and (2) gives us

constraints on W1, W2 (both also functions of r ),

[W3, W1] = W2, [W2, W3] = W1, (5)

which we refer to as the Wang equations [42].

However, we still have a countably infinite number of possible actions of SU(2)

on E : one for each element in W (�) ∩ I , the intersection of the closed fundamental

Weyl chamber and the integral lattice defined by I ≡ ker(exp |h). Now for regular

models, we require the YM fields to be non-singular at the centre r = 0 (for solitons)

and asymptotically as r →∞.

In the case of � = 0, this implied that

[
0
1,


0
2] = W3, (6)

and/or

[
∞1 ,
∞2 ] = W3, (7)

where we define


k
i ≡ lim

r→k
Wi (r) (8)

for i ∈ {1, 2}, k ∈ {0,∞}. That is to say, for asymptotically flat space, in at least

one of these limits (if they exist) there has to exist a Lie algebra homomorphism from

su(2) into g0; and if both limits exist, there also must exist a homomorphism between


∞i and 
0
i .

The reason for the constraints (6) and (7) is that in asymptotically flat space, the

values of the gauge field functions ω j at r = 0 and as r → ∞ (taken in a particular

basis that we will describe) must be equal to a particular set of constants {λ j } that

depend on the Cartan matrix of the reduced subalgebra in question. This implies that

the soliton solutions have no magnetic charge, according to [37]. The constraints on

the boundary values of the gauge fields are necessary so that the tangential pressure

pθ and energy density e (see Sect. 3) remain regular at infinity.

However, for � < 0 we have a different scenario. As we shall see, the values of

the gauge field functions at the centre r = 0 are still highly constrained, reflecting

the singular nature of that boundary, and thus (6) still holds; but asymptotically, the

“fall-off” conditions required to force the gauge field to be regular are much laxer

than for � = 0, and thus the gauge field functions and their derivatives will in general

approach arbitrary asymptotic values. Again this is due to the nature of the asymptotic

system considered in a dynamical systems sense.

Our investigation in Sect. 5 will show that this lack of asymptotic constraints on the

YM field is to do with the nature of the variable change that we perform to render the

asymptotic field equations autonomous, which in the case of asymptotically flat space
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necessitates the trajectory of every regular solution to end at a critical point (which

we’ll call 
∗i , i = 1, 2) in the phase plane of the system. The critical points of the field

equations are thus ω∗2j = λ j for j = 1, . . . ,L, where L = rank(g); the important

point here being that for � = 0, one is forced to have 
∞i ≡ 
∗i (i = 1, 2), whereas

for � < 0, 
∞i 
= 
∗i (i = 1, 2) in general.

Hence, (7) does not have to hold for our solutions, and as we will see, this is

manifested in the fact that for adS space, no constraints are placed on the gauge field

functions or their derivatives as r → ∞, and we are allowed solutions with a global

magnetic charge fixed essentially by the Cartan matrix of the reduced subalgebra, for

which the tangential pressure and the energy density remain regular asymptotically.

(Of course, (6) and (7) will both be trivially satisfied by embedded Schwarzschild

anti-de Sitter solutions (see Sect. 6), and so for this solution at least, there must also

exist a Lie algebra homomorphism from 
0
i into 
∞i [34].) It must be noted though,

it is still obviously true from the field equations that for regularity we must have

[
∗1,
∗2] = W3. (9)

Thus, for asymptotically adS space, the system itself still will possess the constraints

(9) at the critical point 
∗i , but solutions will not reach the critical point of the system in

general, freeing the asymptotic solution parameters from the constraints that are seen

in the � = 0 case. This is what is responsible for the much larger space of black hole

solutions in the su(N ) case, which we see need obey neither (6) nor (7); though we

also emphasise that at the origin, regular solutions must still obey (6). Thus, as in the

case of su(N ) for adS, we may expect the local existence proofs to be straightforward

for r = rh and r →∞ and much more involved at the origin r = 0.

Now since W3 is constant, (6) and (9) represent constraints also on W3, and hence

on W0 which must be the generating vector of an A1- (i.e. sl(2)-) subalgebra of g.

However the set of such so-called A1-vectors is finite, and have been tabulated by

Dynkin [38] and Mal’cev [39] using what they call “characteristics”, which are in

one-to-one correspondence with finite ordered sets of integers chosen from the set

{0, 1, 2}. These strings of integers then represent the value of the simple roots on W0,

the defining vector of the A1-subalgebra, chosen so that it lies in W (�); and the tables

of Mal’cev and Dynkin therefore give us a classification of all possible spherically

symmetric, purely magnetic EYM models which obey the correct regularity conditions

asymptotically and at the centre, for any compact semisimple simply connected gauge

group.

3 Field equations in the case of the ‘regular’ action

To proceed, we can note that out of all the possible actions classified by Dynkin and

Mal’cev [38,39], these exists a privileged class of actions which corresponds to a

principal A1-vector in Dynkin’s terminology, which Oliynyk and Künzle [34] called

principal actions. There exists a slightly larger class of actions called ‘regular’ in

[34] (and ‘generic’ in [37]), for which the defining vector lies in the interior of a
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fundamental Weyl chamber. (The other irregular case involves the defining vector

being on the boundary of a Weyl chamber.)

In this section we will show that for � < 0, as it was for � = 0, all models with

a regular action can be reduced to those with the principal action, for any semisimple

gauge group. In terms of the field variables, this means that the YM potential can be

chosen to be composed of real functions due to a gauge freedom, and that there are L

of such functions where L = rank(g). We also have two metric functions governed by

the Einstein equations: m (the mass function) and S (the lapse function). Then the field

equations are determined by L+ 2 real functions of the radial co-ordinate r alone (for

static, spherically symmetric solutions), and possess singularities at the centre r = 0,

the event horizon r = rh and as r →∞.

A more convenient basis to use here for the Wang equations (5) in place of the

generators W1 and W2 is

W± = ∓W1 − iW2, (10)

in which case equations (5) become

[W0, W±] = ±2W±, [W+, W−] = W0. (11)

Then W±(r) are g-valued functions, W0 is a constant vector in a fundamental Weyl

chamber of h, and {W0, W±} is a standard su(2) triple in the limit r = 0 and at the

critical points of the system. Also, h is the Cartan subalgebra of the complexified form

of the Lie algebra, i.e. h = h0 + ih0, for h0 the real Cartan subalgebra of g0, which in

turn is the real compactified form of g. Naturally, we introduce a complex conjugation

operator c : g→ g with convention

c(X + iY ) = X − iY,∀X,∀Y ∈ g0. (12)

This implies that

W− = −c(W+). (13)

Therefore the solutions will only depend on the functions m(r), S(r) and the complex

components of W+(r).

The field equations in the case � = 0 are well-known [34,35]. It is not difficult to

use the general adS Einstein and YM field equations to derive the analogous forms for

� < 0. These general field equations are also well-known:

2Tμν = Gμν +�gμν,

0 = ∇λF λ
μ + [Aλ, F λ

μ ], (14)

where gμν is the metric tensor defined using (3), Gμν is the Einstein tensor, F λ
μ is the

mixed anti-symmetric field strength tensor defined with

Fμν = ∂μ Aν − ∂ν Aμ + [Aμ, Aν], (15)
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Aμ represents the YM one-form connection (4), and the energy-momentum tensor

Tμν is given by

Tμν ≡ Tr

[
FμλF λ

ν −
1

4
gμν Fλσ Fλσ

]
. (16)

We note that Tr is the Lie algebra trace, we have used the Einstein summation conven-

tion where summation occurs over repeated indices, and we have rescaled all units so

that

4πG = c = q = 1 (17)

(for the gauge coupling constant q).

Using (3), (4) and (14), we may show that the field equations for � < 0 become

dm

dr
= μG + P

r2
, (18a)

1

S

dS

dr
= 2G

r
, (18b)

0 = r2μW ′′+ + 2

(
m − P

r
+ r3

ℓ2

)
W ′+ + F , (18c)

0 = [W+, W ′−] − [W ′+, W−], (18d)

with ′ ≡ d/dr,

μ = 1− 2m

r
+ r2

ℓ2
, G ≡ 1

2
(W ′+, W ′−), F̂ ≡ i

2 (W0 − [W+, W−]) ,

F ≡ −i[F̂, W+], P ≡ − 1
2
(F̂, F̂),

(19)

and ℓ, the adS radius of curvature, given by

ℓ ≡
√

3

−�
, (20)

only valid for � < 0. In (19), ( , ) is an invariant inner product [relating to the Lie

algebra trace in (16)] on g determined up to a factor on each simple component of a

semisimple g, which induces a norm | | on (the Euclidean) h and therefore also on its

dual. These factors are chosen so that ( , ) is a positive multiple of the Killing form

on each simple component.

We may calculate the energy density e, the radial pressure pr and the tangential

pressure pθ . As we mentioned in Sect. 2, these are important quantities which help

us assess the physicality of our solutions. First we note that since c(F̂) = F̂ , and

〈 X | Y 〉 ≡ −c(X), Y ) is a Hermitian inner product on g, then G ≥ 0 and P ≥ 0.

Then, we have [in our units (17)]

e = r−2(μG + r−2 P), pr = r−2(μG − r−2 P), pθ = r−4 P. (21)

Now we describe how to reduce the field equations down to the case of a regular action

as described above. We select a Chevally–Weyl basis for g. Let R be the set of roots on
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h∗ and � = {α1, . . . , αL} be a basis for R (where L is the rank of g). We also define

〈α, β〉 ≡ 2(α, β)

|β|2 , (tα, X) ≡ α(X) ∀X ∈ h, hα ≡
2tα

|α|2 . (22)

Then {hi ≡ hαi
, eα, e−α | i = 1, . . . ,L; α ∈ R} is a basis for g, and induces the

decomposition

g = h⊕
⊕

α∈R+
gα ⊕ g−α (23)

for R+, the set of positive roots expressed in the basis �. For this decomposition, we

adopt the conventions

[eα, e−α] = hα, [e−α, e−β ] = −[eα, eβ ], (eα, e−α) = 2

|α|2 . (24)

From the commutator relations defining an sl(2)-subalgebra span{e0, e±} of g, i.e.

[e0, e±] = ±2e±, [e+, e−] = e0, (25)

and using

[h, eα] = α(h)eα, (26)

it follows [38] that e0 can only be an A1-vector if there is an α ∈ R such that

α(e0) = 2. (27)

Hence, writing W0 in the basis

W0 =
L∑

i=1

λi hi ∈ h, (28)

then equations (11) imply that

W+(r) =
∑

α∈�λ

ωα(r)eα, (29)

where we have defined �λ, a set of roots depending on the homomorphism λ (or

equivalently the constants λi ), as

�λ ≡ {α ∈ R |α(W0) = 2}. (30)

In a similar way we find that

W−(r) =
∑

α∈�λ

̟α(r)e−α, (31)
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for functions ̟α(r), but given that the complex conjugation operator c maps hi �→
−hi , eα �→ −e−α , we easily see that

̟α(r) = c(ωα(r)). (32)

Therefore, the system is determined by two real functions m(r), S(r) and L complex

functions ωα(r), ∀α ∈ �λ.

It is noted in [34] that we may naïvely proceed by substituting the expansion (29)

into the field equations and calculate the various Lie brackets using (24), but this

may produce many more equations that unknowns, and in addition there is still some

gauge freedom left in the connection A. However we may simplify the system a great

deal by considering only the so-called regular case, where W0 is a vector in the open

fundamental Weyl chamber W (S) [37]. We begin with a theorem due to Brodbeck and

Straumann:

Theorem 1 [35] If W0 is in the open Weyl chamber W (�) then the set �λ is a �-

system, i.e. satisfies:

(i) if α, β ∈ �λ then α − β /∈ R,

(ii) �λ is linearly independent;

and is therefore the base of a root system Rλ which generates a Lie subalgebra gλ

of g spanned by {hα, eα, e−α |α ∈ Rλ}. Moreover, if hλ ≡ span{hα |α ∈ �λ} and

h⊥λ ≡
⋂

α∈�λ
ker α then

h = h
‖
λ ⊕ h⊥λ and W0 = W

‖
0 +W⊥0 with W

‖
0 =

∑

α∈Rλ

hα. (33)

If W0 is an A1-vector then W⊥0 = 0 (though h⊥λ need not be trivial).

This allows us to rewrite the field equations in a much simpler form – in fact, in a form

that renders them very similar-looking to the well-studied su(N ) case.

First we can consider W+ to be a gλ-valued function, and write

W+(r) =
Lλ∑

j=1

ω j (r)ẽ j , (34)

where we now take {α̃1, . . . , α̃Lλ
} as the basis for �λ and define ẽ j ≡ eα̃ j

. This means

that using (24), (18d) becomes

Lλ∑

j=1

(
ω j c(ω j )

′ − ω′j c(ω j )
)

h j = 0, (35)

implying that the phase of ω j (r) is constant and can be set to zero using a gauge

transformation. Hence we can conclude that the ω j (r) may we taken as real-valued
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functions. We note that in � = 0, this is only possible for the regular case [34]. Also

using this basis, we may define the Cartan matrix of the reduced subalgebra gλ as

Ci j ≡ 〈α̃i , α̃ j 〉, (36)

noting that by definition this is a symmetric and positive operator.

The results in Sect. 3 of [34] depend only on the root structure of the reduced

subalgebra, and therefore we may also apply the same logic when reducing the field

equations (18) to the regular case. Finally then, dropping tildes from α j and losing the

λ index from g et cetera for clarity, we can show that the field equations become

m′ = μG + P

r2
, (37a)

S′

S
= 2G

r
, (37b)

0 = r2μω′′j + 2

(
m − P

r
+ r3

ℓ2

)
ω′j + F j , (37c)

with

μ = 1− 2m

r
+ r2

ℓ2
, (38a)

P = 1

8

L∑

j,k=1

(λ j − ω2
j )h jk(λk − ω2

k ), (38b)

G =
L∑

k=1

ω′2k
|αk |2

, (38c)

F j ≡
1

2

L∑

k=1

ω j C jk(λk − ω2
k ), (38d)

h jk =
2C jk

|α j |2
. (38e)

The final step is to determine the values of the constants λ j , which involves determining

the subalgebra gλ for a given A1-vector W0 in the open fundamental Weyl chamber.

For a semisimple group, for which the Cartan subalgebra splits into an orthogonal sum

h =
⊕

k hk , the orthogonal decomposition given in Theorem 1 splits into analogous

decompositions of each of hk . Hence we only need consider the regular actions of

simple Lie groups.

However, we note that the A1-vector in the Cartan subalgebra h of a Lie algebra g

is uniquely determined by the integers

{χ1, . . . , χL} ≡ {α1(W0), . . . , αL(W0)}, (39)

123



 133 Page 12 of 43 J. E. Baxter

which integers are chosen from the set {0, 1, 2}. In [38], this is referred to as the

characteristic. From (30), it is obvious that for the principal action,

χ j = 2 (∀ j ∈ {1, . . . ,L}) (40)

for hλ. A1-vectors satisfying this define principal su(2)-subalgebras, and hence prin-

cipal actions of SU(2) on the bundle. As in [34], we may rely the following theorem:

Theorem 2 [34]

(i) The possible regular su(2)-subalgebras of simple Lie algebras consist of the

principal subalgebras of all Lie algebras AL, BL, CL, DL, G2, F4, E6, E7 and

E8 and of those subalgebras of AL = sl(L + 1) with even L corresponding

to partitions [L + 1 − k, k] for any integer k = 1, . . . ,L/2, or, equivalently,

characteristic (22 . . . 2211 . . . 1122 . . . 22) (2k ‘1’s in the middle and ‘2’s in all

other positions);

(ii) The Lie algebra gλ is equal to g in the principal case, and for AL with even L

equal to AL−1 for k = 1 and to AL−k ⊕ Ak−1 for k = 2, . . . ,L/2;

(iii) In the principal case h
‖
λ = h. For all su(2)-subalgebras of AL with even L the

orthogonal space h⊥λ is one-dimensional.

The essence of this theorem is that the regular action here coincides with the principal

action. This finally allows us to determine an expression for the constants λ j , derived

by using (38b), (38e), (40), and (41):

λ j = 2

L∑

k=1

(C−1) jk . (41)

4 Boundary conditions

In order to get a sense of the possible term dependencies in the power series expansions

of the field variables near the boundary points, and thus decide what methods we will

need to prove local existence, it is very enlightening to calculate the lower order terms

in the power series expansions of the field variables nearby the boundaries r = 0,

r = rh and r → ∞. We do this below, in anticipation of the later proofs of local

existence at these points in Sect. 7.

In the black hole case, i.e. for the boundaries r = rh and r →∞, we find that the

situation is relatively uncomplicated. For r = rh , the lower order terms show that the

solutions can be characterised entirely by the values of ω j (rh) ≡ ω j,h, ∀ j = 1, . . . ,L.

Asymptotically, we find that the solution is parametrised entirely by the values of the

limits of m(r), ω j (r) and r2ω′j (r) ( j = 1, . . . ,L) as r →∞. We find no constraints

on the boundary values of the field variables asymptotically, and near r = rh , we

merely find a couple of constraints on the metric function μ(r) that must be satisfied,

which are physically necessary to ensure a regular and non-extremal event horizon.

In the soliton case however, i.e. at r = 0, the situation is much more complicated,

as it was in the su(N ) case [9,31]. There, we had to solve a tridiagonal matrix equation
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by using expansions in the eigenvectors of the matrix in question; for this we used

Hahn polynomials, an orthogonal class of polynomials defined using hypergeometric

functions [44]. In that case, as in this, � appears at O(r2) and above in the field

equations (18a)–(18c), and therefore near r = 0 we do not expect the appearance of

the cosmological constant to make any appreciable difference.

In light of all of this, we now review the boundary conditions we expect in each

case.

4.1 Origin

Near r = 0 we may simply use the independent variable r , and hence we expand all

field variables and quantities as

f (r) =
∞∑

k=0

fkr k (42)

for a general function f (r). Thus we obtain the following recurrence relations for

mk+1, Sk and ω j,k+1:

(k + 1)mk+1 = Gk +
1

ℓ2
Gk−2 + Pk+2 − 2

k−2∑

l=2

mk−l Gl , (43a)

kSk = 2Gk, (43b)

bi,k =
L∑

j=1

(
Ai j − k(k + 1)δi j

)
ω j,k+1. (43c)

Here, A ≡ Ai j is the matrix defined by

Ai j ≡ ωi,0Ci jω j,0 (no sum on i, j); (44)

δi j is the Kronecker symbol; and the left-hand side of (43c), the vector bk ≡
(b1,k, . . . , bL,k), is a complicated vector expression involving the coefficients of the

field variable expansions.

We can see that these equations are identical to the su(N ) case [41], and so again, we

may solve (43a) and (43b) and obtain a solution with L free parameters on condition

that the recurrence relations (43c) can be solved. This in turn is conditional upon the

vectors bk lying in the left kernel of the matrix A. As we noted, bk is a complicated

expression and so this is difficult to prove in general. In Sect. 7.1, we generalise proofs

in [34] which depend directly on the root structure of the Lie algebra g treated as an

sl(2, C) submodule.

We note here that Gk = Pk = 0 for k < 2. For the lower order terms, we find:

S0 
= 0, m0 = m1 = m2 = 0, ω2
j,0 = λ j , ω j,1 = 0. (45)
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Table 1 This table shows

spec(A) = {k(k + 1) | k ∈ E}

For the classical Lie algebras the

table shows k j for

j = 1, . . . ,L, L = rank(g).

Note that k = 1 belongs to all

Lie algebras, thus 1 ∈ E always

Lie algebra E

Classical

AL j

BL 2 j − 1

CL 2 j − 1

DL

{ 2 j − 1 if j ≤ (L+ 2)/2

L− 1 if j = (L+ 2)/2

2 j − 3 if j > (L+ 2)/2

Exceptional

G2 1, 5

F4 1, 5, 7, 11

E6 1, 4, 5, 7, 8, 11

E7 1, 5, 7, 9, 11, 13, 17

E8 1, 7, 11, 13, 17, 19, 23, 29

The Eq. (43) are identical to those we found in the su(N ) case, therefore we expect

a similar situation to occur here, in that the higher order terms of the power series

expansions near the origin will in general display a complicated interdependence.

This reflects the fact that r = 0 is a singular point of the field equations. At this

boundary, the higher order coefficients which remain arbitrary occur at the orders r k

for which k(k + 1) is an eigenvalue of the matrix A. But in fact, the eigenvalues of A

can happily be shown to be k(k + 1) for a series of integer values of k, which series

depends on the Lie algebra in question. (For su(N ), this series of integers is simply

the natural numbers from 1 to N − 1 inclusive.) For all the simple Lie algebras, we

may calculate the spectrum of eigenvalues from the Cartan matrix by using the defi-

nition (44)—see Table 1 for this information. The proof for the classical Lie algebras

then follows from the properties of the root structure and the results at the end of

Sect. 7.1.1.

We will see in Sect. 7.1.2 that in some neighbourhood of r = 0, the relevant field

variables have the following behaviour:

m(r) = m3r3 + O(r4),

S(r) = S0 + O(r2),

ωi (r) = ωi,0 +
L∑

j=1

Qi j û j (r)r k j+1, i = 1, . . . ,L. (46)

Here, Qi j is a non-singular matrix, k j are integers and û j are some functions of r—all

of these we will define later. Also, m3 is fixed by (43a), S0 is fixed by the requirement

that S → 1 as r →∞, and ω2
j,0 = λ j . Therefore altogether we have L free solution

parameters here in total, namely û j (0) for each j .
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4.2 Event horizon

For a regular non-extremal event horizon, we require μh to vanish and μ′h to be finite

and positive. This severely restricts the solution parameters here and hence reduces the

degrees of freedom of any solution, which makes boundary conditions easy to find.

Using the notation fh ≡ f (rh) and transforming to a new variable ρ = r − rh , we

find that

μ(ρ) = μ′hρ + O(ρ2),

S(r) = Sh + O(ρ),

ω j (ρ) = ω j,h + O(ρ), (47)

where

μ′h =
1

rh

+ 3rh

ℓ2
− 2

r3
h

Ph . (48)

The constraint μh = 0 implies that

mh =
rh

2
+

r3
h

2ℓ2
, and

ω′j,h = −
F j,h

2
(

mh − r−1
h Ph + r3

hℓ−2
) , (49)

with

F j,h =
1

2
ω j,h

L∑

k=1

C jk

(
λk − ω2

k,h

)
. (50)

The condition μ′h > 0 places a bound on m′h :

m′h =
Ph

r2
h

> 0, (51)

with

Ph =
1

8

L∑

j,k=1

(
λ j − ω2

j,h

)
h jk

(
λk − ω2

k,h

)
. (52)

Therefore, it is clear that fixing rh and ℓ, and regarding Sh as fixed by the requirement

that the solution is asymptotically adS, the solution parameters are given by the set

{ω j,h}. Thus, as at the origin, we have L solution degrees of freedom for solutions

existing locally at the event horizon.

4.3 Infinity

We assume power series for all field variables which are good in the asymptotic limit,

i.e. of the form f (r) = f∞+ f1r−1+· · · . It is easy to see that this implies G = O(r−4),
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meaning that examining (18b), S must be of the form S(r) = S∞ + O(r−4). We also

use the basis W+(r) =
∑

L

j=1 ω j (r)eα j
. Therefore, we find that the expansions near

infinity must be

m(r) = m∞ + m1r−1 + O(r−2),

S(r) = S∞ + S4r−4 + O(r−5),

ω j (r) = ω j,∞ + c jr
−1 + d jr

−2 + O(r−3). (53)

The power series expansions here are a lot less complicated than for the asymptotically

flat case. No constraints appear on ω j,∞ or c j . Similarly, no constraints are placed on

S∞ or m∞, so we rescale to S∞ = 1 and let m∞ = M [the constant Arnowitt–Deser–

Misner (ADM) mass] so that the solution asymptotically is the SadS solution (or pure

adS space if M = 0). We find that each new term we calculate in the expansions is

entirely determined by previously calculated terms, and this trend continues for higher

order terms. For instance, the lower order terms are

m1 = −
1

ℓ2

L∑

j=1

c2
j

|α j |2
−

L∑

j,k=1

(
λ j − ω2

j,∞
)

h jk

(
λk − ω2

k,∞
)

,

S4 = −
1

2

L∑

j=1

c2
j

|α j |2
,

d j = −
ℓ2

4
ω j,∞

L∑

k=1

C jk

(
λk − ω2

k,∞
)

. (54)

Therefore we anticipate that proving the existence of unique solutions to the boundary

value problem will be a lot less involved than in the case of � = 0. In summary,

our solution parameters here are {M, ω j,h, c j } and thus we have 2L + 1 degrees of

freedom in total.

5 Asymptotic behaviour of the field equations

As we saw, the asymptotic boundary conditions (53) imply that any regular solutions

in this limit will have gauge functions which are characterised entirely by the arbitrary

values ω j,∞ and c j , with all higher order terms in the expansions determined by these

parameters. This is in opposition to the � = 0 case, where the asymptotic values of

the gauge field have to approach particular values, and the higher order terms display

complicated interdependence related to the intercoupling of the gauge functions caused

by Eq. (43c).

Therefore what we wish to do now is take the asymptotic limit of the field equations,

transform the independent variable r so that the system becomes ‘autonomous’ in the

dynamical systems sense, and examine the nature of the phase plane of the system. As

we will see, it is not so much the asymptotic field equations themselves which give us
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the difference in behaviour between the � = 0 and � < 0 cases—it is the form of the

parameter we must transform to which dictates the asymptotic behaviour of the field

variables, and which gives us an infinitely more plentiful space of regular solutions.

First, we note that as r →∞, μ ≈ 1+ r2

ℓ2 . Noting also (53), the YM field equations

(18c) become asymptotically

r4

ℓ2
W ′′+ +

2r3

ℓ2
W ′+ + F = 0. (55)

Using the parameter τ = ℓr−1, we find that (55) becomes

d2W+
dτ 2

= −F . (56)

In the more explicit basis (29) using the regular action, defined in Sect. 3 where the

field equations become (37), this is equivalent to

d2ω j

dτ 2
= −1

2

L∑

k=1

ω j C jk(λk − ω2
k ). (57)

It is easy to see that the critical points ω∗j of this autonomous system satisfy F = 0,

i.e. where

ω∗j

L∑

k=1

C jk(λk − ω∗2k ) = 0. (58)

Noting that Ci j is of full rank, this gives us two sets of critical points: either ω∗j = 0,

or ω∗j = ±λ
1/2
j , ∀ j ∈ {1, . . . ,L}. Eigenvalue analysis shows these (for each j) to be a

centre and a pair of saddles, respectively. We noted that the analysis of the asymptotic

boundary conditions (53) implied no such constraints on the asymptotic value of ω j (r),

though the autonomous asymptotic equations (56) are identical to those for � = 0.

We may resolve this apparent discrepancy by noting that for � < 0, the trajectory

of a solution in the phase plane
(
ω j ,

dω j

dτ

)
will not in general reach its critical point.

This is due to the nature of the parameter we used to render the equations autonomous.

In the case of � = 0 the parameter used was τ ∝ log r , so that the range r ∈ [r0,∞)

(r0 = rh for black holes, or r0 = 0 for solitons) corresponds to τ ∈ (−∞,∞), and

hence any trajectory for a regular solution in the limit r →∞ will be destined to end

at a critical point.

For � < 0 however, we use τ ∝ 1/r , meaning that the range r ∈ [r0,∞) corre-

sponds to the range τ ∈ [0, r−1
0 ). Therefore, as we take the asymptotic limit r →∞,

the corresponding trajectories in terms of τ will shrink and only traverse a short dis-

tance in the phase plane. Hence the trajectories, and therefore the values of the gauge

field functions and their derivatives, will in general approach arbitrary values asymp-

totically. We note that this is precisely the same as in the su(N ) case [9].

In summary then, our investigation has shown that we need not be concerned with

the behaviour of the field equations for r arbitrarily large—as long as we can integrate
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into the asymptotic region, the solution will remain regular until reaching the (arbitrary)

boundary conditions at r →∞. We will return to this point in Sect. 8.

It may finally be noted that since we are not concerned with the nature of the critical

points, we could have stopped at Eq. (56); so this argument therefore applies also to

the irregular case, i.e. if the defining A1-vector W0 lies on the boundary of a Weyl

chamber.

6 Embedded solutions

Our argument in Sect. 8 will rely on the existence of embedded (or ‘trivial’) solutions,

as we will prove the existence of global solutions to the field equations (37a) to (37c)

in some neighbourhood of these. Therefore, we here review some easily obtainable

embedded solutions to our field equations.

6.1 Reissner–Nördstrom anti-de Sitter (RNadS)

Here we let ω j (r) ≡ 0. In that case, we find that G = F = 0 and therefore S becomes

a constant, which we scale to 1. The metric function μ(r) becomes

μ = 1− 2M

r
+ Q2

r2
+ r2

ℓ2
, (59)

where M is the ADM mass of the solution, and the magnetic charge Q is defined with

Q2 ≡ 2P
∣∣
ω j≡0

= 1

4

L∑

j,k=1

λ j h jkλk . (60)

Therefore we have obtained the embedded Reissner-Nördstrom anti-de Sitter solution,

which only exists with this value of Q2, and coincides with the su(N ) case [9], using

(41) and the su(N ) Cartan matrix.

To summarise, the RNadS solution is given by

m(r) ≡ M, S(r) ≡ 1, ω j (r) ≡ 0, ∀r,∀ j = 1, . . . ,L. (61)

6.2 Schwarzschild anti-de Sitter (SadS)

Here we let ω2
j (r) ≡ λ j , ∀r,∀ j = 1, . . . ,L. Then from (38) we find that P = G =

F = 0, implying the following. From (37a), we get m′(r) = 0, so that m(r) is a

constant which we again set to the ADM mass M . From (37b) we have S′(r) = 0,

so that S is a constant which we scale to 1 for the asymptotic limit. Finally, the YM

equations (37c) are automatically satisfied. Since P = 0, this solution carries no global

charge, and can be identified as the embedded Schwarzschild anti-de Sitter solution.
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Summarising this solution:

m(r) ≡ M, S(r) ≡ 1, ω2
j (r) ≡ λ j , ∀r,∀ j = 1, . . . ,L. (62)

6.3 Embedded su(2) solutions

Noting that we can embed SU(2) isomorphically into any semisimple gauge group G,

then there must always exist trivial embedded su(2) solutions to the field equations

(18a) to (18c). We may show this by a simple rescaling.

Proposition 3 Any solution to the field equations (18a)–(18c) can be rescaled and

embedded as a solution which satisfies the field equations for su(2) adS EYM theory.

Proof Consider the gauge group G, fixing the symmetry action such that W0 is regular.

Select any basis such that the set {W0,
+,
−} spans su(2), with c(
+) = −
−.

We rescale the field variables as follows:

r = Q−1r̄ , ω j (r) ≡ λ jω(r̄), m ≡ Qm̃(r̄), ℓ ≡ Qℓ̃, (63)

with Q2 given in (60). Then the field equations (18a)–(18c) become

dm̃

dr̄
= μ

(
dω

dr̄

)2

+ (1− ω2)2

2r̄2
,

1

S

dS

dr̄
= 2

r̄

(
dω

dr̄

)2

,

0 = r̄2μ
d2ω

dr̄2
+
(

2m̃ − (1− ω2)2

r̄
+ r̄3

ℓ̃2

)
dω

dr̄
+ ω(1− ω2), (64)

with

μ(r̄) = 1− 2m̃

r̄
+ r̄2

ℓ̃2
. (65)

These equations are identical to those for the su(2) adS case, for which the existence

of (nodeless) solutions has been proven [22]. ⊓⊔

It is interesting to note that the scaling involves the magnetic charge itself, which can

possibly be put down to the fact that the RNadS solution for su(2), embedded in the

su(2) equations, only exists where the magnetic charge Q2 = 1.

Finally, it should also be noted that using the definition of the Cartan matrix for

su(N ), i.e.

Ci j =

⎧
⎨
⎩

2 for i = j,

−1 for |i − j | = 1,

0 for |i − j | > 1,

(66)

and normalising so that the length of the long roots |αk |2 = 1 ∀k, the field equations

(18a) to (18c) yield exactly the su(N ) adS EYM equations [9].
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7 Local existence proofs at the boundaries

Now we have much information about the behaviour of the solutions to the field

equations nearby the boundaries of our spacetime, enough to prove local existence at

those boundaries. To do this, we rely on a well-known theorem of differential equations

[10], generalised to the appropriate case by [34].

Theorem 4 [34] The system of differential equations

t
dui

dt
= tμi fi (t, u, v),

t
dvi

dt
= −h j (u)v j + tν j g j (t, u, v), (67)

where μi , ν j ∈ Z>1, fi , g j are analytic functions in a neighbourhood of (0, c0, 0) ∈
R

1+m+n , and the functions h j : R
m → R are positive in a neighbourhood of c0 ∈ R

m ,

has a unique solution t �→ (ui (t), v j (t)) such that

ui (t) = ci + O(tμi ), and v j (t) = O(tνi ), (68)

for |t | > r̄ for some r̄ > 0 if |c− c0| is small enough. Moreover, the solution depends

analytically on the parameters ci .

Essentially, the proof of this theorem proceeds from the requirement that formal power

series may be found for the field variables at the boundaries in question. We now

consider those boundaries one by one.

7.1 Existence at the origin: r = 0

As we hinted in Sect. 4, we do not expect much of a difference between the asymp-

totically flat and asymptotically adS cases nearby the origin, because as r → 0, the

terms in the field equations involving the cosmological constant become negligible.

Hence we may proceed along very similar lines to those in [34].

Therefore, we now collect all necessary results from [34] needed to prove local

existence of solutions near r = 0. The general idea is to consider the root structure of

sl(2, C) taken as a Lie algebra submodule of g. Note that the results in this section are

only necessary for this boundary, and hence only for solitons.

7.1.1 Necessary results for local existence at r = 0

First we introduce our conventions. We begin by defining a non-degenerate Hermitian

inner product 〈 | 〉 : g× g→ C, such that

〈X | Y 〉 ≡ −(c(X), Y ) ∀ X, Y ∈ g. (69)
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Then 〈 | 〉 is a real positive definite inner product on g0, since c : g → g is the

conjugation operator determined on the compact real form g0. It is elementary to

show that 〈 | 〉 satisfies

〈X | Y 〉 = 〈Y | X〉,
〈 c(X) | c(Y ) 〉 = 〈X | Y 〉,
〈 [X, c(Y )] | Z 〉 = 〈 X | [Y, Z ] 〉 (70)

for all X, Y, Z ∈ g. Now we introduce a positive definite, real inner product 〈〈 | 〉〉 :
g× g→ R, with

〈〈 X | Y 〉〉 ≡ Re〈 X | Y 〉 ∀X, Y ∈ g. (71)

Let ‖ ‖ be the norm induced by (71), i.e. ‖X‖2 = 〈〈 X | X 〉〉 ∀X ∈ g. Then we can

easily verify the following properties of 〈〈 | 〉〉:

〈〈 X | Y 〉〉 = 〈〈 Y | X 〉〉,
〈〈 c(X) | c(Y ) 〉〉 = 〈〈 X | Y 〉〉,
〈〈 [X, c(Y )] | Z 〉〉 = 〈〈 X | [Y, Z ] 〉〉 (72)

for all X, Y, Z ∈ g.

Let 
+,
− ∈ g be two vectors such that

[W0,
±] = ±2
±, [
+,
−] = W0, c(
+) = −
−. (73)

Then spanC{W0,
+,
−} ∼= sl(2, C). We again use a central dot notation · to repre-

sent the adjoint action, i.e.

X ·Y ≡ ad(X)(Y ), ∀X ∈ spanC{W0,
+,
−}, Y ∈ g. (74)

But since W0 is a semisimple element, ad(W0) is diagonalisable, and so from sl(2)

representation theory we know that the eigenvalues are integers. Therefore we define

Vn as the eigenspaces of ad(W0), i.e. with

Vn ≡ {X ∈ g |W0 ·X = nX, n ∈ Z }. (75)

It also follows from sl(2, C) representation theory that if X ∈ g is a highest weight

vector of the adjoint representation of spanC{W0,
+,
−} with weight n, and we

define X−1 = 0, X0 = X and X j = (1/j !)
 j
− ·X0 ( j ≥ 0), then

W0 ·X j = (n − 2)X j ,


− ·X j = ( j + 1)X j+1,


+ ·X j = (n − j + 1)X j−1. (76)

Now we are ready to state a series of results proven in [34] which will help us to prove

existence locally at r = 0. Essentially, these are necessary because we find that the
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term F in the YM equation (18c) is the only term which resists our rearrangement of

the field equations in a form appropriate to Theorem 4, and it is necessary to argue that

certain lower order term of F (in a power series sense) are zero. Hence we proceed.

Proposition 5 There exist � highest weight vectors ξ1, ξ2, . . . , ξ� for the adjoint

representation of spanC{W0,
+,
−} on g that satisfy

(i) the ξ j have weights 2k j where j = 1, . . . ,� and 1 = k1 ≤ k2 ≤ . . . ≤ k�;

(ii) if V (ξ j ) denotes the irreducible submodule of g generated by ξ j , then the sum
�∑

j=1

V (ξ j ) is direct;

(iii) if ξ
j

l = (1/ l!)
l
− ·ξ j , then c(ξ

j
l ) = (−1)lξ

j
2k j−l ;

(iv) � = |�λ| and the set {ξ j
k j−1 | j = 1, . . . ,�} forms a basis for V2 over C.

Proposition 6 The R-linear operator A : g→ g defined by

A ≡ 1

2
ad(
+) ◦ (ad(
−)+ ad(
+) ◦ c) , (77)

is symmetric with respect to the inner product 〈〈 | 〉〉, i.e. 〈〈 A(X) | Y 〉〉 = 〈〈 X | A(Y ) 〉〉
∀X, Y ∈ g.

Lemma 7

A(V2) ⊂ V2. (78)

This shows that the operator A restricts to V2: we therefore denote this operator by

A2 ≡ A|V2 . (79)

Now we label the set of integers k j from Proposition 5 as follows:

1 = kJ1 = kJ1+1 = · · · = kJ1+k1−1 < kJ2 = kJ2+1 = · · · = kJ2+m2−1

< · · ·
< kJI

= kJI+1 = · · · = kJI+m I−1, (80)

where we define the series of integers J1 = 1, Jk + mk = Jk+1 for k = 1, . . . , I and

JI+1 = � − 1. To ease notation we define

κ j ≡ kJ j
, for j = 1, . . . , I. (81)

As noted in Proposition 5, the set {ξ j
k j−1 | j = 1, . . . ,�} forms a basis of V2 over C.

Therefore the set of vectors {X l
s, Y l

s | l = 1, . . . , I ; s = 0, 1, . . . , ml − 1} forms a

basis of V2 over R, where

X l
s ≡

{
ξ

Jl+s
κl−1 if κl is odd,

iξ
Jl+s
κl−1 if κl is even.

(82)
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Then due to Proposition 6, A is symmetric, and so also is A2, and hence A2 must be

diagonalizable. Then the following Lemma is true.

Lemma 8

A2(X l
s) = κl(κl+1)X l

s and A2(Y
l
s ) = 0 for l = 1, . . . , I and s = 0, 1, . . . , ml−1.

(83)

In other words, the set {X l
s, Y l

s | l = 1, . . . , I ; s = 0, 1, . . . , ml−1} forms an eigenba-

sis of A2. An immediate consequence of this is that spec(A2) = {0}∪{κ j (κ j+1) | j =
1, . . . , I }, and m j is the dimension of the eigenspace associated to the eigenvalue

κ j (κ j + 1) (I being the number of distinct positive eigenvalues of A2).

We now define the spaces

E l
0 ≡ spanR{Y l

s | s = 0, 1, . . . , ml − 1}, E l
+ ≡ spanR{X l

s | s = 0, 1, . . . , ml − 1},
(84)

and

E0 ≡
I⊕

l=1

E l
0, E+ ≡

I⊕

l=1

E l
+. (85)

Then E0 = ker(A2) and E l
+ is the eigenspace of A2 corresponding to the eigenvalue

κ j (κ j + 1). Also, from Proposition 5 (iv) we see that V2 = E0 ⊕ E+.

Lemma 9 Suppose X ∈ V2. Then X ∈
⊕l

q=1 E
q
0 ⊕ E

q
+ if and only if 


κl
+ ·X = 0.

Lemma 10 Suppose X ∈V2. Then X ∈
⊕l

q=1 E
q
0⊕E

q
+ if and only if 


κl+2
+ ·c(X) = 0.

Lemma 11 Let˜ : Z≥−1 → {1, 2, . . . , I } be the map defined by

−̃1 = 0̃ = 1 and s̃ = max {l | κl ≤ s} if s > 0. (86)

Then

(i) κs̃ ≤ s for every s ∈ Z≥0,

(ii) κs̃ ≤ s ≤ κs̃+1 for every s ∈ {0, 1, . . . , κI−1}.

Lemma 12 If X ∈ V2, κ p̃ + s < κ p̃+1 (s ≥ 0), and 

κ p̃+s

+ ·X = 0, then 

κ p̃

+ ·X = 0.

The next theorem is the most important result in this section: it is vital to the proof of

local existence at the origin.

Theorem 13 Suppose p ∈ {1, 2, . . . , κI − 1} and Z0, Z1, . . . , Z p+1 ∈ V2 is a

sequence of vectors satisfying Z0 ∈ E1
0 ⊕ E1

+ and Zn+1 ∈
⊕ñ

q=1 E
q
0 ⊕ E

q
+ for

n = 0, 1, . . . , p. Then for every j ∈ {1, 2, . . . , p + 1}, s ∈ {0, 1, . . . , j},

(i) [[c(Z j−s), Zs], Z p+2− j ] ∈
⊕ p̃

q=1 E
q
0 ⊕ E

q
+,

(ii) [[c(Z p+2− j ), Z j−s], Zs] ∈
⊕ p̃

q=1 E
q
0 ⊕ E

q
+.

Proposition 14 Let W0 be regular. Then if 
+ ∈
∑

α∈�λ
Reα , E+ =

∑
α∈�λ

Reα .
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7.1.2 Proof of local existence at the origin (r = 0)

Now we use Theorem 4 and the results of Sect. 7.1.1 to prove the existence of solutions,

unique and analytic with respect to their boundary parameters, in some neighbourhood

of the origin. We begin by introducing some necessary notation, which will be used

throughout this section. First, we define the set

E ≡ {κ j | j = 1, . . . , I }, (87)

for κ j given in (81); and a set of projection operators

p
q
+ : E+→ E

q
+ (q = 1, . . . , I ), (88)

between the spaces defined in (84) and (85). Also, we define Iǫ(0) as an open interval

of size |2ǫ| on the real line about the point 0 ∈ R:

Iǫ(0) ≡ (−ǫ, ǫ) (89)

where for our purposes, ǫ > 0 is small.

Using Proposition 14 and Eq. (35), we know that the solution W+(r) of Eq. (18c)

is completely characterised by the condition

W+(r) ∈ E+ ∀r. (90)

We noted previously that Eq. (18b) decouples from the others, so that once we have

solved Eqs. (18a) and (18c) for μ and W+, we may easily solve (18b) to give S.

However, for completeness, we shall include S in our analysis.

We now have everything we need to state our Proposition:

Proposition 15 In a neighbourhood of the origin r = 0 (i.e. for solitons only), there

exist regular solutions to the field equations, analytic and unique with respect to their

initial values, of the form

m(r) = m3r3 + O(r4),

S(r) = S0 + O(r2),

ωi (r) = ωi,0 +
L∑

j=1

Qi j û j (r)r k j+1, i = 1, . . . ,L. (91)

Above, Qi j is a non-singular matrix for which the j th column is the eigenvector of

the matrix A (44) with eigenvalue k j (k j + 1), and û j (r) are some functions of r .

Each solution is entirely and uniquely determined by the initial values û j (0) ≡ β j ,

for arbitrary values of β j . Once these are determined, the metric functions m(r) and

S(r) are entirely determined.
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Proof Since W+(r) ∈ E+, we introduce new functions uk(r) with

W+(r) = 
+ +
∑

s∈E
us+1(r)r s+1, (92)

with 
+ = W+(0) and us+1(r) ∈ E s̃
+ ∀r, ∀s ∈ E . This transformation is clearly

invertible since E+ =
⊕I

q=1 E
q
+. Define

χs+1 =
{

1 if s ∈ E,

0 otherwise.
(93)

Then we may write (92) as W+(r) = 
+ +
∞∑

k=0

χkuk(r)r k . Substituting this into the

YM equations (18c), we find:

F = −
∑

k∈E
A2(uk+1)r

k+1 +
N1∑

k=2

fkr k (94)

for some N1 ∈ Z, and

fk =
1

2

k−2∑

j=2

{ [[

+, c(χ j u j )

]
+
[

−, χ j u j

]
, χk− j uk− j

]

+
[[

χ j u j , c(χk− j uk− j )
]
,
+

]
+

j−2∑

s=2

[[
χsus, c(χ j−su j−s)

]
, χk− j uk− j

] }
.

(95)

The need for the results of Sect. 7.1.1 becomes apparent if we examine those results

alongside the forms of (94) and (95). Now since A2(uk+1) = k(k + 1)uk+1, (94)

becomes

F = −
∑

k∈E
k(k + 1)uk+1r k+1 +

N1∑

k=2

fkr k . (96)

We proceed by defining new variables vs+1 ≡ u′s+1, ∀s ∈ E . The YM equations

(18c) become

r
∑

k∈E
v′k+1r k+1 =− 2

∑

k∈E
(k + 1)vk+1r k+1 +

∑

k∈E

k(k + 1)

r

(
1

μ
− 1

)
uk+1r k+1

− 2

rμ

(
m − P

r
+ r3

ℓ2

)∑

k∈E

(
vk+1r k+1 + (k + 1)uk+1r k+1

)

− 1

μ

N1∑

k=4

fkr k−1. (97)
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Now we apply projection operators pk̃
+ (88) to equations (97) for each k ∈ E , giving

rv′k+1 =− 2(k + 1)vk+1 −
2

rμ

(
m − P

r
+ r3

ℓ2

)
vk+1 +

k(k + 1)

r

(
1

μ
− 1

)
uk+1

− 2

r2μ

(
m − P

r
+ r3

ℓ2

)
(k + 1)uk+1 −

1

r k+1μ

N1−2∑

s=2

pk̃
+( fs+2)r

s+1 (98)

for all k ∈ E . The main obstacle to writing this equation in the correct form for

Theorem 4 is the final term, as was the case for su(N ) [9,41]. As written it contains

terms of much lower order than we want, i.e. terms of order r−s where s > 0. Happily

we may rewrite the final term using the following equality:

1

r k+1μ

N1−2∑

s=2

pk̃
+( fs+2)r

s+1 = 1

μ

N1−2∑

s=k

pk̃
+( fs+2)r

s−k . (99)

We make the derivation of this plain by using the results from Sect. 7.1.1. Using

Proposition 14 and Eq. (95), we may show that fk ∈ E+ ∀k. From how we have

defined the functions us+1(r), we may see that χs+1us+1 ∈
⊕s̃

q=1 E
q
+ for 0 ≤ s ≤ κI .

So let us use Theorem 13, taking Z0 = 
+ and Zk+1 = χk+1uk+1 for k ≥ 0. Then it

is clear that fs+2 ∈
⊕s̃

q=1 E
q
+. Hence,

pk̃
+( fs+2) = 0 if s < k, ∀k ∈ E, (100)

because if k ∈ E , then k = κ
k̃

and so if s < k = κ
k̃
, then s̃ < k̃, proving (99).

Using (99) in (98) and rearranging gives

rv′k+1 =− 2(k + 1)vk+1 −
2

rμ

(
m − P

r
+ r3

ℓ2

)
vk+1 +

k(k + 1)

r

(
1

μ
− 1

)
uk+1

− 2

r2μ

(
m − P

r
+ r3

ℓ2

)
(k + 1)uk+1 −

r

μ

N1−1∑

s=k

pk̃
+( fs+3)r

s−k

+
(

1− 1

μ

)
pk̃
+( fk+2)− pk̃

+( fk+2), ∀k ∈ E . (101)

Using the properties of 〈〈 | 〉〉 and the fact that A2(u2) = 2u2, we can show that there

exist analytic functions

P̂ : E+ × R→ R, Ĝ : E+ × E+ × R→ R, (102)

with

P = r4‖u2‖2 + r5 P̂(u, r), G = 2r2‖u2‖2 + r3Ĝ(u, v, r), (103)

and where u =
∑

s∈E us+1, v =
∑

s∈E vs+1, and ‖X‖2 = 〈〈X |X〉〉.

123



On the global existence of hairy black holes and solitons... Page 27 of 43  133 

Now we rewrite the Einstein equations (18a, 18b). We introduce a new mass variable

M = 1

r3

(
m − r3‖u2‖2

)
. (104)

(We know that ‖u2‖ is always defined since κ1 = 1 always and hence 1 ∈ E .) Then

(18a, 18b) become

rM′ =− 3M+ r
[

P̂(u, r)+ Ĝ(u, v, r)− 2〈〈u2|v2〉〉

− 2r

(
M+ ‖u2‖2 − 1

2ℓ2

)(
2‖u2‖2 + r Ĝ(u, v, r)

)]
,

r S′ = r2S
(

4‖u2‖2 + 2r Ĝ(u, v, r)
)

. (105)

We make one last variable change:

v̂k+1 = vk+1 +
1

2(k + 1)
pk̃
+( fk+2). (106)

We proceed by fixing a vector X ∈ E+ and define v̂ =
∑

s∈E v̂s+1. Then from (101,

104, 106), we can show there exists a neighbourhood NX of X ∈ E+, some ǫ > 0,

and a sequence of analytic maps

Gk : NX × E+ × Iǫ(0)× Iǫ(0)→ E k̃
0 ∀k ∈ E, (107)

such that

r v̂′k+1 = −2(k + 1)v̂k+1 + rGk(u, v̂,M, r). (108)

Also, with (105, 106) and using vs+1 = u′s+1, there exist analytic maps

Hk : E+ × E+→ E k̃
+ ∀k ∈ E,

J : E+ × E+ × R× R→ R,

K : E+ × E+ × R× R→ R, (109)

such that

ru′k+1 = rHk(u, v̂),

rM′ = −3M+ rJ (u, v̂,M, r),

r S′ = r2K(u, v̂, S, r). (110)

Now Eqs. (108, 110) are in a form appropriate to Theorem 4. For fixed X ∈ E+
there exists a unique solution {uk+1(r, Y ), v̂k+1(r, Y ),M(r, Y ), S(r, Y )}, analytic in

a neighbourhood of (r, Y ) = (0, X), satisfying
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us+1(r, Y ) = Ys + O(r) ∀s ∈ E,

v̂s+1(r, Y ) = O(r) ∀s ∈ E,

M(r, Y ) = O(r),

S(r, Y ) = S0 + O(r2), (111)

where Ys = ps̃
+(Y ). It is helpful to note that from the definition of M (104), we can

show that m(r) = O(r3), and so in this regime, 1
μ
− 1 = O(r2) [see (98)]. Also, it is

easy to see from (102, 106, 111) that

P = O(r4), G = O(r2). (112)

From the results of Sect. 7.1.1, there must exist an orthonormal basis {w j | j =
1, . . . ,�} for E+ consisting of the eigenvectors of A2, i.e. A2(w j ) = k j (k j + 1)w j .

So we introduce new variables in this basis:

∑

s∈E
us+1(r)r s+1 =

�∑

j=1

û j (r)r k j+1w j . (113)

From Proposition 5, we know that � = |�λ|, so we can write �λ = {α j | j =
1, . . . ,�}; and from Proposition 14, we find that {eα j

| j = 1, . . . ,�} is also a basis

for E+. Therefore we can write

w j =
�∑

k=1

Qk j eαk
. (114)

With this definition of the matrix Qi j , it is clear that the columns of Qi j are the

eigenvectors of A2. Now we expand 
+ and W+(r) in the same basis:


+ =
�∑

j=1

ω j,0eα j
, W+(r) =

�∑

j=1

ω j (r)eα j
. (115)

Then Eqs. (92, 113, 114, 115) imply that

ωi (r) = ωi,0 +
�∑

j=1

Qi j û j (r)r k j+1, i = 1, . . . ,�, (116)

with ω2
i,0 = λi . Finally, from (111) and (113) we obtain

û j (r, Y ) = β j (Y )+ O(r), j = 1, . . . ,�, (117)

with β j (Y ) ≡ 〈〈w j |Y 〉〉. Therefore, we obtain the expansions (91). ⊓⊔
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7.2 Proof of local existence at the event horizon r = rh

Here, the situation is again quite similar to the asymptotically flat case [34]. Therefore,

as was the case in [34], we have no need of the results in Sect. 7.1.1. In particular, the

space E+ that we will use does not have to be of the form defined in (85)—we may

replace E+ everywhere in the following with
∑

α∈�λ
Reα , and it is not necessary to

know that E+ =
∑

α∈�λ
Reα (which is the essence of Proposition 14). Thus, we use

the notation E+ purely for convenience.

We begin by introducing the variable

ρ = r − rh, (118)

so that for r → rh we are considering the limit ρ → 0. Keeping in mind the boundary

conditions in Sect. 4.2, we prove the following Proposition:

Proposition 16 In a neighbourhood of the event horizon r = rh 
= 0 (i.e. ρ = 0),

there exist regular black hole solutions to the field equations (18a)–(18c), analytic and

unique with respect to their initial values, of the form

μ(ρ) = μ′hρ + O(ρ2),

S(ρ) = Sh + O(ρ),

ω j (ρ) = ω j,h + O(ρ), (119)

where μ′h > 0.

Proof Along with (118), we introduce some new variables:

μ = ρ(λ̄+ ν), (120a)

V+ = (λ̄+ ν)W ′+, (120b)

for λ̄, V+ functions of ρ, and ν some constant yet to be determined. Immediately we

have

ρ
dW+
dρ

= ρ

(
V+

λ̄+ ν

)
, (121)

and it is clear that there exist analytic maps F̂ : E+→ E+, P̂ : E+→ R, with

F̂(W+) = F , P̂(W+) = P. (122)

Define an analytic map Ĝ : E+ × I|ν|(0)→ R by

Ĝ(X, a) = 1

2(a + ν)2
‖X‖2. (123)
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Then we can see that G = Ĝ(V+, λ̄). Using these we can rewrite the EYM equations

(18a) to (18c) as

ρ
dλ̄

dρ
=− (λ̄+ ν)+ 1

rh

− 2

r3
h

P̂(W+)+ 3rh

ℓ2
+ ρ

[
3

ℓ2
+ 1

ρ

(
1

ρ + rh

− 1

rh

)

− 2

ρ

(
1

(ρ + rh)3
− 1

r3
h

)
P̂(W+)+

(
λ̄+ ν

ρ + rh

)(
1+ 2Ĝ(V+, λ̄)

)]
,

(124a)

ρ
dV+
dρ
=− V+ −

1

(ρ + rh)3
F̂(W+)− ρV+

(
2Ĝ(V+, λ̄)

ρ + rh

)
, (124b)

ρ
dS

dρ
= ρ

2SĜ(V+, λ̄)

ρ + rh

. (124c)

In order to cast the equations in the form necessary for Theorem 4, we introduce some

final new variables:

λ̂ = λ̄+ ν − 1

rh

+ 2

r3
h

P̂(W+)− 3rh

ℓ2
, (125a)

V̂+ = V+ +
1

r3
h

F̂(W+). (125b)

We continue by defining an analytic map γ : E+ × R→ R with

γ (X, a) = a − ν + 1

rh

− 2

r3
h

P̂(X)+ 3rh

ℓ2
. (126)

Fix a vector Z ∈ E+ satisfying ‖r−1
h − 2r−3

h P̂(Z)+ 3rhℓ−2‖ > 0. Then if we set

ν = 1

rh

+ 3rh

ℓ2
− 2

r3
h

P̂(Z), (127)

it is obvious that γ (Y, 0) = 0. Therefore, define an open neighbourhood D of (Z , 0) ∈
E+ × R by

D = {(X, a) | ‖γ (X, a)‖ < ‖ν‖}. (128)

Then from (121, 124, 125) we can show there must exist some ǫ > 0 and analytic

maps

G : E+ × D → R,

H : E+ × D × Iǫ(0)→ R,

J : E+ × D × Iǫ(0)→ R,

K : E+ × R× Iǫ(0)→ R, (129)
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such that

ρ
dW+
dρ
= ρG(V̂+, W+, λ̂),

ρ
dV̂+
dρ
= −V̂+ + ρH(V̂+, W+, λ̂, ρ),

ρ
dλ̂

dρ
= −λ̂+ ρJ (V̂+, W+, λ̂, ρ),

ρ
dS

dρ
= ρK(V̂+, S, ρ). (130)

It can be seen that equations (130) are in the form applicable to Theorem 4. Hence there

is a unique solution {W+(ρ, Y ), V̂+(ρ, Y ), λ̂(ρ, Y ), S(ρ, Y )}, analytic in a neighbour-

hood of (ρ, Y ) = (0, Z), which satisfies

W+(ρ, Y ) = Z + O(ρ), (131a)

V̂+(ρ, Y ) = O(ρ), (131b)

λ̂(ρ, Y ) = O(ρ), (131c)

S(ρ, Y ) = Sh + O(ρ). (131d)

To gain a more explicit solution, we expand Z , W+ in the basis {eα j
| j = 1, . . . ,�},

as follows:

Z =
�∑

j=1

ω j,heα j
, W+ =

�∑

j=1

ω j (ρ)eα j
. (132)

Noting (131a), this yields

ω j (ρ, Z) = ω j,h + O(ρ) ∀ j = 1, . . . ,�. (133)

Finally, it is easy to show from (120a, 125a, 131c) that

μ(ρ, Z) = νρ + O(ρ2), (134)

and hence

μh = 0, μ′h = ν. (135)

Therefore, we have obtained the expansions (119). ⊓⊔

7.3 Proof of local existence as r → ∞

The behaviour of solutions in the asymptotic limit is the biggest difference between

the asymptotically flat and adS cases. Because of the constraints on the asymptotic

values of the gauge functions for � = 0, the proof followed a similar route to the

local existence at the origin. However for � < 0, our situation is much more similar
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to the local existence at the event horizon, so we follow a similar method to that used

in Proposition 16 from Sect. 7.2. Hence, the same comments apply as at the beginning

of Sect. 7.2: we do not need any of the results of Sect. 7.1.1 here, and thus we use the

notation E+ out of utility.

To deal sensibly with the limit r →∞ we transform to the variable

z = r−1, (136)

whence we are now dealing with the limit z → 0. We state our Proposition:

Proposition 17 There exist regular solutions of the field equations in some neigh-

bourhood of z = 0, analytic and unique with respect to their initial values, of the

form

m(z) = M + O(z),

S(z) = 1+ O(z4),

ω j (z) = ω j,∞ + c j z + O(z2), (137)

for arbitrary constants ω j,∞, c j ; where in order to agree with the asymptotic limit of

adS space, we have let m∞ = M, the ADM mass of the solution, and S∞ = 1.

Proof As well as (136), we introduce also the following new variables:

λ(z) ≡ 2m(r), (138a)

v+(z) ≡ r2W ′+(r). (138b)

We immediately find that

z
dW+

dz
= −zv+, (139)

and it is clear that there exist analytic maps F̂ : E+→ E+ and P̂ : E+→ R with

F̂(W+) = F , P̂(W+) = P. (140)

Also we find that

G = z4

2
(v+, v−), (141)

which means that

z
dS

dz
= −z4‖v+‖2S. (142)

For λ and v+, it can be shown that

z
dλ

dz
= −z

(
2 P̂(W+)+ ‖v+‖2

(
z2 − λz3 + 1

ℓ2

))
,

z
dv+
dz
= 2v+

(
1

μz2ℓ2
− 1

)
+ 1

μz

(
F̂(W+)+ z2v+

(
λ− 2 P̂(W+)z

))
. (143)
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It is useful to note that in the asymptotic limit, μ ∼ 1+ 1
z2ℓ2 , from which we may see

that
1

μz2ℓ2
− 1 = O(z2), and

1

μz
= O(z). (144)

Examining the number of degrees of freedom we expect at this boundary, we fix two

vectors X, C ∈ E+. Then from results (138b)–(144), it is clear that there exists an

ǫ > 0 and analytic maps

G∞ : E+→ R,

H∞ : E+ × R→ R,

J∞ : E+ × E+ × R× Iǫ(0)→ R,

K∞ : E+ × E+ × R× Iǫ(0)→ R, (145)

with

z
dW+

dz
= zG∞(v+), (146a)

z
dS

dz
= z4H∞(v+, S), (146b)

z
dλ

dz
= zJ∞(W+, v+, λ, z), (146c)

z
dv+
dz
= zK∞(W+, v+, λ, z) (146d)

(noting that G∞ is just the map v+ �→ −v+). Now we are at the stage where we may

apply Theorem 4; and hence it is clear that these equations possess a unique solution

{S(z, Y, Z), λ(z, Y, Z), W+(z, Y, Z), v+(z, Y, Z)} analytic in some neighbourhood of

(z, Y, Z) = (0, X, C) with behaviour

S(z, Y, Z) = S∞ + O(z4), (147a)

λ(z, Y, Z) = λ∞ + O(z), (147b)

W+(z, Y, Z) = X + O(z), (147c)

v+(z, Y, Z) = C + O(z). (147d)

However, noting (136) and (138b), we may integrate (147d), choosing the constant

(vector) of integration to agree with (147c). This combines (147c) and (147d), yielding

W+(z, Y, Z) = X − Cz + O(z2). (148)

To gain an explicit solution in terms of the components of X , C and W+, we expand

them all in the same basis:

W+ =
∑

α∈�λ

ωα(z)eα, X =
∑

α∈�λ

ωα,∞eα, C =
∑

α∈�λ

(−cα)eα. (149)
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No constraints are placed on the constants ωα,∞ or cα . Then it is clear that near z = 0,

the gauge field functions have the form

ωα(z) = ωα,∞ + cαz + O(z2), ∀α ∈ �λ. (150)

Finally, noting that we expect our solution to approach adS space in the asymptotic

limit, we set λ∞ ≡ 2M , S∞ ≡ 1, and thus recover the expansions (137). ⊓⊔

8 Global existence arguments

Now we turn our attention to proving the existence of global solutions to our field

equations. Here we have a choice of approaches. We considered using the more novel

approach of Nolan and Winstanley [29] who let the initial conditions and embedded

solutions reside in appropriate Banach spaces, and then recast the field equations so

that they could apply the Implicit Function Theorem, hence proving that non-trivial

solutions exist in some neighbourhood of embedded solutions. However, it appears

to be necessary to their argument that m(r) is constant for the embedded solution,

something we have not been able to get around yet, meaning that we could only

identify solutions in a neighbourhood of the embedded SadS solution.

Alternatively, the traditional argument that has been used in this case is the ‘shooting

argument’ (used in e.g. [22,26]), which basically involves proving the existence of

solutions locally at the boundaries, and then proving that solutions which begin at the

initial boundary r = rh (r = 0) near to existing embedded solutions can be integrated

out arbitrarily far, remaining regular right into the asymptotic regime, where they will

‘meet up’ with solutions existing locally at r → ∞; and that these neighbouring

solutions will remain close to the embedded solution. While this seems somehow less

elegant, there are no restrictions on the embedded solution we may use, and hence the

proof we are able to create is more general and hence more powerful. Therefore, we

resign ourselves to using the more traditional techniques.

We begin by noting that we have already considered the behaviour of the field

equations in the asymptotic limit and shown that solutions will in general remain

regular in this regime (Sect. 5), so we must now make sure that any solution which

begins regularly at the initial boundary r = rh (r = 0) can be integrated out arbitrarily

far while the field variables remain regular. We also note that as in Sect. 5, we here

do not require W0 to be regular: we use the original field equations (18), and so this

proof applies to both the regular and irregular actions.

Proposition 18 If μ(r) > 0 ∀r ∈ [rh,∞) for black holes, or ∀r ∈ [0,∞) for

solitons, then all field variables may be integrated out from the boundary conditions

at the event horizon (or the origin) into the asymptotic regime, and will remain regular.

Proof Define Q ≡ [r0, r1) and Q̄ ≡ [r0, r1], where r0 = rh for black holes and

r0 = 0 for solitons, and r0 < r1 <∞. Our strategy is to assume that all field variables

are regular on Q, i.e. in a neighbourhood of r = r0, and then show using the field

equations that as long as the metric function μ(r) > 0 ∀r ∈ [r0,∞), then they will

remain regular on Q̄ also, i.e. at r = r1; and thus we can integrate the field equations

out arbitrarily far and the field variables will remain regular.
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First notice that G, P > 0 by the definitions (19). This means using (18a) that

m′(r) > 0 ∀r and thus m(r) is monotonic increasing, as expected for the physical

mass. This means that (if it exists),

mmax ≡ sup{m(r) | r ∈ Q̄} = m(r1). (151)

The same applies to (ln |S(r)|)′ [see (18b)], showing that ln |S(r)| and hence S(r) is

monotonic increasing too, so that (again, if we can prove that S is finite on Q̄)

Smax ≡ sup{S(r) | r ∈ Q̄} = S(r1). (152)

The condition μ(r) > 0 ∀r ∈ [r0,∞) gives us our starting point, since this implies

that

m(r1) ≤
r1

2
+ r3

1

2ℓ2
, (153)

giving us an absolute upper bound to work with. This in turn implies that m(r) is

bounded on Q̄ [and so (151) holds], and thus also that μ(r) is bounded on Q̄. Thus

we may define μmin ≡ inf{μ(r) | r ∈ Q̄}.
Now we examine (18a). It is clear that

2m′(r) ≥ 2μG, (154)

and integrating, we can show that

2[m(r1)− m(r0)]
μmin

≥ 2

r1∫

r0

Gdr, (155)

which implies from (18b) that ln |S| and hence S is bounded on Q̄.

Equation (155) also implies that G is bounded on Q̄, and since

2G = ‖W ′+‖2, (156)

then again by integrating and using the Cauchy-Schwartz inequality,

r1∫

r0

2Gdr =
r1∫

r0

‖W ′+‖2dr ≥

⎛
⎝

r1∫

r0

‖W+‖′dr

⎞
⎠

2

, (157)

and hence
r1∫

r0

2Gdr ≥
(
‖W+‖

∣∣∣
r=r1

− ‖W+‖
∣∣∣
r=r0

)2
. (158)

The left hand side is bounded, and the right hand side is a sum of positive terms and

hence bounded below by 0. Thus ‖W+‖ and hence W+ is bounded on Q̄. Since W0 is
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constant and W− = −c(W+), this also means that F̂ and hence F and P are similarly

bounded on Q̄ (see (19)).

Finally, we may rewrite the YM equations (18c) as

(
μSW′+

)′ = − SF

r2
. (159)

Integrating and rearranging gives

μ(r1)S(r1)W ′+(r1) = μ(r0)S(r0)W ′+(r0)−
r1∫

r0

SF

r2
dr, (160)

and since all functions on the right hand side are bounded on Q̄ (see (19)), as are μ

and S, then we can finally conclude that W ′+ is bounded on Q̄. ⊓⊔

8.1 Global existence of solutions in a neighbourhood of embedded solutions

Finally, we may prove the major conclusions of our research, which hinge on the

following Theorem. The gist of it is that global solutions to the field equations (37a)–

(37c), which we have proven are uniquely characterised by the appropriate boundary

values and analytic in those values, exist in open sets of the initial parameter space;

and hence that solutions which begin sufficiently close to existing solutions to the field

equations will remain close to them as they are integrated out arbitrarily far into the

asymptotic regime, remaining regular throughout the range. It can be noted that this

argument is quite similar to those we have used for the su(N ) case [9,31].

Theorem 19 Assume we have an existing solution of the field equations (37a) to

(37c), with each gauge field function ω j (r) possessing n j nodes each, and with initial

gauge field values {ω1,0, ω2,0, . . . , ωL,0}, taking {ω j,0} = {ω j,h} for black holes and

{ω j,0} = {β j } for solitons. Then all initial gauge field values {ω̃ j,0} in a neighbourhood

of these values will also give a solution to the field equations in which each gauge

field function ω̃ j (r) has n j nodes.

Proof Assume we possess an existing solution to the field equations (37a) to (37c),

where each gauge function ω j (r) has n j nodes and initial conditions ω j,0 
= 0 in

general. Proposition 18 and the analysis in Sect. 5 show that as long as μ(r) > 0 we

may integrate this solution out arbitrarily far into the asymptotic regime to obtain a

solution which will satisfy the boundary conditions as r → ∞. For the rest of the

argument, we assume that ℓ is fixed and so is rh for black holes and that each gauge

function ω j has n j nodes.

From the local existence results (Propositions 15, 16 and 17), we know that for any

set of initial values, solutions exist locally near the event horizon for a black hole, or

the origin for a soliton, and that they are analytic in their choice of initial conditions.

Again we use the notation r0 = rh for black holes and r0 = 0 for solitons. For an

existing solution, it must be true that μ(r) > 0 for all r ∈ [r0,∞). So, by analyticity,
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all sufficiently nearby solutions will also have μ(r) > 0 for all r ∈ [r0, r1] for some

r = r1 with r0 < r1 <∞. By Proposition 18, this nearby solution will also be regular

on [r0, r1].
Now, let r1 >> r0, so that for the existing solution, m(r1)/r1 << 1. Let {ω̃ j,0} be

a different set of initial conditions at r = r0 for gauge fields ω̃ j , such that {ω̃ j,0} are in

some small neighbourhood of {ω j,0}; and let m̃(r) be the mass function and μ̃ be the

metric function of that solution. By analyticity (as above), μ̃(r) > 0 on this interval,

so this new solution will also be regular on [r0, r1]; and since the two solutions must

remain close together, the gauge functions ω̃ j will also each have n j nodes.

Also it is then the case that m̃(r1)/r1 << 1, and since r1 >> r0 we consider

this the asymptotic regime. Provided r1 is large enough (and hence τ1 is very small),

the solution will not move very far along its phase plane trajectory as r1 → ∞ (see

Sect. 5). Therefore m̃(r)/r remains small, the asymptotic regime remains valid, and

the solution will remain regular for r arbitrarily large. ⊓⊔

Corollary 20 Non-trivial solutions to the field equations which are nodeless, i.e. for

which ω j (r) 
= 0 ∀r , exist in some neighbourhood of both existing trivial SadS

solutions (described in 6.2), and embedded su(2) solutions (proven in Proposition 3).

8.2 Existence of solutions in the large |�| limit (ℓ → 0)

So far we have proven the existence of global black hole and soliton solutions in

some neighbourhood of existing solutions, for fixed rh and �. But there is a further

consideration, revealed by investigations into su(N ). On the one hand, we discovered

numerically that as N increases, regions of the parameter space in which we may find

nodeless solutions shrink in size [9,45]; on the other, for |�| large enough, all solutions

we found were nodeless. In addition, when we investigated the linear stability of these

solutions [25], we were only able to prove stability in the limit |�| → ∞, due to terms

arising in the gravitational sector.

In view of the similarities between the case under consideration and the su(N )

case, it is sensible to investigate this limit in the case of a general compact gauge

group. Our strategy is to transform the field variables such that we may sensibly find a

unique solution to the equations at ℓ = 0. Then, noting that it is only in the asymptotic

limit that the influence of ℓ is felt, we modify Proposition 17 using our new variables,

and show that the arguments used in Sect. 8 may be easily adapted to serve in a

neighbourhood of ℓ = 0.

We must emphasise that we cannot prove the existence of global non-trivial solu-

tions at ℓ = 0, since in that case the asymptotic variable we used in Sect. 5 becomes

singular and therefore that part of the proof breaks down.

Theorem 21 There exist non-trivial solutions to the field equations (18a)–(18c), ana-

lytic in some neighbourhood of ℓ = 0, for any choice of boundary gauge field values.

For black holes, these are given by {ω j,h} ( j = 1, . . . ,L) (in the base (132)); for

solitons, {β j }, ( j = 1, ...,L).
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Proof We’ll take the black hole case to begin with, noting that we fix rh for the rest

of the argument. Let us change to the variables

m̄ = mℓ2, (161a)

W ′± = ℓ
√

2X±. (161b)

The field equations (18a)–(18c) then become

dm̄

dr
= ℓ2

[(
ℓ2 − 2m̄

r
+ r2

)
‖X+‖2 − P

2r2

]
,

1

S

dS

dr
= 2ℓ2

r
‖X ′+‖2,

0 = r2

(
ℓ2 − 2m̄

r
+ r2

)
X ′+ +

(
2m̄ − Pℓ2

r
+ 2r3

)
X+ + ℓF . (162)

Taking the (now allowed) limit ℓ→ 0:

dm̄

dr
= 0,

1

S

dS

dr
= 0,

0 = r2

(
−2m̄

r
+ r2

)
X ′+ +

(
2m̄ + 2r3

)
X+. (163)

The first of these is easily integrated to give m̄ constant, which we therefore set to

m̄(r) = m̄h . We also notice that since

m̄h = ℓ2mh =
ℓ2rh

2
+

r3
h

2
, (164)

then we must have m̄(r) = r3
h

2
at ℓ = 0. The second integrates to S constant, which

we set to 1 in agreement with the asymptotic limit. The third is readily integrated to

give

X+(r) = X r

r3 − r3
h

, (165)

for X a constant of integration. However this is singular at both r = rh and as r →∞
unless we take X = 0, giving X+(r) ≡ 0. Examining (161b) and noting that we will

want to vary this solution away from ℓ = 0 to small non-zero values of ℓ, we see that

W+(r) is also a constant, for which we are forced to take W+(r) ≡ W+(rh).

Hence using an appropriate basis for W+(r) (29), the unique solution obtained is

m̄(r) ≡
r3

h

2
, S(r) ≡ 1, ωα(r) ≡ ωα,h, ∀α ∈ �λ. (166)
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We note that this is identical to the su(N ) case.

Now we take Proposition 17 and re-purpose it to the case at hand. Defining new

variables

λ̃ ≡ λℓ2, μ̃ ≡ μℓ2, (167)

the field equations (143) become

z
dλ̃

dz
= −z

(
2ℓ2 P̂(W+)+ ‖v+‖2

(
ℓ2z2 − λ̃z3 + 1

))
,

z
dv+
dz
= 2v+

(
1

μ̃z2
− 1

)
+ ℓ2

μ̃z

(
F̂(W+)+ z2v+

(
λ̃− 2 P̂(W+)z

))
; (168)

and the equation for S is unchanged. But the structure of the field equations is unaltered,

and so the proof given in Sect. 7.3 is unchanged. Then, for arbitrarily small ℓ, we may

find solutions that exist locally in the asymptotic limit.

The argument that proves that non-trivial global solutions exist for small ℓ is very

similar to Proposition 19. We fix rh , take the existing solution (166), and consider

varying {ω j,h}, and varying ℓ away from 0. Note that for the embedded solution (166),

all gauge fields will be nodeless. We then choose some r1 ≫ rh so that we can consider

r1 in the asymptotic regime. Proposition 16 confirms that for ℓ sufficiently small we

can find solutions near the existing unique solution which will begin regularly near

r = rh and remain regular also at r = r1, and that those solutions will have nodeless

gauge field functions due to analyticity. Finally, since we are now in the asymptotic

regime, we can use the logic in Sect. 5 and Proposition 18 to ensure that solutions will

remain regular as r →∞ and that all ω j will be nodeless.

The corresponding proof for solitons is similar to that for black holes, though we

must be more careful about how we take the limit ℓ → 0. The parameter τ ∝ r−1

that we use in the asymptotic regime is fine for black holes since min{r} = rh so τ is

bounded and thus r−1 remains regular throughout the range [rh,∞); but this is clearly

no longer the case for solitons as min{r} = 0 so that τ becomes singular.

We follow the clues in the su(N ) case [9] and rescale all dimensionful quantities:

r = ℓx, m(r) = ℓm̌(x). (169)

In addition, we find it best to work with the gauge functions û j (r) which we defined

in the proof of local existence at the origin, Proposition 15, using

ωi (x) = ωi,0 +
L∑

j=1

Qi j û j (ℓx)ℓk j+1xk j+1, i = 1, . . . ,L, (170)

and working with the field equations in the form (37a)–(37c).

Substituting (169, 170) into the field equations, again we find that m̌(x) and S(x)

must be constant, which due to boundary conditions we are forced to set equal to 0

and 1 respectively. We also see that if ℓ = 0, all gauge functions ωi (x) ≡ ωi,0, and the

solution reduces to the SadS case where ω j ≡ ±λ
1/2
j , which are manifestly nodeless.
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However it is important to examine the behaviour of the equations for ℓ small but

non-zero.

When ℓ = 0, the YM equations (37c) decouple to produce the following:

x(1+ x2)
d2û j

dx2
+ 2

(
k j + (k j + 1)x2

) dû j

dx
+ xk j (k j + 1)û j = 0, (171)

where we have used results (94, 96, 99).

Fortunately, though not necessarily unexpectedly, this is also very similar to the

su(N ) case [9] (set k j ≡ k in the above) in that the term containing F vanishes in

both cases when ℓ = 0. Therefore our more general case has a very similar unique

solution in this limit:

m̌(x) ≡ 0, S(x) = 1, û j (x) ∝ 2 F1

(
k j + 1

2
,

k j

2
; 2k j + 1

2
;−x2

)
(172)

for j = 1, . . . ,L, and where the integers k j for the group G in question are given in

Table 1. The constant of proportionality above is simply β j from Proposition 15. It

can be seen that this is regular at x = 0, and due to the properties of hypergeometric

functions, that it satisfies the required boundary conditions (53).

We proceed in a very similar fashion to the black hole case. Proposition 17 adapts

in a very obvious way, similar to the above (161a, 161b). So we take the existing

solution (172) with arbitrary β j , and consider varying {β j } and varying ℓ away from

0. Note again that for the embedded solution (166), all gauge fields will be nodeless.

We then choose some r1 >> 0 so that we can consider r1 in the asymptotic regime.

Propositions 15 guarantees that for fixed ℓ sufficiently small we can find solutions near

the existing unique solution which will begin regularly near r = 0 and remain regular

in the range (0, r1], and that those solutions will have nodeless gauge field functions

due to analyticity. Finally, once we are in the asymptotic regime, we can again use

Proposition 18 and the logic in Sect. 5 to ensure that solutions will remain regular as

r →∞, and that furthermore all these nearby ω j will be nodeless. ⊓⊔

9 Conclusions

The purpose of this research was to investigate the existence of global black hole

and soliton solutions to spherically symmetric, four dimensional EYM theories with

compact semisimple connected and simply connected gauge groups.

We began by stating the basic elements of the theory, describing the analogy to

the asymptotically flat case considered in [34]. We derived the basic field equations

for adS EYM theory, and then explained how to reduce the model down to the case

for the regular action [34,35], in which the constant isotropy generator W0 lies in an

open fundamental Weyl chamber of the Cartan subalgebra h. In this case it may be

shown that the regular action reduces to the principal action described in [38], which

simplified the field equations greatly.

We went on to investigate the boundary conditions at r = 0, r = rh and as r →∞
(Sect. 4). We found that the analysis at the event horizon and at the origin (Proposi-
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tions 15 and 16) carried over similarly from the asymptotically flat case [34], with some

minor alterations. The biggest difference in the analyses was in the asymptotic behav-

iour of solutions (Proposition 17). There, we found that the gauge functions and their

derivatives were entirely specified by the arbitrary values they approach at infinity—

this differs greatly from the � = 0 case, in which the gauge field was specified by

higher order parameters in the power series, and these parameters were intercoupled

in a complicated way. This difference is explained in Sect. 5, where it is noted that

due to the parameter we use to render the equations autonomous, the solutions to this

system (in terms of dynamical systems) need not reach their critical points, which was

what forced the asymptotically flat system to be so tightly constrained as r →∞.

Due to this difference, it became possible in Sect. 8 to prove the existence of global

solutions to the field equations in some neighbourhood of embedded solutions, of

which we found three separate cases (Sect. 6). We proved that as long as μ(r) > 0

throughout the solution range, then if we begin at the initial boundary (r = rh for black

holes or r = 0 for solitons) and integrate the field equations out arbitrarily far, the

field variables will all remain regular (Proposition 18). We recall that we already estab-

lished in Sect. 5 that general solutions will remain regular in the asymptotic regime.

Therefore, we were able to argue the existence of black hole and soliton solutions

which begin regularly at their initial conditions and can be regularly integrated out

arbitrarily far, where they will remain regular as r → ∞ (Theorem 19). We finally

considered the limit of |�| → ∞, which we explained was necessary in the su(N ) case

to guarantee nodeless and hence stable solutions, and proved that nodeless non-trivial

solutions exist in this regime too, which are similarly globally regular and analytic in

their boundary parameters (Theorem 21).

Our main results are the proof of global non-trivial solutions to the field equations

(18a)–(18c), both nearby trivial embedded solutions, and in the limit of |�| large. It is

remarkable to see how many of the general features of this model carry across to the

specific case of su(N ) [9]. These include the forms of the field equations themselves,

the embedded solutions we find, the qualitative behaviour of the solutions at the various

boundaries, and the existence of solutions both near embedded solutions and in the

limit |�| → ∞. This is very pleasing, since it may be noticed that the field equations

(18a)–(18c) may easily be adapted to any gauge group without precise knowledge

of the gauge potential itself, the construction of which for a given gauge group is a

non-trivial task. This quite general system, even restricted to solely the regular case,

could thus prove to be a powerful analytical model which may give insight into a range

of different matter field theories.

There are many future directions that this work could take. Considering the work

in [46], a logical next step might be to consider the ‘irregular’ case, where W0 lies on

the boundary of a fundamental Weyl chamber, and the situation is more intricate. For

instance, for � = 0 it is known that this means the gauge functions ω j will in general

be complex. An analysis of that case, in combination with the results here presented,

would cover an existence analysis for black holes and solitons in all possible static,

spherically symmetric, purely magnetic EYM adS models with a compact semisimple

gauge group.

Another obvious thing to do is to consider the question of the stability of the solu-

tions that we have found. In [18], Brodbeck and Straumann give a proof of instability
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for a general compact gauge group in asymptotically flat space, for the case of the

regular action; but here we find that we are able to establish solutions which fulfil the

same conditions which guaranteed stability in the case of su(N ). This would be very

enlightening to investigate. In addition, there is the issue of extending this work to

higher dimensions, though due to the fact that we would now be dealing with essen-

tially SU(3) principal bundle automorphisms for the isometry group of S3, and the

higher order Cherns-Simons terms in the action needed to obtain finite-mass solutions

[47,48], this is likely to be highly technical.

The main impact of this research is on some outstanding questions in gravitational

physics. For instance, we consider Bizon’s modified “no-hair” theorem in light of this

work, which states:

Within a given matter theory, a stable black hole is characterised by a finite

number of global charges. [49]

Since this work concerns a general gauge group, it opens up the interesting possibility

of verifying the no-hair theorem for a large class of gauge structure groups, given some

further work. In addition, Hawking very recently raised the interesting possibility that

hairy black holes may be used to resolve the ‘black hole information paradox’ [50].

The possibilities that this research opens up for our field are as yet unknown but

potentially significant, and it would be of great interest to know if our recent work

may be able shed any light on this long-standing problem.

Finally, there is the important question of whether this research will open up new

insights into the adS/CFT correspondence. It is known that for black hole models

there are observables in the dual CFT which are sensitive to the presence of hair

(see [51] for a discussion of non-Abelian solutions in the context of adS/CFT), and

correspondences to CMP problems have been found relating to both superconductors

[52,53] and superfluids [54]. Therefore, it is possible that within the class of models

considered in this paper, there exist many more applications to QFT phenomena, and

this could be a rich and worthwhile vein of study.
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