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Effective surface-shear viscosity of an incompressible particle-laden fluid interface
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The presence of even a small amount of surfactant at the particle-laden fluid interface subjected to shear

makes surface flow incompressible if the shear rate is small enough [T. M. Fischer et al., J. Fluid Mech. 558,

451 (2006)]. In the present paper the effective surface shear viscosity of a flat, low-concentration, particle-laden

incompressible interface separating two immiscible fluids is calculated. The resulting value is found to be 7.6%

larger than the value obtained without account for surface incompressibility.
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I. INTRODUCTION

To minimize total interfacial energy, suspended particles

can self-assemble on the interface between two fluids [1]. The

structure and the dynamics of the particles at the interface

are controlled by their interaction, both direct (e.g., capillary,

steric, electrostatic, magnetic, van der Waals) and mediated

by the surrounding fluids (hydrodynamic), as well as by size

and chemical composition of the adsorbed particles. Both the

structure and the dynamics of the particles contribute to their

ability to stabilize particle-laden films, foams, and emulsions,

and to control the transfer of matter through the interface [2–4].

At macroscopic scales, the particle-laden fluid interface

can be viewed as a continuous infinitely thin fluid interface

with some effective static and dynamic properties, which

can be measured experimentally. Examples of static effec-

tive properties of particle-laden fluid interfaces are surface

tension [5], bending [6], and saddle-splay [7] elastic moduli.

Dynamic properties include, in particular, surface rheological

parameters [4].

The study of the surface rheology of particle-laden fluid

interfaces can provide new insight into their structure and

properties. At the same time, rheology of these systems poses

many experimental and theoretical challenges. This makes it

desirable constructing and investigating “model interfaces,”

which could be utilized as reference systems in well-defined

limits, such as the extremes of a purely Newtonian and purely

elastic interface.

The rheology of a particle-laden interface becomes purely

Newtonian when direct interparticle interactions are small,

which is the case when adsorbed particles are separated widely

enough. In this case effective surface shear and dilatational

viscosities arise due to viscous energy dissipation in the

surrounding bulk fluids. They can be calculated analytically

for the special case of the spherical particles having a solid-

fluid contact angle (between particles’ surface and fluid-fluid

interface) π/2, neglecting surface viscosity [8,9]. The results

can be used as a starting approximation for more complicated

systems in which the interparticle interactions of a different

nature cannot be neglected.

The presence of adsorbed surfactant film on an interface

introduces additional viscoelastic stresses. If the concentration

of surfactant is small, additional surface viscosity and elasticity

can be neglected. However, at small concentrations this case

does not reduce to the case of surfactant-free interface.

The presence of even small amount of surfactant results in

effective surface incompressibility if the shear rate is small

enough [10,11].

The effect of the incompressibility of the surface flow upon

the effective surface shear viscosity of a low-concentration

particle-laden interface is calculated in this paper.

II. MODEL

We consider the steady flow of a system of identical rigid

spherical particles of radius R adsorbed at the flat interface

between two incompressible fluids. We neglect gravity and

assume the interfacial tensions favor a contact angle π/2, so

that the particles are located with the equator coinciding with

the interfacial plane.

We suppose the interface to be macroscopically thin, having

surface tension high enough to keep interface flat in the

flow, and incompressible. These conditions correspond to

small shear rates which satisfy inequality Eqs. (40) and (41),

respectively.

We assume surface concentration of the adsorbed particles,

φ =
πR2N

A
, (1)

with N being the number of particle in area A, to be small, so

that the motion of any particle is not affected by other particles.

The energy dissipation rate in this system has two con-

tributions, dissipation in the bulk fluids, and the dissipation

at the interface between two fluids. We shall neglect surface

dissipation. This assumption can be expressed as Boussinesq

number, defined as the ratio of surface viscosity of the interface

to the viscosity of bulk fluids,

Bo =
ηs

(η1 + η2)R
, (2)

being small, Bo ≪ 1.

We assume both fluids 1 and 2 have the same densities,

ρ1 = ρ2 ≡ ρ, and shear viscosities, η1 = η2 ≡ η. We write

the equations of motion in a form valid for the entire fluid

domain as

∇ · σ = 0. (3)

The stress tensor σ has bulk and interfacial contributions,

σ = σ b + δ(z)σ s . (4)

The bulk stress tensor,

σ b = −pI + η[∇v + (∇v)T], (5)
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where v is velocity, p is pressure, I is unit tensor, yields Stokes

equations [12],

η∇2v = ∇p, (6)

∇ · v = 0. (7)

In Eq. (4), Dirac’s delta function δ(z) is used to localize

at the plane z = 0 the body force that arises from the jump

conditions at the fluid interface (see Ref. [13] and references

cited therein). We shall use the surface stress tensor in form

σ s = −�Is, (8)

� being surface pressure, Is = I − nn being surface projector,

where we have neglected viscous contribution and dropped

constant surface tension contribution since it does not produce

any body forces for the flat interface. The tangential stress

balance at the interface is

Is · (σ 2 − σ 1) · n − ∇s� = 0, (9)

where ∇s = Is · ∇ is surface gradient operator.

The above formulation corresponds to no-slip boundary

condition at the fluid interface. We further assume no-slip

boundary condition at the surface of the particles. Surface

continuity equation for incompressible interfacial flow reads

∇s · vs = 0. (10)

Note that the component of the fluid velocity normal to the

fixed interface should vanish,

n · vi = 0. (11)

We shall consider the shear flow in the system with the

motion of the fluid when unperturbed by both particles and a

fluid interface being described by the velocity field

v(0) = α · r, (12)

where the rate-of-strain tensor α is symmetric, traceless, and

constant. The applied rate-of-strain is supposed to be small

and the unperturbed pressure is taken to be zero.

It is well known that a shear flow distribution may be

decomposed into a symmetric shear and a rotation. By

considering the motion in an appropriately chosen uniformly

rotating rest frame, we need concern ourselves solely with

the dissipation associated with a symmetric shear. Taking into

account that the velocity at z = 0 is parallel to the interfacial

plane XY , and both bulk and interfacial flow is incompressible,

we can choose the symmetric rate-of-strain tensor to have the

form

α =

⎛

⎝

α 0 0

0 −α 0

0 0 0

⎞

⎠. (13)

The corresponding unperturbed velocity field is

v(0)
x = αx, (14a)

v(0)
y = −αy, (14b)

v(0)
z = 0. (14c)

The velocity, pressure, and surface pressure fields in

presence of the particles and the fluid interface will be,

respectively, written as

v = v(0) + v(1), (15)

p = p(0) + p(1), (16)

� = �(0) + �(1). (17)

The stress tensor can be decomposed as

σ = σ (0) + σ (1), (18)

where

σ (0) = −p(0)I + η[∇v(0) + (∇v(0))T] (19)

is the stress tensor of unperturbed flow, and

σ (1) = σ
(1)
b + δ(z)σ s, (20)

with

σ
(1)
b = −p(1)I + η[∇v(1) + (∇v(1))T], (21)

is the perturbation due to presence of particles and incom-

pressible fluid interface.

III. EFFECTIVE SURFACE SHEAR VISCOSITY

In order to find an expression for the effective surface shear

viscosity of the particle-laden interface, we shall compare

expressions for the rate of viscous dissipation calculated in

two ways. First, we consider the system as homogeneous,

having an effective continuum interface with effective surface

shear viscosity ηeff
s . Second, we consider the flow in presence

of particles explicitly. Equating the energy dissipation rate

in both cases will provide the expression for ηeff
s . In our

derivation we shall closely follow the idea of Einstein for

calculating the effective shear viscosity of a three-dimensional

dilute suspension of solid spherical particles [14,15] in a form

presented by Batchelor [16].

Consider a sphere of radius r0 and volume V0. The area of

the interface contained within this volume is

As = πr2
0 . (22)

The rate at which forces do work on the external boundary

A0 of volume V0 is

W =
∫

A0

(v(0) · σ · n)dA. (23)

In the case of an effective, continuum interface with effective

surface shear viscosity ηeff
s , this rate equals

W = W0 + 4ηeff
s α2As, (24)

where

W0 =
∫

A0

(v(0) · σ (0) · n)dA. (25)
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We now proceed to determine the rate in the case when

particles are explicitly accounted for. We have

W = W0 +
∫

A0

(v(0) · σ (1) · n)dA. (26)

The rates in both cases should be equal, therefore

4ηeff
s α2As =

∫

A0

(v(0) · σ (1) · n)dA. (27)

Following Batchelor [16], we transform the surface integral

over A0 to the volume integral over V0:

∫

A0

(v(0) · σ (1) · n)dA

=
∫

V0

((α · r) · (∇ · σ (1)) + α : σ (1))dV

−
∫

∑

Ap

[(α · r) · (σ (1) · n)]dA, (28)

where
∑

Ap
(. . .) is the sum of the surface areas of the particles

contained within volume V0. Using the equations of motion,

Eq. (3), and the relation

∫

V0

α : σ (1)dV =
∫

V0

2η[α : (∇ · v(1))]dV

= −
∫

∑

Ap

2η(v(1) · α · n)dA, (29)

valid due to the boundary condition v(1) = 0 at A0, we obtain

∫

A0

(v(0) · σ (1) · n)dA

=
∑

∫

Ap

[(α · r) · (σ (1) · n) − 2η(α : v(1)n)]dA, (30)

which has the same form as the expression given by Batche-

lor [16], except that the stress tensor now contains interfacial

part. The integral of the corresponding contribution over the

surface of a particle,

∫

Ap

(v(0) · σ s · n)δ(z)dA, (31)

has the form

− αR2

∫ 2π

0

�(1) cos 2ϕdϕ. (32)

As a result, the equality of the viscous energy dissipation

rates in two cases, Eq. (27), becomes

4ηeff
s α2As = −αR2N

∫ 2π

0

�(1)(R) cos 2ϕdϕ

+N

∫

Ap

[

(α · r) ·
(

σ
(1)
b · n

)

− 2η(α : v(1)n)
]

dA,

(33)

yielding the following expression for the effective surface

shear viscosity:

ηeff
s = −

φ

4πα

∫ 2π

0

�(1)(R) cos 2ϕdϕ +

+
φ

4πR2α2

∫

Ap

[

(α · r) ·
(

σ
(1)
b · n

)

− 2η(α : v(1)n)
]

dA.

(34)

This expression contains hydrodynamic fields evaluated at the

surface of a single particle, half-immersed at an incompressible

fluid interface and subjected to unperturbed shear flow given

by Eq. (14).

IV. RESULT

In order to obtain the value of the effective surface shear

viscosity, we need to calculate the integrals that enter Eq. (34).

For this, we need to know the hydrodynamic fields at the

surface of the particles. They can be obtained by solution of

hydrodynamic equations for a shear flow in the system with a

single adsorbed particle.

The details of the numerical solution using vector spherical

harmonics representation are given in the Appendix. As a result

of calculation, the effective surface shear viscosity is

ηeff
s = Kηeff

s0 , (35)

where

ηeff
s0 = 5

3
(η1 + η2)Rφ (36)

is the effective surface shear viscosity without account of the

interface incompressibility [9], and the coefficient K = 1.076.

In the rest of this section the conditions on the particle

concentration and shear rate are given under which the result

should be valid. They follow from the model assumptions

listed in Sec. II.

Concentration of particles has to be small:

φ ≪ 1. (37)

Lattice Boltzmann modeling of particle-laden flow with-

out account of incompressibility has demonstrated excellent

agreement of the effective surface shear viscosity with Eq. (36)

for the values of φ up to ∼ 0.15 [9].

On the other hand, surface shear viscosity of the fluid

interface can be neglected if it is small compared to the

effective surface shear viscosity due to particles. This gives

another condition on the concentration of particles:

φ ≫
ηs

ηR
. (38)

Several model assumptions require shear rate to be small.

First, Reynolds number has to be small to allow neglecting

inertial effects:

α ≪
η

ρR2
. (39)

Second, surface tension τ has to be large for the interface to

be flat:

α ≪
τ

|η1 − η2| R
. (40)
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Finally, surface compressibility κs has to be small for the

interface to be incompressible [10]:

α ≪
1

κsηR
. (41)

V. CONCLUDING REMARKS

The effective surface shear viscosity of a flat, low-

concentration, particle-laden incompressible interface sepa-

rating two immiscible fluids has been found to be 7.6%

larger than the value obtained without account for surface

incompressibility.

Fischer et al. [10] calculated the drag on a sphere immersed

and moving in an incompressible monolayer. On a monolayer

or membrane of low viscosity the translational drag on a half-

immersed sphere is 25% larger than the drag on a sphere

immersed in a free surface. The present study shows that the

effect of a low-viscosity monolayer on the effective viscosity

of the particle-laden fluid interface is less than on the drag

coefficient of a sphere. Nevertheless, it is not negligibly small

and may be detected experimentally.

The present result was obtained in assumption of an

infinite system size. The question remains open whether other

boundaries located at finite distance, which is the case for real

systems, influences the obtained value of the effective surface

shear viscosity.

We finally note that the result for the surface dilatational

viscosity of low-concentration particle-laden interfaces [9]

cannot be extended to the case of viscoelastic fluid interface

in the same way because the surface flow in this case is then

essentially compressible, which should be explicitly taken into

account.
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APPENDIX: HYDRODYNAMIC FIELDS

In this appendix we solve hydrodynamic equations for a

single particle at an incompressible interface between two

fluids in a shear flow given by Eq. (14). The general approach

to the motion of particles in the presence of an incompressible

fluid interface was developed by Blawzdziewicz and cowork-

ers Refs. [17–19]. To facilitate the solution, we will make use

of the symmetry of the problem and represent hydrodynamic

fields in vector spherical harmonics, and their two-dimensional

analog, vector polar harmonics.

1. Vector spherical harmonics

Vector spherical harmonics are an extension of the scalar

spherical harmonics for use with vector fields. Vector spherical

harmonics can be introduced in different ways [20–22]. Vector

spherical harmonics representation is convenient for solving

differential equations involving vector fields, such as equations

of hydrodynamics [23] or electrodynamics [21,24].

We follow Ref. [21] and define vector spherical harmonics

as

Ylm(θ,ϕ) = Ylmer , (A1a)

� lm(θ,ϕ) = r∇Ylm, (A1b)

�lm(θ,ϕ) = r × ∇Ylm, (A1c)

where l = 0, . . . ,∞, m = −l, . . . ,l, er , eθ , and eϕ are orts

in spherical coordinate system (r , θ , ϕ), and scalar spherical

harmonics Ylm(θ,ϕ) are defined as

Ylm(θ,ϕ) = (−1)m

√

(2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimϕ, (A2)

where

P m
l (x) =

(−1)m

2l l!
(1 − x2)m/2 d l+m

dx l+m
(x2 − 1)l (A3)

are associated Legendre polynomials [25].

2. Vector polar harmonics

To represent fields at a planar fluid interface we introduce

vector polar harmonics in a way analogous to vector spherical

harmonics:

ym(ϕ) = ym(ϕ)eρ, (A4a)

ψm(ϕ) = r∇ym(ϕ), (A4b)

where m = −∞, . . . + ∞, and

ym(ϕ) =
1

√
2π

eimϕ (A5)

are scalar polar harmonics.

Vector polar harmonics are related to vector spherical

harmonics on a z = 0 plane as

Ylm

(

π

2
,ϕ

)

= χlmym(ϕ), (A6a)

� lm

(

π

2
,ϕ

)

= χlmψm(ϕ), (A6b)

�lm

(

π

2
,ϕ

)

= −
i

m
ξlmψm(ϕ), (A6c)

where the quantities χlm and ξlm are defined by relations

Ylm

(

π

2
,ϕ

)

= χlmym(ϕ) (A7)

and

∂Ylm(θ,ϕ)

∂θ

∣

∣

∣

∣

θ=π/2

= ξlmym(ϕ). (A8)

The quantities χlm are explicitly given by formula

χlm =
(−1)(l−m)/2

2l

√

2l + 1

2

√
(l + m)!(l − m)!
(

l+m
2

)

!
(

l−m
2

)

!
, (A9)
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for even l + m, and are zero otherwise. The quantities ξlm are

explicitly given by formula

ξlm =
(−1)(l−m+1)/2

2l

√

2l + 1

2

× (l + m + 1)

√
(l + m)!(l − m)!

(

l+m+1
2

)

!
(

l−m−1
2

)

!
, (A10)

for odd l + m, and are zero otherwise.

3. Representation of hydrodynamic fields

The velocity field v(1)(r) is expanded in vector spherical

harmonics as

v(1)(r) =
∑

lm

[

v
(r)
lm (r)Ylm(θ,ϕ)

+ v
(1)
lm (r)� lm(θ,ϕ) + v

(2)
lm (r)�lm(θ,ϕ)

]

. (A11)

The pressure field p(1)(r), being scalar, is expanded in scalar

spherical harmonics:

p(1)(r) =
∑

lm

plm(r)Ylm(θ,ϕ). (A12)

The surface velocity field vs(r) is expanded in vector polar

harmonics as

vs(r) =
∞

∑

m=−∞

[

u(ρ)
m (r)ym(ϕ) + u(ϕ)

m (r)ψm(ϕ)
]

. (A13)

The surface pressure field �(1)(r) is expanded in scalar

polar harmonics:

�(1)(r) =
∞

∑

m=−∞
�m(r)ym(ϕ). (A14)

4. Differential operators

This subsection presents explicit expressions for the differ-

ential operators used in subsequent derivation.

The expressions for the gradient of the scalar field, the

divergence of the vector field, and the curl of the vector field,

expanded in vector spherical harmonics, are [21]

∇p(r) =
∑

lm

[

∂plm(r)

∂r
Ylm(θ,ϕ) +

plm(r)

r
� lm(θ,ϕ)

]

,

(A15)

∇ · v(1)(r) =
∑

lm

[

∂v
(r)
lm (r)

∂r
+

2

r
v

(r)
lm (r) −

l(l + 1)

r
v

(1)
lm (r)

]

×Ylm(θ,ϕ), (A16)

∇ × v(1)(r) =
∑

lm

{

−
l(l + 1)

r
v(2)(r)Ylm(θ,ϕ)

−
[

∂v(2)(r)

∂r
+

1

r
v(2)(r)

]

� lm(θ,ϕ)

+
[

−
1

r
v

(r)
lm (r)+

∂v(1)(r)

∂r
+

1

r
v

(1)
lm (r)

]

�lm(θ,ϕ)

}

,

(A17)

where

∑

lm

(· · · ) ≡
∞

∑

l=0

l
∑

m=−l

(· · · ). (A18)

Consequently, the Laplacian of a divergence-free vector field

is

∇2v(1)(r)

= −∇ × [∇ × v(1)(r)]

=
∑

lm

{

−
l(l + 1)

r

[

v
(r)
lm (r)

r
−

∂v
(1)
lm (r)

∂r
−

v
(1)
lm (r)

r

]

Ylm(θ,ϕ)

−
[

1

r

∂v
(r)
lm (r)

∂r
−

∂2v
(1)
lm (r)

∂r2
−

2

r

∂v
(1)
lm (r)

∂r

]

� lm(θ,ϕ)

+
[

∂2v
(2)
lm (r)

∂r2
+

2

r

∂v
(2)
lm (r)

∂r
−

l(l + 1)

r2
v

(2)
lm (r)

]

�lm(θ,ϕ)

}

.

(A19)

The surface gradient of a scalar field and the surface

divergence of a vector field are expanded in polar harmonics

as

∇s�
(1)(r) =

∞
∑

m=−∞

[

∂�m(r)

∂r
ylm(ϕ) +

�m(r)

r
ψ lm(ϕ)

]

,

(A20)

∇s · v(1)
s (r) =

∞
∑

m=−∞

[

∂v
(ρ)
m (r)

∂r
+

1

r
v(ρ)

m (r) −
m2

r
v(ϕ)

m (r)

]

ym.

(A21)

5. Boundary conditions

The boundary conditions at infinity v(1)(∞) = 0 and

p(1)(∞) = 0 can be represented as

v
(r)
lm (∞) = 0, (A22a)

v
(1)
lm (∞) = 0, (A22b)

v
(2)
lm (∞) = 0, (A22c)

plm(∞) = 0. (A22d)

At particle surface we have v(R) = 0, which corresponds

to v(1)(R) = −v(0)(R), or

v(1)
x (R) = −αx, (A23a)

v(1)
y (R) = αy, (A23b)

v(1)
z (R) = 0. (A23c)

These conditions are equivalent to

u
(r)
2,±2(R) = −2

√

2π

15
αR, (A24a)

u
(1)
2,±2(R) = −

√

2π

15
αR, (A24b)

u
(2)
2,±2(R) = 0, (A24c)

u
(r,1,2)
l,m (R) = 0 (for other values of l and m). (A24d)
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6. Surface continuity equation

By means of Eq. (A21) for surface divergence of a velocity

field, surface incompressibility condition Eq. (10) is equivalent

to the relations

∂v
(ρ)
m (r)

∂r
+

1

r
v(ρ)

m (r) −
m2

r
v(ϕ)

m (r) = 0,

m = −∞, . . . , + ∞. (A25)

Writing the surface velocity as

vs(r) =
∑

lm

{

χlmv
(r)
lm (r)ym(ϕ)

+
[

χlmv
(1)
lm (r) −

i

m
ξlmv

(2)
lm (r)

]

ψm(ϕ)

}

, (A26)

we can represent surface divergence of a velocity field as

∇s · vs(r) =
∑

lm

{

χlm

[

∂v
(r)
lm (r)

∂r
+

1

r
v

(r)
lm (r)

−
m2

r
v

(1)
lm (r)

]

+ ξlm

im

r
v

(2)
lm (r)

}

ym(ϕ). (A27)

The boundary conditions at the fluid interface thus become

∞
∑

l=|m|

{

χlm

[

∂v
(r)
lm (r)

∂r
+

1

r
v

(r)
lm (r) −

m2

r
v

(1)
lm (r)

]

+ ξlm

im

r
v

(2)
lm (r)

}

= 0. (A28)

7. Bulk continuity equation

Since unperturbed flow satisfies the equation ∇ · v(0)(r) =
0, bulk continuity Eq. (7) yields

∇ · v(1)(r) = 0. (A29)

Using Eq. (A16) for the divergence of the vector field expanded

in vector spherical harmonics, the continuity equation can be

represented as

∂v
(r)
lm (r)

∂r
+

2

r
v

(r)
lm (r) =

l(l + 1)

r
v

(1)
lm (r),

(A30)
l = 0, . . . ,∞, m = −l, . . . ,l.

8. Stokes equations

The equations of motion, Eq. (3), with the stress tensor

given by Eq. (4),

η∇2v(r) = ∇p(r) + δ(z)∇s�(r), (A31)

yield the equations for the perturbation fields only:

η∇2v(1)(r) = ∇p(1)(r) + δ(z)∇s�
(1)(r). (A32)

We will write these equations in vector spherical harmonic

representation.

We write the following expansions of the surface

(Marangoni) force,

f(r) = −∇�(1)(r), (A33)

into vector (polar and spherical) harmonics:

f(r) =
∞

∑

m=−∞

[

f (ρ)
m (r)ym(ϕ) + f (ϕ)

m (r)ψm(ϕ)
]

, (A34)

δ(z)f(r) =
∑

lm

[

f
(r)
lm (r)Ylm(θ,ϕ)

+ f
(1)
lm (r)� lm(θ,ϕ) + f

(2)
lm (r)�lm(θ,ϕ)

]

. (A35)

Taking into account that

∫ 2π

0

ym(ϕ) · Y∗
lm

(π

2
,ϕ

)

dϕ = χlm, (A36a)

∫ 2π

0

ψm(ϕ) · �∗
lm

(π

2
,ϕ

)

dϕ = m2χlm, (A36b)

∫ 2π

0

ψm(ϕ) · �∗
lm

(π

2
,ϕ

)

dϕ = imξlm, (A36c)

we obtain the following relations:

f
(r)
lm (r) =

χlm

r
f (ρ)

m (r), (A37a)

f
(1)
lm (r) =

m2χlm

l(l + 1)r
f (ϕ)

m (r), (A37b)

f
(2)
lm (r) =

imξlm

l(l + 1)r
f (ϕ)

m (r). (A37c)

Substituting Eq. (A14) in Eq. (A33), and using Eq. (A20), we

can write

f
(r)
lm (r) = −

χlm

r

∂�m(r)

∂r
, (A38a)

f
(1)
lm (r) = −

m2χlm

l(l + 1)r2
�m(r), (A38b)

f
(2)
lm (r) = −

imξlm

l(l + 1)r2
�m(r). (A38c)

Combining the above expressions, we obtain the following

form of Stokes equations:

−η
l(l + 1)

r

[

1

r
v

(r)
lm (r) −

∂v
(1)
lm (r)

∂r
−

1

r
v

(1)
lm (r)

]

=
∂plm(r)

∂r
+

χlm

r

∂�m(r)

∂r
, (A39a)

−η

[

1

r

∂v
(r)
lm (r)

∂r
−

∂2v
(1)
lm (r)

∂r2
−

2

r

∂v
(1)
lm (r)

∂r

]

=
1

r
plm(r) +

m2χlm

l(l + 1)r2
�m(r), (A39b)

η

[

∂2v
(2)
lm (r)

∂r2
+

2

r

∂v
(2)
lm (r)

∂r
−

l(l + 1)

r2
v

(2)
lm (r)

]

=
imξlm

l(l + 1)r2
�m(r). (A39c)
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9. Solution of hydrodynamic equations

We are solving the Stokes equations, Eqs. (A30) and (A39),

and surface continuity equation, Eq. (A28), with boundary

condition Eqs. (A22) and (A24).

By introducing functions Plm(r) satisfying plm(r) =
dPlm(r)/dr , we can write these equations in form

dv
(r)
lm (r)

dr
+

2

r
v

(r)
lm (r) −

l(l + 1)

r
v

(1)
lm (r) = 0, (A40a)

η
l(l + 1)

r

[

1

r
v

(r)
lm (r) −

dv
(1)
lm (r)

dr
−

1

r
v

(1)
lm (r)

]

+
d2Plm(r)

dr2
+

χlm

r

d�m(r)

dr
= 0, (A40b)

η

[

1

r

dv
(r)
lm (r)

dr
−

d2v
(1)
lm (r)

dr2
−

2

r

dv
(1)
lm (r)

dr

]

+
1

r

dPlm(r)

dr
+

m2χlm

l(l + 1)r2
�m(r) = 0, (A40c)

η

[

d2v
(2)
lm (r)

dr2
+

2

r

dv
(2)
lm (r)

dr
−

l(l + 1)

r2
v

(2)
lm (r)

]

−
imξlm

l(l + 1)r2
�m(r) = 0, (A40d)

∞
∑

l=|m|

{

χlm

[

dv
(r)
lm (r)

dr
+

1

r
v

(r)
lm (r) −

m2

r
v

(1)
lm (r)

]

+ ξlm

im

r
v

(2)
lm (r)

}

= 0, (A40e)

where l = 2, . . . ,∞, and m = ±2 due to boundary conditions
at the surface of the particle [Eqs. (A24)]. This is an infinite

system of Cauchy-Euler equations for functions v
(r)
lm (r), v

(1)
lm (r),

v
(2)
lm (r), Plm(r), and �m(r). By means of substitution r = et

it is equivalent to an infinite system of linear homogeneous
differential equations with constant coefficients. The differen-
tial operator of this system can be shown to be bounded [26];
therefore, we can employ the method of reduction [27] and
truncate the infinite system Eqs. (A40) at some value l = lmax.
The solution of the infinite system will then be given by a
limit of the solution of the finite system at lmax → ∞.

As a result, the solution of the system Eqs. (A40) with

boundary condition Eqs. (A22) and (A24) has the form

�m(r) =
∑

n

cm,n

rn
, (A41a)

v
(r)
lm (r) =

∑

n

c
(r)
l,m,n

rn
, (A41b)

v
(1)
lm (r) =

∑

n

c
(1)
l,m,n

rn
, (A41c)

v
(2)
lm (r) =

∑

n

c
(2)
l,m,n

rn
, (A41d)

plm(r) =
∑

n

c
(p)

l,m,n

rn+1
, (A41e)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y
 /

 R

x / R

FIG. 1. Streamlines of the interfacial flow (z = 0) near the

particle.

where

n = 2,3,5,7,9, . . . , (A42)

and the the values of the coefficients cm,n, c
(r)
l,m,n, c

(1)
l,m,n, c

(2)
l,m,n,

and c
(p)

l,m,n are provided by numerical calculation.

This solution corresponds to a shear flow around a particle

adsorbed at the incompressible fluid interface (see Fig. 1).

Velocity at large distance decays as 1/r2, but the prefactor

is greater due to incompressibility of the interfacial flow (see

Fig. 2).

10. Calculation of surface viscosity

In order to obtain the value of the effective surface shear

viscosity, we need to calculate the integrals that enter Eq. (34).

Substituting vector harmonic expansions of hydrodynamic

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

1 2 3 4 5

v
x
(1

)  /
 (

a
 R

)

x / R

FIG. 2. Perturbation velocity component v(1)
x at y = 0, z = 0 as

a function of the distance x from the center of the particle with

(solid line) and without (dashed line) account for incompressibility

of interfacial flow.
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 1.07

 1.08

 1.09

 1.1

 1.11

0  0.02  0.04  0.06  0.08  0.1

K

1 / lmax

FIG. 3. The coefficient K , defined by Eq. (35), as a function of

the truncation parameter lmax. Dashed line corresponds to quadratic

extrapolation, cross indicates the value of K at lmax → ∞.

fields given in Appendix A3, we obtain

∫ 2π

0

�(1) cos 2ϕdϕ =
√

2π�2(R), (A43)

∫

Ap

[(α · r) · (σ (1b) · n) − 2η(α : v(1)n)]dA

=
√

32π

15

{

v
(r)
2,2(R) + 2

[

v
(r)
2,2

]′
(R)

− 9v
(1)
2,2(R) + 3

[

v
(1)
2,2

]′
(R) − p2,2(R)

}

, (A44)

where the prime indicates differentiation with respect to r , and

the units are chosen such that η = 1, α = 1, R = 1.

Using the numerical solution described in Appendix A9,

we can calculate the values of the expression Eqs. (A43)

and (A44) and, consequently, the coefficient K , defined by

Eq. (35), as a function of the truncation parameter lmax (see

Fig. 3). Numerical calculation of the limit lmax → ∞ yields

K = 1.076.

11. Viscosity contrast

The above derivation used the assumption that the shear

viscosities of both bulk fluids are equal. In the case of different

viscosities the hydrodynamic fields still satisfy the same

equations and boundary conditions. Therefore, the velocity

field remains the same. Viscous dissipation in the domain

occupied by each bulk fluid will be proportional to the value

of corresponding shear viscosity; therefore, the result given by

Eq. (35) remains valid in the case of velocity contrast.
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