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Abstract 

Skiing and snowboarding are popular snow-sports with inherent risk of injury. There 

is potential to reduce the prevalence of injuries by improving and implementing 

snow-sport safety devices with the application of advanced materials. This paper 

investigates the application of auxetic foam to snow-sport safety devices. Composite 

pads - consisting of foam covered with a semi-rigid shell - were investigated as a 

simple model of body armour and a large 70 x 355 x 355 mm auxetic foam sample 

was fabricated as an example crash barrier. The thermo-mechanical conversion 

process was applied to convert open-cell polyurethane foam to auxetic foam. The 

composite pad with auxetic foam absorbed around three times more energy than the 

conventional equivalent under quasi-static compression with a concentrated load, 

indicating potential for body armour applications. An adapted thermo-mechanical 

process - utilising through-thickness rods to control in-plane compression - was 

applied to fabricate the large sample with relatively consistent properties throughout, 

indicating further potential for fabrication of a full size auxetic crash barrier. Further 

work will create full size prototypes of snow-sport safety devices with comparative 

testing against current products.   

1 Introduction 

Alpine skiing and snowboarding are popular Winter Olympic Sports. Worldwide 

participation numbers are hard to predict, but there are an estimated 115 to 200 
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million skiers (Hunter, 1999; Vanat, 2014) and 10 to 15 million snowboarders (Dann, 

2011; Hasler et al., 2010; Kusche et al., 2010). Despite the popularity of snow-

sports, there are inherent risks of injury, and even death. Snowboarders are at 

greater risk of injury than skiers (Hagel et al., 2004; Russell et al., 2007; Sasaki et 

al., 1999), with estimates ranging from 1 to 15 injuries per 1,000 riding days (Russell 

et al., 2010; Machold et al., 2000). The upper extremities are particularly at risk 

amongst snowboarders (Russel et al., 2010; Russell et al., 2007; Kim and Lee, 2011; 

Brügger et al., 2010), with wrist injuries common for beginners and children (Russel 

et al. 2007; Matsumoto et al., 2004; Torjussen and Bahr, 2005; Dickson, 2009; 

Michel et al., 2013). 

Falls account for the most snow-sport injuries, contributing to 43% to 73% of injuries 

for skiers and 69 to 93% of injuries for snowboarders (Hagel, 2005). Experienced 

participants experience the greatest incidence of injuries when attempting jumps 

(Hume, et al., 2015). Devices are available for reducing injuries; these include crash 

barriers and personal protective equipment (PPE). Crash barriers are often large 

foam pads, designed to limit peak force in the event of a collision with a fixed object. 

Personal protective equipment includes helmets, wrist protectors and body armour 

such as back protectors.  

Standards ensure certified snow-sport helmets limit peak force (e.g. EN1077 and 

ASTMF2040) and resist penetration (e.g. EN1077), but they do not always provide 

for protection against concussion (Brügger et al., 2010). There are no snow-sport 

specific standards for wrist protectors (Michel et al., 2013) or back protectors 

(Schmitt et al., 2010). There is consensus that wrist protectors can prevent injuries 

by absorbing energy and limiting hyperextension, but it is unclear which designs offer 
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the most protection (Michel et al., 2013). Back protectors come in two primary forms, 

a hard shell with padding underneath offering greater resistance to penetration, and 

foam in isolation which absorbs more impact energy (Schmitt et al., 2010). Snow-

sport safety devices might be improved through design changes including the 

application of advanced materials which could allow reduced bulk, increased comfort 

and greater protection across a range of scenarios. 

A number of studies present a case for applying auxetic foam to sport safety devices 

(Sanami et al, 2014; Allen et al., 2015a, Allen et al., 201b, Duncan et al., in press, 

Duncan et al., under review) and there are patents for sportswear with auxetic 

components (Cross et al., 2015; Bentham 2008; Toronjo, 2013). Auxetic foams are 

characterized by a negative Poisson’s ratio; when compressed in one direction these 

materials contract in one or more perpendicular directions. This contraction and 

densification under the region of contact leads to increased indentation resistance 

(Chan & Evans, 1998), which could be particularly beneficial to snow-sport safety 

devices. The indentation resistance (H) for an isotropic material is related to 

Poisson's ratio () and Young's modulus (E),  

� ∝  [ሺ −� ሻ� ]−�  (1) 

where x depends on the indenter shape (Evans & Alderson, 2000). For isotropic 

materials the thermodynamically allowable upper and lower limits for Poisson’s ratio 

are +0.5 and -1.0, respectively. Hence, for a given Young’s modulus, indentation 

resistance will have a maximum finite value when Poisson’s ratio equals +0.5 for 

conventional (positive Poisson’s ratio) materials, whereas it increases towards 

infinity as Poisson's ratio tends toward -1.0 for auxetic materials.  
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1.1 Auxetic foam 

Despite the wealth of research into auxetic foam, work is needed to determine how 

best to fabricate and apply it to snow-sport safety devices. The general mechanism 

involves compression of conventional foam, followed by softening and then stiffening 

in the compressed state to give a re-entrant cell structure, as outlined in Lakes 

(1987). Heating to around the softening temperature is the common method of 

softening (“thermo-mechanical softening”) (e.g. Allen et al. 2015b; Critchley et al., 

2013; Chan & Evans 1999; Lakes, 1987; Scarpa et al., 2005), although a chemical 

bath can also be used (“chemical-mechanical” or “mechanical-chemical-thermal 

softening”) (Grima et al., 2009; Lisiecki et al., 2013). Increasing volumetric 

compression ratio (VCR - ratio of uncompressed to compressed volume), up to a 

limit of approximately 5, generally enhances auxetic behaviour and lowers Poisson’s 

ratio (Allen et al., 2015b; Critchley et al., 2013). The conversion process can be 

applied to a range of materials (e.g. Chan & Evans, 1999; Friis et al., 1988), and 

highly anisotropic auxetic foam can be obtained by applying different amounts of 

compression on each face during fabrication (Alderson et al. 2005). 

When applying the thermo-mechanical process, there is, as yet, no consensus 

regarding the best heating time and temperature combination to maximise auxetic 

behaviour. Differences may be due to variations in foam properties between studies, 

the VCR applied and the size of fabricated samples. Early exploratory studies 

produced small samples of auxetic foam (e.g. Lakes 1987; Friis et al., 1988), while 

recent work has produced larger samples as the research moves closer to 

commercial applications (Allen et al., 2015a; Allen et al., 2015b; Lowe and Lakes, 

2000; Lisiecki et al., 2014, Duncan et al. in press). Producing large samples is 
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challenging as the thermo-mechanical process can result in inhomogeneous auxetic 

foam due to non-uniform temperature and compression gradients present during 

fabrication  (Critchley et al., 2013; Chan and Evans, 1997; Lowe and Lakes, 2000; 

Duncan et al. in press). A reliable method of fabricating large volumes of auxetic 

foam is therefore required to facilitate production and testing for snow-sport safety 

applications, including monoliths for crash pads and sheets for body armour. 

Auxetic behaviour is identified by confirmation of a negative Poisson’s ratio. 

Poisson’s ratio is often measured during slow stretching or compression, by tracking 

the position of markers on a sample followed by linear regression of lateral-strain vs 

axial-strain data in the low axial strain region (e.g. Chan & Evans, 1999, Duncan et 

al., in press). Negative Poisson’s ratios have been measured for auxetic foams 

subject to fast compression (Pastorino et al., 2007; Allen et al., 2015b). This is 

especially relevant to snow-sport safety devices, which are typically required to 

absorb energy through compression at relatively high speed. Work exploring snow-

sport safety applications of auxetic foams should, therefore, involve testing at high 

strains and strain rates, for both crash pads and body armour.   

Auxetic foams have higher resilience (Lakes, 1987; Allen et al., 2015b) and absorb 

more energy (Bezazi and Scarpa 2007) under compression compared to their 

conventional open-cell counterparts. Their stress-strain curves have an extended 

quasi-linear region and the foam densifies earlier as a result of lateral contraction 

(Chan & Evans, 1999). This lateral contraction can cause auxetic foam to deform 

less in the direction of the applied load under impact (Allen et al., 2015a), and reduce 

peak force in comparison to conventional open-cell foam (Allen et al., 2015a, Allen et 

al., 2015b). Auxetic foams have been shown to be particularly effective at limiting 
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forces from concentrated impact loads when combined with a semi-rigid shell (Allen 

et al., 2015b; Duncan et al., in press) which should lend them well to padding in body 

armour.  

2 Objective 

Auxetic foams offer potential to improve snow-sport safety devices, such as body 

armour or crash pads. Work is required to determine how best these novel materials 

can be utilised. This work will explore applications for body armour, by examining the 

energy absorbed by a composite pad consisting of an auxetic foam sheet and semi-

rigid shell subject to a load-unload cycle. The feasibility of producing auxetic foam 

crash pads will be explored by applying an adapted thermo-mechanical process to 

fabricate a large sized sample.  

3 Methods 

Open-cell polyurethane foam (R30RF and R60RF, Custom Foams) was converted to 

auxetic foam. The foam has a working temperature range of -40 to +120°C (as 

specified by the supplier), indicating it is suitable for use in typical climate conditions 

for snow-sports. Foam of the same type has been used in previous work (e.g. Allen 

et al., 2015b; Duncan et al. under review) and similar thermo-mechanical conversion 

processes were adopted here. Over-sized foam samples were compressed in a 

metal mould consisting of two U-shaped parts, with the internal faces lubricated with 

olive oil. The mould containing the compressed foam was placed in an oven at 

180°C for two heating phases followed by a 20 minutes annealing phase at 100°C. 

The heating time was dependent on the size of the foam sample.  Each sample was 

removed from the mould after each phase and gently stretched by hand to reduce 

adhesion of cell ribs. Following annealing the foam was left to cool to room 
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temperature in the mould. Poisson’s ratio was measured from quasi-static tests by 

filming pins in a sample while it was being either stretched or compressed. The video 

footage was then passed to a Matlab (Mathworks) script, which automatically tracked 

the positions of the pins to obtain true strain. Details of the methods for the body 

armour and crash pad examples are described below.   

3.1 Body Armour 

Composites pads - consisting of a 10 x 90 x 90 mm or 20 x 90 x 90 mm foam sample 

covered with a 4 x 90 x 90 mm polypropylene (PP) sheet (Direct Plastics, PPH/PP-

DWST-Homopolymer) - were investigated as a simple model of body armour. The 

larger pads had similar thickness to commercially available back protectors (Schmitt 

et al., 2010). To help ensure uniform compression and temperature and the 

production of homogenous samples, auxetic foam sheets were converted individually 

at the required thickness, rather than converting and then slicing a cube (Duncan et 

al. under review). Foam (R30RF and R60RF) samples (15 x 143 x 143 mm and 30 x 

143 x 143 mm) were compressed to 70% of their original size along each dimension 

in a mould, resulting in a VCR of 3. The heating phases at 180°C were 25 minutes 

long. After one week, a 5 mm wide strip was cut from each side of the foam cuboids 

to leave 10 x 90 x 90 mm or 20 x 90 x 90 mm samples. Thirteen samples were 

fabricated, six 10 mm thick and seven 20 mm thick. Two 10 x 90 x 90 mm and two 

20 x 90 x 90 mm samples of unconverted foam (R60RF) were cut from a monolith for 

comparative testing. 

Concentrated load compression testing (Instron 3369, fitted with a 50 kN load cell) 

was performed with a PP sheet placed un-bonded on top of each sample. The pad 

rested on a flat plate and a load was applied to the centre of the upper face with a 
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stud (Kipsta, aluminium football stud, 18 mm length) as shown in Figure 1. Pilot 

testing confirmed the efficacy of the setup for providing intermediate behaviour 

between compressing foam in isolation between two flat plates, and a stud and a flat 

plate. Following application of a small preload (approximately 1N), the pad was 

compressed and unloaded in a cycle to 60% of the foam thickness (6 mm and 12 

mm) at 3 mm/min. Energy absorbed was calculated as the difference between the 

area under the loading and unloading curve. 

 

Fig. 1 Compression test setup displaying foam sample, PP shell and stud used to apply a concentrated load 

    

Chan and Evans (1999) reported slightly lower Poisson’s ratios for auxetic foam 

under tension in comparison to compression. In this work, Poisson’s ratio was 

measured in tension to avoid issues with, i) contact surface friction when 

compression testing thin sheets (Allen et al., 2015b, Duncan et al., in press, Duncan 

et al. under review) and, ii) positioning and tracking pins in a small sample (cut from 

the sheet) under compression. After testing the pads, a sample of auxetic foam of 

each thickness and porosity was cut into three equal strips (resulting in 6 measuring 

10 x 30 x 90 mm and 6 measuring 20 x 30 x 90 mm in total) and cardboard was 

glued to the ends so they could be gripped (Fig. 2). Each sample was stretched at 10 
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mm/min (strain rate of 0.002 s-1) to 30% extension. Four pins in a 20 x 20 mm square 

in the face of the sample were filmed with a camera (JVC Everio Full HD resolution 

1920 x 1080 pixels) and Poisson’s ratio was obtained from linear regression of true 

lateral-strain vs true axial-strain data up to 10% extension. 

 

Fig. 2 Tensile test setup displaying pins used to measure Poisson’s ratio, Left) No extension and Right) 
Maximum extension   

3.2 Crash pad 

A 96 x 445 x 445 mm foam (R30FR) monolith was compressed in a mould with 

internal dimensions of 70 x 355 x 355 mm, to give a VCR of 2. Through-thickness 

compression was marginally higher to account for elongated cells in the rise 

direction. Following the methods of Duncan et al. (under review), through-thickness 

metal rods were used to help fit the foam into the mould, control in-plane 

compression and draw heat through the porous material (Fig. 3). A pad fabricated 
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without through-thickness rods was not produced for comparison, as it was 

challenging to evenly compress a large foam monolith into the mould without 

excessive creasing and folding.  

 

Fig. 3 Process used to fit the large foam sample into the mould, a) top view of mould half with holes for rods, b) 

top view of uncompressed foam with rods inserted, c) illustration of foam compression into mould and d) side 

view of mould containing compressed foam with through-thickness rods.   

The face of each half of the mould contained a grid of 36 holes, with a diameter of 

3.5 mm and an equal spacing of 50 mm (Fig. 3a). An equal number of rods with a 

diameter of 3 mm were inserted through the thickness of the uncompressed foam 

with 61 mm spacing (Fig. 3b). The rods passed through the corresponding holes in 

the two halves of the mould as they came together, helping to draw the foam into 

place (Fig. 3c and 3d). The heating phases at 180°C were 35 minutes long, with the 

rods removed after the first and not returned. The dimensions of the sample were 

measured after cooling and then seven days later, to confirm the foam was stable 

and had not expanded.  

Three 50 x 50 x 70 mm samples were cut from the converted foam with a bandsaw, 

corresponding to the centre, corner and centre of an edge (Fig. 4). Each sample was 

compressed (Instron 3367, fitted with a 5 kN load cell) three times between two flat 

plates along the longest dimension (70 mm) to 50% strain at 10 mm/min (strain rate 

of 0.002 s-1). Pins in the face of the sample were filmed with a camera (Sony 
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Handycam HFR-CX410 operating at 25 Hz) to obtain true strain (Fig. 5) in both 

directions. Two pins approximately midway up the sample and around 30 mm apart 

were used for true lateral-strain and four pins arranged in a rectangle around the 

centre were used for axial true strain. Poisson’s ratio was obtained from linear 

regression of the true lateral-strain vs true axial-strain data up to 50% compression.  

Density measurements of the samples were used to examine local variations in VCR 

and images of the foam were obtained with an optical microscope (Leica S6D) to 

examine cell structure. 

  

Fig. 4 a) Large (70 x 355 x 355 mm) sample of converted foam with samples removed and b) 50 x 50 x 70 mm 

samples cut from large sample of converted foam   

 



12 

 

Fig. 5 Compression test setup displaying pins used to measure Poisson’s ratio, Left) No compression and Right) 

Maximum compression 

4 Results 

4.1 Body Armour 

Fig. 6a show lateral-strain vs axial-strain from a tensile test of auxetic foam. 

Averaged across all 12 samples, mean Poisson’s ratio was -0.01 with a standard 

deviation of 0.13, confirming marginally auxetic behaviour. Fig. 6b and c shows 

example force-displacement curves for concentrated load compression tests of pads. 

The pads containing conventional foam exhibited an initial region of high stiffness, 

followed by a plateau region with evidence of densification towards maximum 

compression. In contrast, pads containing auxetic foam exhibited an extended region 

of quasi-linear stiffness up to approximately 50% compression of the foam, followed 

by a region of increasing stiffness. These results are consistent with those reported 

for quasi-static compression testing of conventional and auxetic foam between two 

flat plates (Lakes, 1987; Bezazi and Scarpa 2007). 
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Fig. 6 a) Strain-strain data for a tensile test on a 10 x 30 x 90 mm sample of R30RF auxetic foam, showing linear 

trend line used to obtain a Poisson’s ratio of -0.4 and b) Force-displacement relationship for concentrated load 

quasi-static compression on composite pads consisting of an R60RF foam sheet and 4 mm thick polypropylene 

shell 

Fig. 7 summarises peak force and energy absorbed for the concentrated load 

compression tests on the pads. Peak force was approximately 4 times higher for the 

thin auxetic pads compared to their conventional counterparts and approximately 5 

times higher for the thick auxetic pads than their conventional equivalents. For a 

given foam, the energy absorbed in the compression cycle increased with pad 

thickness. The thinner pads with auxetic foam absorbed around twice as much 

energy as their unconverted counterparts, while the thicker auxetic pads absorbed 

approximately 3 times more energy than their conventional equivalents. 
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Fig. 7 Concentrated load compression testing results, a) Peak force and b) Energy absorbed. Error bars 

correspond to one standard deviation either side.  

4.2 Crash barrier   

Fig. 8a shows compressive stress-strain curves for samples from the large foam 

conversion. The curves all show an extended quasi-linear region followed by 

progressive stiffening at approximately 30% compression, characteristic of auxetic 

foam (Lakes, 1987; Scarpa et al. 2005). The corner sample was slightly stiffer above 

approximately 20% compression, with maximum stress ranging from 13-16 kPa in 

comparison to 11-13 kPa for the edge and centre samples. Fig. 8b shows an 

example lateral true strain vs axial true strain curve for the centre sample from the 

large foam conversion. Poisson’s ratio was -0.078 ± 0.014 (mean ± standard 

deviation) for the corner sample, -0.013 ± 0.003 for the edge sample and -0.068 ± 

0.010 for the centre sample, indicating marginally auxetic behaviour. Density 

measurements confirmed a VCR of approximately 2 for all samples. Fig. 9 shows the 

conventional foam had a regular cell structure and all the converted foam samples 

had a re-entrant cell structure, characteristic of auxetic foam.  
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Fig. 8 a) Stress-strain relationship for quasi-static compression of 50 x 50 x 70 mm samples cut from the 70 x 

355 x 355 mm sample of converted foam and b) strain-strain relationship for the centre sample   

 

 

Fig. 9 Microscope images of cell structure for conventional foam and samples cut from the large conversion, Top 

left) conventional foam, Top right) Corner, Bottom left) Edge, Bottom right) Centre. The yellow scale line 

represents 1.5 mm 



16 

5 Discussion  

Composite pads - consisting of a sheet of auxetic foam and a semi-rigid shell – 

absorbed approximately 3 times more energy than their conventional equivalent, 

under quasi-static compression with a concentrated load. Auxetic pads were also 

stiffer with peak force approximately 5 times higher when compressed to 60% of the 

foam thickness, which will likely offer greater resistance to bottoming out under 

impact, as reported previously (Allen et al., 2015b, Duncan et al. in press, Duncan et 

al under review). These results show further potential for auxetic foam as an energy-

absorbing component in PPE for snow-sports, such as back or wrist protectors. 

Relatively low stiffness foam was used here and further work should aim to fabricate 

stiffer auxetic foam that is more representative of foam typically used in PPE.  

A modified thermo-mechanical conversion process - utilising through-thickness rods 

to provide greater control over in-plane compression - was applied to produce a 

relatively large sample (70 x 355 x 355 mm) of auxetic foam as an example crash 

pad. Analysis of samples taken from different locations in the pad showed relatively 

consistent stress-strain curves, densities and Poisson’s ratios, with a re-entrant cell-

structure throughout, indicating the new process can produce large quasi-

homogeneous monoliths of auxetic foam. The new process can now be applied to 

produce samples with different VCRs, as the amount of compression during 

fabrication can influence impact performance (Allen et al., 2015b). Despite the 

relatively large size of the example auxetic pad in comparison to samples typically 

reported in the literature, it was smaller than a snow-sport safety crash barrier. 

Future work will, therefore, apply the new technique to produce a full size crash pad 

with comparative testing against current products.  
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Low temperature performance is important for snow-sport safety devices and this 

needs careful consideration in further work investigating the application of auxetic 

foam. Different candidate foams should be investigated with a focus on identifying 

those with the most suitable working temperature range for snow-sports applications. 

EN1077 specifies snow-sports helmets to be acclimatised at both 20°C and -25°C 

prior to testing and a similar temperature range could be used as a starting point 

when characterising auxetic foam. Crash barriers will be repeatedly subject to 

extreme climate conditions on the mountain for extended periods of time, whereas 

body armour is typically worn underneath clothing where the minimum temperature 

should be higher. Future work should look towards identifying the most suitable 

candidate foams for specific applications.  

The work presented here has shown further potential for auxetic foam to be applied 

to snow-sport safety devices. Future work will apply the new conversion process to 

produce larger sized samples, while tailoring mechanical properties of the auxetic 

foam to specific applications. Fabrication of prototypes and impact testing for 

scenarios representative of snow-sport collisions is required. Impact testing of 

auxetic foam should be performed at temperatures typical of those where snow-sport 

is practiced and the effect of repeated loading should be investigated.  
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