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ABSTRACT 

Antimicrobial Properties of Syringopeptin 25A and Rhamnolipids 

by 

Prerak T. Desai , Master of Science 

Utah State University , 2005 

Major Professor : Dr. Bart C. Weimer 

Department: Nutrition and Food Sciences 

111 

The increasing bacterial resistance to available antibiotics requires the search for 

new antibacterial compounds to be broadened. This study investigated the antimicrobial 

properties of two secondary metabolites from fluorescent pseudo monads -- syringopeptin 

25A, a lipodepsipeptide produced by Pseudomonas syringae pv . syringae , and a 

rhamnolipid mixture produced by Pseudomonas aeruginosa. The rate of antimicrobial 

action was determined by monitoring the rate of uptake of propidium iodide during 

exposure to the compounds . Inhibition was also confirmed by the microbroth dilution 

method to determine the MI Cs. Both the compounds inhibited growth of Gram-positive 

organisms, including Mycobacterium smegmatis , staphylococci, and listeria. Inhibition 

of spore germination was also notable. SP 25A inhibited two multiple antibiotic strains of 

Staphylococcus aureus subsp. aureus and Enterococcus faecalis , while RLs failed to do 



IV 

so, even at 60 µg/ml. Addition of the compounds together showed a synergistic activity 

against Listeria monocytogenes. Neither compound was toxic to human cells in vitro at 8 

µg/ml. 

It is postulated that both compounds exert their antimicrobial effect by forming 

pores in the bacterial cell membrane, but we did not observe a relation between 

membrane permeabilization and inhibition of growth in each case . At sub-MIC 

concentrations RLs did cause pores in the membrane of L. monocytogenes , while SP 25A 

did not. However , RLs did not inhibit cell growth , while SP 25A completely inhibited 

cell growth . 

To investigate these effects gene expression was monitored just before treating 

the cells with the antimicrobials , 30 min after treatment and 120 min after treatment. The 

gene expression profile was distinct when cells were treated with both the antimicrobials. 

SP 25A repressed genes related to cell division, intermediary metabolism, transcription , 

translation, and virulence genes. These effects were not produced when cells were treated 

with RLs, hence giving indications that even though both the antimicrobials may act on 

the same site (i.e. the cell membrane), the cellular response was different, which led to 

different phenotypes for growth. 

This work indicates that SP 25A holds promise for further development as a 

therapeutic agent and provides evidence that the proposed pore-forming model alone 

does not suffice to explain the mode of action of SP 25A. 

(105 pages) 
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CHAPTER 1 

INTRODUCTION 

Very few developments in the history of health science have had such a profound 

impact upon human life as the advances in controlling pathogenic microorganisms since 

the discovery of penicillin. Though the application of antimicrobial agents preceded the 

understanding of their action , it was not until the late 19th and early 20th century that the 

work of Pasteur and Koch firmly established that microorganisms as the cause of 

infectious diseases and provided strategies that led to rational prevention and control 

strategies . The first group of compounds discovered to suppress bacterial infections were 

sulphonamides (2) . The success of sulphonamides along with the world wars stimulated a 

massive hunt for more effective antimicrobials . Florey and Chain (3) succeeded in 

isolating an impure but highly active preparation of penicillin and published their results 

in 1940. The enormous success of penicillin quickly diverted a great deal of scientific 

effort towards search of other antibiotics that culminated in the discovery or 

approximately 3,000 named antibiotics. Of these, 50 have met with clinical use and many 

fewer are regularly employed in therapy of infectious diseases (2). 

The initial success of those antibiotics is now marred with emergence of resistant 

organisms. Antibiotic resistance is a complex problem accelerated by the versatility of 

the microbes, overuse of antibiotics, and the lack of patients completing the prescribed 

dosage (1). Curable diseases such as gonorrhoeae and typhoid are becoming difficult to 



treat ( 4) due to resistance issues. However , the most troubling issue is the establishment 

of vancomycin resistant organisms ( 4) . The solution to the problem of antimicrobial 

resistance is very complex and a tough scientific issue. The primary path forward for 

keeping infectious agents at bay is to continuously discover new antimicrobial 

compounds. This path becomes easier if we better understand the mode of resistance and 

susceptibility . With the advances in genomics, this task become should become easier 

and faster. The knowledge obtained from system-wide genome analysis will help us in 

designing better molecules to inhibit microbes in multiple modes. 

References: 

1. Ang, J. Y., E. Ezike, and B. I. Asmar. 2004. Antibacterial resistance. Indian 
J.Pediatr. 71:229-39. 

2. Hammond S. M., P.A. L. 1978. Antibiotic resistance in microorganisms. In, 
Antibiotics and antimicrobial action , E Arnold London . Chapter 8 :53-63 

3. Ligon, B. L. 2004. Sir Howard Walter Florey--the force behind the development 
of penicillin . Semin. Pediatr. Infect. Dis. 15: 109-14. 

4 . Richet, H. M., J. Mohammed, L. C. McDonald, and W.R. Jarvis. 2001. 
Building communication networks: international network for the study and 
prevention of emerging antimicrobial resistance. Emerg. Infect. Dis. 7:319-22. 
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CHAPTER2 

LITERATURE REVIEW 

Molecular mechanisms of antibiotic action 

The word antibiotic brings together a varied group of compounds with little in 

common except for their antimicrobial activity. Hence , it is not surprising that they 

prevent the growth of susceptible bacteria by different molecular mechanisms . The five 

major mechanisms by which the antibiotics attack bacterial cells are (25, 35, 40) : 

1. Blocking steps in cell wall synthesis. This group is exemplified by penicillin , 

cephalosporin, cycloserine , and vancomycin. These antibiotics interfere with the 

biosynthesis of peptidoglycan and damage its cross linked macromolecular structur e 

which can arrest growth and kill the bacteria. 

2. Permeabilizing cell membrane. Polymyxin , tyrocidin , and va linomycin are examples 

of this mode of action. When cells are treated with lethal doses of these antibiotics 

they interact with the components of cell membrane , probably proteins , and induce a 

lesion in the cell membrane hence impairing its ability to act as a semi permeable 

barrier between the cell and its environment causing the cell components to leak out. 

3. Inhibition of nucleic acid function. This group has examples including rifampicin , 

actinomycin D, and acridines . These compounds interfere at various stages 

(nucleotide biosynthesis, polymerization of nucleotides) of DNA replication and 

ultimatel y cause loss of gene expression , which is fatal to bacterial cells . 

3 
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4. Inhibition ofprotein synthesis. For example streptomycin, tetracyclines , and 

chloramphenicol are used that act in this mode. These compounds bind the subunits 

of ribosome and distort the ribosome enough to prevent normal codon anticodon 

interaction leading to either inhibition of protein synthesis or faulty protein synthesis. 

5. Inhibition of cellular metabolism. This is exemplified by sulphonamides. These 

compounds inhibit the synthesis of folic acid by competing with p-amino benzoic 

acid as a substrate for enzyme tetrahydropteroic acid synthetases that incorporates p­

amino benzoic acid into the folic acid molecule . 

Antibiotic resistance in microorganisms 

The development of microbial strains that are resistant to antibiotics is 

unfortunately an ever increasingly common phenomenon . Antibiotic resistance may be 

divided into two categories: 

Intrinsic resistance: Generally Gram-negative bacteria are more resistant to 

antibiotics than Gram-positive bacteria (4, 17, 35). This greater intrinsic resistance of 

Gram-negative bacteria to antimicrobial agents may depend upon the nonspecific 

permeability barrier presented by the outer membrane , preventing access of the antibiotic 

molecules to their active site ( 4, 17, 35). Some bacteria may be inherently resistant due 

to presence of various defense mechanisms like presence of antibiotic degrading 

enzymes, presence of antibiotic efflux mechanisms or the organism may altogether lack 

the drug target (4, 17, 35). 
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Acquired resistance: Overuse of antibiotics and consequent antibiotic selective 

pressure is thought to be the most important factor contributing to the organisms gaining 

antibiotic resistance (4, 17, 25, 35, 39). Mechanisms by which the microbes gain 

resistance may be due to spontaneo us mutations , transduction, transposons or conjugation 

(25) . Bernard Davis (1952) first outlined the possible biochemical mechanisms of drug 

resistance. They may be swnmarized as follows (4, 17, 35): 

1. Conversion of an active drug to an inactive derivative ( e.g. inactivation of P-lactam 

antibiotics by P-lactamases) . 

2. Enhancement of alternative metabolic pathways (e.g. the pathways responsible for the 

salvage of purin e and pyrimidine bases from nucleic acid catabolism) ; thereby 

allowing their reutilization into new nucleic acids . This may be used to circumvent 

the antibacterial activity of certain nucleic acid analogues. 

3. Reduction in physiological importance of the target site, for e.g. bacteria may 

overcome the antimicrobial action of sulphonamides by accumulating large amounts 

of PABA (Para amino benzoic acid) . 

4. Loss of cell permeability to a drug due to synthesis of an additional permeability 

barrier (if the antibiotic gains access through passive transport) or due to loss of a 

specific transport mechanism (i.e. if the antibiotic gains access through a particular 

transport mechanism). 

5. Modification of the antibiotic sensitive site ( e.g. resistance to erythromycin in several 

bacterial species depends on an alteration in a protein of the SOS ribosome subunit 

that leads to a reduced affinity of ribosomes for erythromycin). 



6. Active efflux of the antibiotic from the cytoplasm ( e.g. resistance to tetracycline in 

several Gram-positive as well as Gram-negative bacteria depends upon an ATP 

dependent efflux system present in the cytoplasmic membrane). 

6 

Antibiotic resistance is a global health problem and is increasing . With every new 

antimicrobial compound discovered or synthesized we are only a step ahead of microbes 

before they become resistant. Recent increases in bacterial and fungal infections , the few 

available antibiotics and the increasing resistance to the available antibiotics have 

resulted in a broadening of the search for new inhibitory compounds . 

Secondary metabolites from pseudomonads 
as potential antimicrobials 

Secondary metabolites from microbes are compounds produced and typically 

secreted into the environment during the stationary phase of growth , and so are not 

produced or required for growth (12, 30) . The physiology of stationary phase cells is 

adapted to restricted nutrients or another nutritional change, which allows the cell to shift 

metabolism leading to the production of these compounds. One can think of this phase as 

an environmental stress that result in changes in cellular metabolism that induces the 

production of new compounds that are known as secondary metabolites. Often these 

secondary metabolites are directed at inhibiting competing organisms that occupy the 

same niche to give the producing organism a selective advantage . There are two ways to 

increase ones competitive fitness in a 'tight' environment: self-improvement (increasing 

ones own ability to gather nutrients) , or by decreasing the fitness of ones competitors. 
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Siderophores and high-affinity nutrient uptake mechanisms are examples of how a cell 

can increase its supply of nutrients (12, 30). Antibiotics and bacteriocins are examples of 

how an organism can increase its supply of nutrients by crippling its competition (6, 12, 

30). 

Pseudomonads produce a variety of secondary metabolites that act as phytotoxins 

or antimicrobial/antifungal agents (6, 12, 30) (Table 2.1 ).Pseudomonads produce a wide 

spectrum of chemically distinct and biologically active compounds that inhibit other 

microbes. Among the most well characterized compounds are those produced by plant 

pathogen Pseudomonas syringae and opportunistic pathogen Pseudomonas aeruginosa . 

This study would be focusing on two compounds; syringopeptins produced by P. 

syringae pv . syringae and rhamnolipids produced by P. aeruginosa owing to very 

promising results obtained in the preliminary studies. 

Syringopeptins 

Syringopeptins (SPs) are a class of cyclic peptides substituted with fatty acids 

known as cyclic lipodepsipeptides that are produced by several strains of P. syringae pv . 

syringae. Currently , five different syringopeptins have been identified that vary in their 

fatty acid chain length and number and composition of amino acids in the peptide moiety 

(2, 3, 6, 13, 15, 16, 19, 23, 43). Syringopeptins contain either 22 or 25 amino acids 

depending upon the specific bacterial strain from which it was purified. Often the N­

terminal (2, 3-dehydro-2-aminobutyric acid) is acylated with either 3-hydroxydecanoic or 
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3-hydroxydodecanoic acid (5, 6, 24). An eight-member lactone ring is formed due to the 

ester bond between allothreonine and C-terminal tyrosine (5, 6, 24). A high percentage of 

hydrophobic amino acids are found in syringopeptins and it has been determined that the 

peptide moiety is primarily composed of D-amino acids (5, 6, 24). The peptide sequence 

of the syringopeptins may vary from strain to strain (5, 6, 24). 

The conformation is characterized by three structural regions: 1) a loop including 

the residues from Pro2 to Val6, 2) a helicoidal zone including the residues from Ala8 to 

Alal 5, and 3) the lactone ring including Thrl 8 to Tyr25. This three-dimensional 

conformation likely leads to changes in the membrane environment as discussed later in 

this review (31) (Fig . 2.2) . Primarily , it is a phytotoxin and functions as a virulence factor 

for P. syringae by playing a major role in inducing necrosis in plant cells (6). Studies 

with knock out mutants have shown that organisms deficient in SP production are less 

virulent, though some diseases may also occur in its absence ( 18). It has the ability to 

cause electrolyte leakage by forming pores in plant plasma membranes , thereby 

promoting transmembrane ion flux that leads to necrotic symptoms (23). It also displays 

biosurfactant properties with a critica l micelle concentration of 0.9 mM for SP 25A and 

0.4 mM for SP 22A, which may aid in the spread of organisms on the plant surface (6, 

21). 

Though the antimicrobial properties of this compound have yet to be fully 

assessed, preliminary studies show promising results to inhibit many different bacteria. 

Initial studies found these compounds inhibit Gram-positive bacteria at micromolar 



concentrati ons, with the MIC values ranging from about 1.5 to 37 µg/ml for various 

organisms (Table 2.2) . 

Little information about the mechanism is published describing the mode of 

action of the SPs against bacteria , but the initial studies indicate that SPs form pores in 

model membranes (3, 21, 23, 31, 43). It has been predicted that the SP molecule first 

adsorbs onto the cell membrane with the hydrophobic acyl chain inserted between those 

of the phospholipids of eel l membran e, while the hydrophobic linear peptide portion and 

the hydrophilic cyclic moiety remain folded as they are in solution . Presumably , the 

adsorbed monome rs form aggregates that eventually form the pore, since more than one 

monomer is required to form a pore (14, 21) . After forming aggregate s the hydrophobic 

portion unfolds and aligns with the lipid tails spanning the membran e that causes the 

formation of a pore. This pore formation is voltage dependent as observed in plan ar lipid 

membranes (21) . Once the pore is formed , the cell would loose its permeability barrier 

and ultimately lead to cell death . 

Rhamnolipids 

Rhamnolipids (RLs) are biosurfactants produced by several strains of 

Pseudomonas aeruginosa (1, 7, 8, 12, 20, 30, 32, 33, 38). What makes these compounds 

interesting is that it also shows antimicrobial activity the potential applications of which 

could be enormous if they inhibit many types of bacteria (1, 7, 20) . RLs are often a 

mixture of various homologues , depending upon the strain and carbon source provided 

9 



during growth (33). Eleven different homologues have been identified in cultures of 

P. aeruginosa (20) (Fig . 2.3). The physiological role of a specific RL is not well 

understood , but since they have very good surface active properties they may: 

1. Emulsify hydrocarbons or hydrophobic substrates making them available for cell 

metabolism (28, 36). 

2. Help the cells in swarming motility under nutrient limitations (28) . 

3. Cripple the competing organisms for nutrients by the virtue of it antimicrobial 

activity (1, 7, 20). 

10 

4. They may play a role as a virulence factor (34). In vivo RLs prevent phagocytosis of 

the organism by macrophages by bringing about structural changes in the 

macrophages so they cannot associate with the bacteria (34). 

RLs have an array of applications due their versatility in bioactivity. A few of 

them are as follows: 

1. They are useful in bioremediation and bi ode gradation of organic compounds , both 

aliphatic and aromatic. Addition of RLs to pure cultures of bacteria increase 

biodegradation of hexadecane , octadecane, n-paraffin, phenanthrene, tetradecane , 

pristine and creosote (32) . This phenomenon could be due to their surface-active 

properties since they increase the solubility of the hydrocarbons and hence make them 

readily available to the degrading cells , or they may increase the surface 

hydrophobicity of the cells by removing lipopolysaccharides from the cell wall 

improving the association of more hydrophobic substrates with the cells (32). 



2. They have high affinity for a variety of toxic metals including cadmium , copper , 

lead , zinc, and lanthanum. This property makes them a potential flushing agent in 

sites where bioremediation may be too slow or infeasible (32). 

3. They are effective against zoosporic plant pathogens, such as Pythuim 

aphonidermatum, Phytophthara capsici , and Plasmopara lactucae-radicis . In their 

pure forms RLs render the zoospores nonmotile and bring about their lysis in Jess 

than a minute at a concentration of 5-30 µg/ml (32) . Hence , they show potential for 

biological control , too . 

4. Due to their low toxicity ready biodegradability and excellent surface--active 

properties they could be of great value in the cosmetic industry ( 42). 

The antibacterial activity of RLs has not been fully explored nor exploited for 

commercial value. These compounds are active against both Gram-positive as well 

Gram-negative bacteria (1, 7, 20). The target for the action of rhamnolipids is the cell 

envelope (1), presumably the physicochemical properties of the compound are 

responsible for the permeabilization effect on the cell surface . 

Use of high density oligonucleotide microarrays 
to determine cellular response to inhibitors 

The entire genome of several bacteria are fully sequenced , annotated , and 

available in the public domain that can be used to assess the global impact of bacterial 

inhibitors on gene expression. This along with the latest developments in high density 

oligonucleotide microarrays represents a very powerful resource to understand the 

11 
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differential gene expression patterns in bacteria when subjected to different antimicrobial 

compound treatments (22, 41, 44 ). By analyzing differential gene expression patterns of 

bacteria when subjected to sub-MIC doses of antimicrobials , we have an opportunity to 

uncover adaptive mechanisms employed by bacteria at the genomic level to overcome the 

antimicrobial stress and also look at various secondary cellular responses. Stress 

responses thus induced can be used to detect and characterize the mode of action of these 

antimicrobials (9). In contrast to using single copy gene fusions (9) use of high density 

oligonucleotide anays are better tools to understand the stress responses and when 

combined to various pathway mapping tools like KEGG (26, 37) or Metac yc (27) , they 

confer an opportunity to uncover the precise metabolic shifts leading to the expression of 

a particular phenotype . 

In context to the antimicrobials under investigation here , evidence is mounting 

that for poreforming peptides, membrane permealization may not be the only mechanism 

by which they inhibit bacteria (10). They may flocculate intracellular contents , alter 

cytoplasmic membrane septum formation , inhibit cell wall synthesis, bind nucleic acids , 

inhibit protein synthesis or inhibit enzymatic activity (10). Also , it has been observed that 

the antimicrobial activity may or may not correlate with the pore forming activity of the 

peptide because evidence is available that bacteria can repair their cytoplasmic membrane 

even when treated with lethal concentrations of the antimicrobial ( 45) giving conclusive 

evidence that alternate mechanisms of cell death may be involved. Hence, in the light of 

recent discoveries it becomes necessary to investigate the alternate mechanisms of the 



bactericidal effects of these compounds . Use of whole genome expression studies 

currently seems to be the best alternative to achieve that. 

13 

In light of the need for new antibiotics and the broad indu stria l applications of SPs 

and RLs, we have selected them for further study. We will use these compounds to 

determine their potential to inhibit foodborne illness organisms as well as other pathogens 

important to the agricultural sector. 

Hypothesis 

Syringopeptin 25A (SP 25A) and rhamnolipids (RLs) inhibit many species of 

bacteria and their mode of inhibitions are distinct from each other. 

The above hypothesis would be verified by realizing the following objectives. 

Objectives 

1. Screen candidate compounds for microbial inhibition and determine the minimum 

inhibitory concentration for these compounds against selected bacteria 

2. Based on results from the first objective, one organism will be used to determine 

the cellular response to sub-MIC levels of SP 25A and RLs using gene expression 

arrays. 

Completion of these objectives will demonstrate the utility of a two new classes of 

natural antibiotics to inhibit bacteria found in food and the environment. Specific 

commercial applications of these compounds may be possib le , but demonstration of those 
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applications is beyond the scope of this initial project. Use of gene expression arrays will 

offer insight into the mechanism of action and potential targets that are being inhibited by 

the compounds in the cell. Most importantl y, this study will determine the differences in 

the cellular response between two different classes of antibacterial compounds that are 

produced by pseudomonads to inhibit other bacteria. 
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Table 2.1 . Antimicrobial/antifungal secondary metabolites from pseudomonads. 

Toxin Pseudomonas species Chemical Class Reference 

Pyo Compounds P. aeruginosa Quinoline derivatives 8, 10 

Pseudomonic P. jluorescens Organic acid 8 
acid 

Pyrrolnitrin P. cepacia, Pyrrol derivatives 8, 10 
P. aureofaciens 

Pyoluteorin P. aeruginosa Pyrrol derivatives 10 

Azomycin P. jluorescens Pyrrol derivatives 10 

Rhamnolipids P aeruginosa Glycolipids 8, 10, 11 

Tabtoxin P . .syringae Monocyclic ~-lactam 8, 9 

Phaseolotoxin P . .syringae Sulfodiaminophosphinyl 8, 9, 10 
peptide 

Sperabillins P. jluorescens Substituted peptides 10 

2-n-hexyl-5-n- Pseudomonas spp . Substituted resorcinols 8, 10 
pentyl resorcinol 
& 5-n-heptyl 
resorcinol 

2,4 diacetyl P. jluorescens Substituted Phenols 8, 10 
phloroglucinol 

Obafluorin P. jluorescens ~-Jactones 10 

Tropolone Pseudomonas spp . Tropolone 10 

7-hydroxy P. cepacia Tropolone derivative 10 
tropolone 

Thiotropocin P. seudomonas spp . Tropolone derivative 10 

Phosphonomycin P. syringae Unknown 10 

Syringomycin P. syringae , Lipodepsinonapeptide 9, 10 
P. fuscovaginae 
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Pseudomycin P. syringae , Lipodepsinonapeptide 9, 10 
P. fuscovaginae 

Syringotoxin P. syringae , Lipodepsinonapeptide 9, 10 
P. fuscovaginae 

Syringostatin P syringae , Lipodepsinonapeptide 9, 10 
P. fitscovaginae 

Syringopeptin P syringae Lipodepsipeptide 9,10 

Tolaasin P tolaasii Lipodepsipeptide 9 

Viscosin P jluorescens Lipodepsipeptide 9 
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Table 2.2. Reported MIC values for SP 22A and SP 25A against selected organisms. 

MIC (~M2 

Organism Reference 

SP22A SP 25A 

Bacillus megaterium 1.56 3.12 (29) 

Bacillus globigii spores 2.08 2.08 Weimer, unpublished data 

Rhodococcus fascians 6.25 12.50 (29) 

Micrococcus luteus 12.50 37.50 (29) 

Listeria innocua 6.25 4.17 Weimer, unpublished data 

Salmonella enteridis 6.25 8.33 Weimer, unpublished data 

Mycobacterium smegmatis 1.63 NA (11) 



23 

Table 2.3. MIC values of rhamnolipids against selected organisms . 

Organism MIC RL Mixture References 
(µg /ml) 

Bacillus cereus var mycoides A TCC 11778 64 RL47T2 (7, 20) 
4 RLLB1 

Enterobacter aerogenes CECT 689 4 RLLB1 ( 1, 7) 
>256 M7 

Staphylococcus aureus ATCC 6538 8 RLLB1 (1, 7) 
128 M7 

Alternaria alternata 4 RLLB1 (7) 

Proteus mirabilis CECT 170 8 RLLBI (7) 

Alcaligenes faecalis 32 M7 (1) 

Serratia marcescens 16 M7 ( 1, 20) 
8 RL47T2 

Klebsiella pn eumoniae CECT 17832 0.5 RL47T2 (20) 

Clostridium perfringens 256 M7 (1, 20) 
128 RL47T2 

Escherichia coli 32 M7 (1 , 20) 
64 RL47T2 
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SP22 
CH3(CH2)6~CH(OH)CH2CCrOhb-Pro-Val-Val-Ala-Ala-Val-Val-Ohb-Ala-Val-Ala-Ala-Dhb--aThr-Ser-Ala ... Dhb 

I I 
Tyr-Oab-Dab-Ala 

SP25 
CH

3
(CH2)uCH(OH)CH2CO-Dhb-Pro-Val-Ala-Ala-Val-Lcu-Ala-Ala-Ohb-Val-Ohb-Ala-Val-Ala-Ala-Dhb-aThr-Ser-Ala-Val 

I I 
Tyr-Oab-Oab-Ala 

Fig . 2.1. Structures of two syringopeptins with an amino acid backbone of 22 and 25 
residues (6) . The fatty acids can either be 3-hydroxydecanoic or 3-hydroxydodecanoic 
acid . Abbreviations for non-standard amino acids are: Dhb is 2, 3-dehydroaminobutyric 
acid ; aThr is allothreonine. 
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Fig . 2.2 Three-dimensional structure of SP 25A obtained by distance geometry 
calculations from NMR analysis of the syringopeptin in D20 at pH 3.6 (31). 

25 
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Fig. 2.3 . Generalized structure of a rhamnolipid. The carbon chain length may be n = 4, 6, 
8 of C8, C 10, Ct2- In dirharnnolipids, R1 is Hor 3-hydroxydecanoate and R2 is L 
rharnnosyl (1 ). 
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CHAPTER 3 

ANTIMICROBIAL SPECTRUM OF SP 25A AND RL'S AGAINST BACTERIA' 

Abstract 

Secondary metabolites from microorganisms are common sources of antibiotics. 

However, recent increases in bacterial infections, the decreasing availability of potent 

antibio tics and the increasing bacterial resistance to available antibiotics requires the 

search for new antibacterial compounds to be broadened. In this study we investigated the 

antimicrobial properties of two secondary metabolites from fluorescent pseudomonads -

syringopeptin 25A (SP 25A), a lipodepsipeptide produced by Pseudomonas syringae pv . 

syringae , and a rhamnolipid mixture, which contained two primary types of glycolipids 

produced by Pseudomonas aeruginosa. Human pathogens, food spoilage organisms, and 

fermentative bacteria from both Gram-positive and Gram-negative classes were tested to 

determine the inhibitory potential of these compounds. The rate of antimicrobial action 

was determined by monitoring the rate of uptake of propidium iodide during exposure to 

the compounds. Both compounds compromised the membrane of all the Gram-positive 

bacteria with the rhamnolipids acting significantly faster (3-433 times depending upon 

the organism tested) (p<0.05) than SP 25A. Inhibition was also confirmed by the 

microbroth dilution method to determine the minimum inhibitory concentration (MIC) . 

Both compounds inhibited all the Gram-positive organisms tested , as well as 

1 Coauthore d by Prerak T. Desai , Patricia J. Champine , and Bart C. Weimer. 
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Flavobacterium devorans with MICs ranging from 3 µg/ml to 32 µg/ml. Both 

compounds inhibited Mycobacterium smegmatis, Bacillus subtilis spores, and 

Clostridium sporogenes spores with an MIC of 4 µg/ml. Interestingly, these compounds 

acted synergistically to inhibit Listeria monocytogenes, thereby lowering the MIC for L. 

monocytogenes. No toxicity was observed during exposure of these compounds to mouse 

enteroendocrine, human embryonic kidney , and human lung fibroblasts. Taken together 

these data support the conclusion that both of these compounds have potential for use as 

antibacterial compounds which needs to be confirmed with in vivo studies. 

Introduction 

The ability to contro l infections due to microorganisms has been one of the single 

most profound developments in the history of health science. The initial success of 

antibiotics is now maned by the emergence ofresistant organisms (4) . Antibiotic 

resistance is a complex problem exacerbated owing to the versatility of the microbes, 

overuse of antibiotics, and the lack of patients completing the prescribed dosage ( 4). 

Among many issues of antibiotic resistance, one of the most troubling issue is the 

establishment of vancomycin resistant organisms (36). The solution to this complex 

problem remains to be identified, but discovery of new compounds is essential in solving 

this issue. 

One source of new antibiotics is the secondary metabolites of bacteria with 

different modes of action. The antimicrobial potential of secondary metabolites of 

fluorescent pseudomonads have been studied extensively (6, 11, 27). Among the most 
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well characterized compounds are those produced by Pseudomonas syringae and 

Pseudomonas aeruginosa . The ability of these organisms to inhibit competing 

microorganisms via a myriad of mechanisms has inspired the search for new compounds 

from these and other pseudomonads (6, 11, 27). Many pathovars of P. syringae produce 

non-specific toxins ( e.g. syringomycin, syringopeptin , coronatine , phaseolotoxin , 

syringotoxin, and tabtoxin) that increase the virulence of the organism to the host plant 

(6) . Some of these toxins have antimicrobial and antifungal properties (6) which fuels 

their use as biocontrol agents (22) . The most promising antibacterial activity is shown by 

syringopeptins (SP) (6, 10, 26, 42) . In nature , SPs cause electrolyte leakage by forming 

pores in the plasma membrane of plant cells, thereby promoting transmembrane ion flux 

that leads to plant necrosi s (20). SPs also have biosurfactant properties with a low critical 

micelle concentration (0.4-0 .9 mM) (12) that may aid in the spread of the organisms on 

the plant surface (6, 19). Additionally SPs, along with syringomycin induce stomata! 

closure in plants , thereby preventing entry of other pathogens , which effectively reduces 

competition by other organisms on the plant surface (14) . 

SPs are cyclic lipodepsipeptide s and are produced by many strains of P . .5yringae 

pv. syringae (2, 16, 38, 42) . Current ly, five different SPs have been identified. They vary 

in the fatty acid chain length and number and composition of amino acids in the peptide 

moiety (2, 5, 6, 16, 21) . SPs contain either 22 or 25 amino acids with the N-terminal 

being acylated with either 3-hydroxydecanoic or 3-hydroxydodecanoic acid to 2, 3-

dehydro-2-aminobutyric acid (5, 6, 21). An eight-member lacton e ring is formed due to 

the ester bond between allothreonine and C-terminal tyrosine (5, 6, 21 ). A high 



30 

percentage of hydrophobic amino acids are found in SPs with the peptide being 

composed ofD-amino acids primarily (5, 6, 21) ; however, the peptide sequence of the SP 

varies from strain to strain (5, 6, 21) . 

The mechanism of bacterial inhibition by SPs is unknown , however , initial studies 

indicate that SPs form pores in the cell membrane (3, 19, 20, 28 , 40). It is hypothesized 

that SP molecules adsorb onto the cell membrane via the hydrophobic acyl chain inserted 

between the phospholipids in the membrane . Once the adsorbed monomers form 

aggregates of sufficient concentration , a pore is formed (12, 19). However , this mode of 

action remains to be proven , as does the minimum number of SP molecules required for 

pore form ation . 

P. aeruginosa is the epitome of opportunistic pathogens in humans, but the wide 

interest in this organism not only stems from this but also from its wide catabolic 

potential and the array of compounds with antibiotic activity that it produces (11 ). Cell 

free culture supernatants from P aeruginosa were extensively used in therapy of 

diphtheria, influenza and meningitis in the first quarter of the previous century, and since 

it exhibited enzymatic properties it was called pyocyanase (27) . Subsequently , nearly 50 

antimicrobial substances have been characterized from fluorescent pseudomonads ( 11 ). 

This study focused on the antimicrobial properties of rhamnolipids (RL), which 

are glycolipids produced by some strains of P. aeruginosa (7, 11, 29, 3 5). RLs are 

usually a mixture of various homologues , depending upon the strain and carbon source 

provided during growth (30). Eleven different RL homologues have been identified in 

cultures of P. aeruginosa (17) and consist of one or two moieties of rhamnose cova lently 
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linked to a 3-~ hydroxy acid, where the chain length of the acid is 8, 10, or 12 carbon 

atoms. In some cases they may also have 3-hydroxy decanoate linked to the former fatty 

acid via an ester bond. The physiological role of a specific RL is not well understood , but 

they are thought to aid in emulsifying hydrophobic substrates for cellular metabolism (24, 

34); aid the cells in swarming motility under nutrient limitations (24); cripple the 

competing organisms for nutrients by the virtue of the surfactant activity (1, 7, 17); and 

may act as a virulence factor (31 ). In vivo RLs prevent macrophage phagocytosis of the 

organism by bringing about structural changes in the macrophages so they cannot 

associate with the bacteria (31 ). The target for the action of RLs against other bacteria is 

the cell membrane (1 ), presumably the surfactant properties of the compound are 

responsible for the permeabilization effect on the cell surface. In this study we 

hypothesized that SPs and RLs inhibit a wide spectrum of bacteria without causing 

toxicity to mammalian cell lines. If true , these compounds may represent new options for 

anti bacterial therapy. 

Materials and Methods 

Purification of antimicrobials. Syringopeptin 25A (SP 25A) was produced and 

purified from Pseudomonas syringae pv . syringae Ml as described by Bidwai et al. (9). 

In brief, the culture was grown to stationary phase for 10 d standing culture at room 

temperature (-25°C). After collection of the supernatant SP 25A was extracted with 

acidified acetone, concentrated with a rotary evaporator, purified to homogeneity by 
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reverse phase HPLC, and lyophilized for storage at 4 ·c until further use . Purity and the 

molecular weight of the compound were verified by MALDI-TOF analysis at the Center 

for Integrated BioSystems (Logan, UT). 

Commercial RL samples were obtained as 25 .1 % aqueous solution (product JBR-

425 ; Lot#021004) from Jeneil Biotech , Inc. (Saukville , WI). The purity and molecular 

weight of the RLs were determined using MALDI-TOF at the Center for Integrated 

BioSystems . The relative concentrations via molar ratios between the two different 

rhamnolipid moieties (Decanoic acid , 3-[(6-deoxy-L-mannopyranosyl) oxy]-1-

(carboxymethy l) octyl ester , and Decanoic acid , 3-[(6-deoxy-2-0 (6-deoxy-L­

mannopyranosyl)-L-mannopyranosyl] oxy ]-1-( carboxymethyl)octyl ester) in the 

commercial rhamnolipid mixture were determined by 13C NMR as described by Sim et al. 

(39) . 

Determination of rate of antimicrobial action and the MICs against bacteria The 

antimicrobial action for each compound was initially determined by the rate of uptake of 

propidium iodide (PI) (Fluropure grade , Molecular Probes, Inc.; Eugene , OR) as 

previously described (18). In brief, all cultures were grown overnight in their respective 

optimal growth medium and temperature from freezer vials (Table 3 .1 ). Each culture 

was sub-cultured twice, harvested in mid log phase , washed with saline and adjusted to 

an OD600 of 0.25 in saline. PI, with an excitation wavelength of 535 and an emission 

wavelength of 617, was added to the culture suspension at a final concentration of 10 

µM. Each organism was treated with 50 µg/ml SP 25A and 60 µg/ml of the RL mixture 

in a final volume of 2.2 ml. The increase in fluorescence was measured with a Shimadzu 



33 

RF 1501 spectrophotoflurometer (Columbia , MD) at 15 s interval s for a maximum period 

of 120 min . Saline was added in place of SP 25A or RLs as a negative control . All 

inhibition experiments were done in two biological replicates. 

The rate of antimicrobial action was expressed as the inhibition rate (IR) (Eq. 1 ). 

The curve fitting was done using OriginPro Ver 7.0 (Natick , MA). 

IR = ((Log RFU/ (Time)) - C) / Time (when d Log RFU/ dT > 0) 

Where RFU = relative fluorescent units ; and C = Y intercept 

(Eq. 1) 

The minimum inhibitory concentration (MIC) for the organisms were determined 

by microbroth dilution method as prescribed by the National Committee for Clinical 

Laboratory Standards (NCCLS) (44). The microorganisms were prepared as described 

above and resuspended in their optimal growth media (Table 3 .1) to - 105 CFU/ml 

containing SP 25A at 2, 3, 4 , 5, 6, 7, 8, 16, 32 and 50 µg/ml in a total volume of 550 µI. 

RL concentrations of 2, 3, 4, 5, 6, 7, 8, 16, 32 and 60 µg/ml in a total volume of 550 µl 

were tested in a 48-well plate (Corning , NY) , unless otherwise noted. The plates were 

incubated in optimal growth conditions for the respective organism and monitored for an 

increase in OD6oo after 48 h by a Perkin-Elmer (HTS 7000) plate reader (Downers Grove , 

IL) . A positive control (inhibition of growth) using Polymyxin B (Sigma-Aldrich Cat# 

P0972) at 1000 µg /ml for all Gram-negative organisms, Penicillin G (Sigma-Aldrich 

Cat# P3032) at 1000 µg/ml for the Gram-positive organisms, Rifampicin (Sigma-Aldrich 

Cat# 3501) at 1000 µg/ml was used for M smegmatis, Enterococcusfaecalis and 

Staphylococcu s aureus . Negative controls (no inhibition of growth) were included using 

saline in the assay for each compound. The least concentration at which there was no 
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increase in OD over 48 h was reported as the MIC. Each MIC was determined in two 

biological replicates with triplicate tests per replication. The triplicates were averaged for 

each replicate reported. 

Synergistic activity between SP 25A and RLs was measured by exposing L. 

monocytogenes to RLs at a concentration of 0, 0.5, 1, 1.5, 3, and 6 µg/ml alone and in 

combination with 3 µg/ml SP 25A and monitoring PI uptake as previously described . The 

experiment was done in two biological replicates . 

Determination of cytotoxicity in cell culture. Toxicity of the two compounds to 

mammalian cells was assayed in cell culture using mouse enteroendocrine cells (STC-1) 

(37), human embryonic kidney cells (HEK 293; ATCC CRL-1573), and human lung 

fibroblasts (LL47 ; ATCC CCL-135) . Each cell line was subjected to SP 25A and RLs at 

the observed MIC (e.g. 4 µg/ml and 8 µg/ml) . The human embryonic kidney cells and 

hurnan lung fibroblasts were grown as per the ATCC recommendation, while the mouse 

enteroendocrine cells were grown as described by Vincent et al. (37). Media and sera 

were purchased from HyClone Laboratories (Logan, UT). All cells were grown in 10% 

fetal bovine serum (FBS). 

The number of total cells and dead cells were counted after 6, 24, and 48 h using 

a Nucleocounter Automated cell counting system (New Brunswick ; Edison , NJ). In brief , 

cells (STC - 200,000 cells/well , HEK 293 - 200,000 cells/well and LL47 - 100,000 

cells/well) were incubated with the appropriate medium for 24 h prior to addition of fresh 

media containing the antimicrobial compounds . After addition of the antimicrobial 

compound the cell cultures were incubated at 37°C with 5% CO2 for 6, 24, and 48 h. 
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Cells were harvested by trypsinization using 0.25% trypsin-EDT A for 2 min . The trypsin 

was neutralized by addition of 200 µl of serum containing fresh medium . The cells were 

harvested and transferred to 1.5 ml tubes , centrifuged (3-5 min at < l 00 x g), and 

resuspended in 200 µl of fresh medium. Subsequently , for total cell count 100 µl of the 

cell suspension was added to the Ly sis buffer (Reagent Al 00 in the starting kit (Cat No. 

Ml293-0020, New Brunswick Scientific) for 30 s, which was stabilized using 100 µl of 

Reagent B. A positive control of completely lysed cells by lysing all the cells with triton 

was used along with a negative control using sterile PBS (pH 7.4) . For dead cell counts 

100 µl of cell lysate was counted without use of lysis buffer or stabili zing buffer. All cell 

counts were obtained using the Nucleocounter automated cell counting system . Data were 

reported as the percent of cell death. The toxicity testing was done in two biological 

replicates with triplicate wells per replication . The triplicates wells per replication were 

averaged before reporting the replicate reading. 

Results and Discsussion 

Compound purity. After purification SP 25A was subjected to MALDI-TOF and 

HPLC analysis to confirm the purity of the fractionated compound. HPLC analysis 

revea led a single peak , as did MALDI TOF (Appendix A, Fig A l ). This single major 

peak had a molecular weight of 2,400.37 Da, which was in agreement with the reported 

size (33). 
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The commercial RL preparation was subjected to MALDI-TOF analysis and 13C 

NMR to determine the relative concentration and isoform content, respectively. MS 

analysis revealed Rhamnose-C 10-C 10 (MW = 503 .31) and Rhamnose-Rhamnose-C 10-

C10 (MW= 649.33) (Appendix A, Fig A2). These observations are in agreement with the 

product data sheet. NMR analysis demonstrated that the isoforms were present in an 

equimolar ratio. 

Bacterial inhibition by SP and RLs. It is thought that these compounds target the 

cell membrane, inducing lysis (6, 12, 25) . This study used PI, a membrane impermeant 

nucleic acid stain , as a probe to monitor cell membrane integrity during cellular exposure 

to both compound types (18). PI accumulation directly correlated to increasing exposure 

time for each compound , indicating that the compounds compromised the cell membrane. 

As such , the rate of PI accumulation (Eq . 1) was used to compare the inhibitory rate for 

each organism tested (Fig. 3 .1 ). 

SP 25A was not inhibitory to any of Gram-negative organisms tested except F. 

devorans , while it inhibited all Gram-positiv e organisms tested . Also , SP 25A did not 

inhibit the growth of any yeast tested (Breltonomyc es bruxellensis, Candida vini, Pichia 

ferment ans, Saccharomyces luduigi, Metschinikowia pulcherrima , Kloeckera apiculata) 

(data not shown). The greatest rate of inhibition was found for Brevibacterium linens, 

while E. faecalis had the slowest rate of inhibition (Fig. 3 .1 ). 

As observed with SP, RLs inhibited only Gram-pos itive bacteria (except F. 

devorans) , with activity being the fastest against B. subtilis (Fig. 3.1) and slowest against 

both the two Listeria species tested . The rate of action was distributed differently relative 



to SP 25A , but the same Gram-reacting organisms had the same inhibition for each 

compound . 
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There was a significant difference (p<0.01) in the rate of PI accumulation (IR) 

between SP 25A and RLs. Depending upon the species RLs were 3 to 433 times faster in 

the compromising the cell membrane as compared to SP 25A, the difference being 

highest for enterococci and lowest being for the Listeria species 

While the rate of action indicates the speed to compromise the membrane, an 

indication of the MIC is required to demonstrate inhibition of growth. Therefore , the MIC 

for each compound was determined (Table 3.2) . Measuring inhibition with MICs 

confirmed the observations using PI. 

The SP 25A MIC ranged from 3 to 16~tg/ml, while the MICs for RL ranged from 

4 to 32µg /ml for the organisms tested. Interestingly , a difference in the SP 25A and RL 

MIC with E. fa ecal is and S. aureus was observed (Table 3.2). While the MIC for RLs for 

both these organisms was >60 µg/ml , SP 25A completely inhibited both the organisms at 

8 µg/ml. For all the other organisms SP 25A had a similar or lower MIC as compared to 

RLs . Interestingly , both compounds inhibited spore germination from Bacillus and 

Clostridium at 4µg /ml. This work is the first report of anti-spore activity by these 

compounds. Both the organisms inhibited growth of M smegmatis at 4µg /ml. 

Lavermicocca et al. (26) measured the antibacterial activity of SP 25A using six 

organisms. No inhibition was observed for the three Gram-negative organisms, even at 

120 µg/ml. However , all three Gram-positive bacteria were inhibited (Micrococcus 

luteus, Bacillus megaterium , and Rhodococcus facians). While the overall observations 



are in agreement between this study and Lavermicocca et al. (26), the exact 

concentrations are not comparable, unfortunately, due to differences in methodology. 
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Antimycobacterial activity was found by Buber et al. (10), but due to the method 

of isolation they were unable to conclusively assign this activity to SP 25A. In this study 

we conclusively found that SP 25A inhibited M smegmatis, a surrogate organism for 

Mycobacterium tuberculosis, at 4 µg/ml. 

The literature contains conflicting reports on the spectrum of activity for RLs. 

This may be attributed to the fact that different groups have used RL mixtures with 

different compositions of RL homologues . For example , Abalos et al. (1) , Benincasa et 

al. (7), and Haba et al. (17) reported that RL mixtures are active against both Gram­

positive and Gram-negative bacteria . In this study , we found RLs that were active against 

Gram-positive bacteria and only one Gram-negative bacterium (F. devorans) at <60 

µg/ml. Kim et al. (8) reported the ability of RLs to lyse zoospores from Phytophthora 

capsici within 1 min at a concentrations <50 µg/ml. Conversely , we observed that RLs 

inhibited bacterial spore germination in B. subtilis and C. sporogenes at 4 µg/ml. 

Synergistic activity. Since both compounds demonstrated a similar range of 

activity and MICs , we determined the synergistic activity in an effort to reduce the MIC 

for each compound. This was done by exposing L. monocytogens to mixtures of SP 25A 

at 3 µg/ml with various RLs concentrations. The IR for the mixture of both the 

compounds was significantly different (p<0.05) than the IR of the compounds used alone 

across all concentrations tested , hence satisfying the classic definition of synergism. We 

achieved a higher rate of antimicrobial action when both the compounds were used in 
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combination as compared to individual use. Using the compounds together we were able 

to achieve the same level of inhibition with up to 6-fold less RLs. The increase in 

synergism followed a sigmoidal curve (Fig 3.2) . 

This is the first study to define the synergistic activity of SP 25A and RLs . Woo et 

al. ( 43) reported synergistic activity of SPs with fungal cell wall degrading enzymes to 

inhibit fungal pathogens . Also , there have been reports of synergism between cationic 

pore forming peptide s (23) , but there has been no report of synergism between a 

lipodepsipeptide and a glycolipid . The importance of this finding is best refined for use 

in specific applications , and is therefore beyond the scope of this work. 

Cellular toxicity . Three mammalian cell lines were used to assess cytotoxic 

effects for each compound at 4µg/ml and 8µg /ml. No significant (p>0.05) cytotoxicity 

was observed at 6, 24, and 48 h after treatment for each compound at either 

concentrations (Fig . 3.3). While a small amount of lysis was observed, it was not above 

background . Cells treated with triton (positive control) showed 100% lysis. These 

observations indicate that neither compound compromised the host membrane. Various 

groups (13, 15, 41) reported haemolytic activity of SP 25A. Menestrina et al. (15) 

reported a Cso value of 8.88 µg/ml of SP 25A for RBC hemolysis. In contrast , at similar 

concentrations, we did not observe membrane permeabilization of any of the three cell 

lines tested. A possible explanation of this observation is that RBC's lack an 

endomembrane, which is thought to play a central role in the rapid resealing response in 

event of plasma membrane disruption (32) . 
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Although structurally different both the compounds have a similar spectrum of 

activity for the strains tested . One aim of this study was to determine the use of these 

compounds against multiple drug resistant strains. This was done using E. faecalis and S. 

aureus that are gentamicin/vancomycin/teicoplanin resistant and MRSANISA , 

respectively. We observed that RLs had a higher IR than SP 25A, yet RLs were unable 

to inhibit growth at 60 µg/ml. This is similar to the concept described by Wu et al. ( 45) , 

who found that cationic peptides were not correlated with the ability to permeabilize the 

cell membrane and the antimicrobial activity. 

Several inferences can be made from this lack of correlation . The biochemical 

changes brought about by RLs were overcome by a stress response that repaired the 

compromised membrane , but they could not repair the changes brought about by SP 25A. 

This reveals that either the compounds have a differing mode of action on the cell 

membrane or SP 25A has multiple modes of action (i.e. it may act on multiple cellular 

targets) . Membrane repair in response to cationic peptides was reported by Wu et al. 

(45). They observed that some peptides did not depolarize the cell membrane at MIC 

concentrations , suggesting that at these MICs bacteria repaired their cell membrane and 

that a mechanism other than membrane disruption leads to cell death. In this study , we 

observed RLs to disrupt the membrane enough to up take Pl, yet the organisms retained 

the ability to replicate. 

This study demonstrated the ability of SP 25A and RLs to compromise the 

membrane of Gram-positive bacteria with MI Cs of S8 µg/mJ. The compounds acted 

synergistically to inhibit L. monocytogenes resulting in lower MICs for each compound 



41 

when used in combination . Considering the inhibition of multiple drug resistant 

enterococci and staphylococci , Mycobact erium, Bacillus spores , and the lack of toxicity 

towards mammalian cells makes SP 25A a very promising therapeutic agent , which needs 

to be confirmed with in vivo studies . 
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Table 3 .1. List of bacteria used for antimicrobial scree nin g and their growt h conditions . 

Organism Strain 
Temperature Oxygen 

Medium 
(°C) Demand 

13137 30 Aerobic 
Nutrient 

Aeromo nas caviae agar 

10987 30 Aerobic 
Nutrient 

Bacillus cereus agar 

Bacillus subtilis 23857 26 Aerobic 
Nutrient 
agar 

Bacillus megaterium 14581 30 Aerobic NB 

Brevibacterium linens 
BLl 

37 Aerobic TSB 
MGE 

Citrobacter fruendii 11811 37 Aerobic 
Nutrient 
agar 

Reinforced 
Clostridium sporogenes 10000 37 Anaerobic clostridial 

medium 

Enterobacter aerogenes 13048 30 Aerobic 
Nutrient 
agar 

Enterococcus fa ecal is 700802 37 Aerobic BHI 

Erwinia herbicola 33243 37 Aerobic 
Nutrient 
agar 

Eschereschia coli K12 37 Aerobic 
Nutrient 
agar 

Eschereschia coli H7:0l 57 35150 37 Aerobic 
Nutrient 
agar 

Flavobacterium devorans 10829 30 Aerobic 
Nutrient 
agar 

Klebsiella pneumoniae sub sp 
700721 37 Aerobic NB 

pneumoniae 

Lactobacillus plantarum 8014 37 Microaerophilic MRS 

Lactobacillus acidophilus 4355 37 Microaerophilic MRS 

Lactococcus lactis subsp lactis IL1403 30 Microaerophilic 
Ellikers 
Broth 

Listeria innocua 33090 37 Aerobic BHI 
Listeria monocytogenes 43251 37 Aerobic BHI 
Micrococcus luteus 21102 30 Aerobic BHI 
Mycobacterium smegmatis 14468 37 Aerobic Luria Broth 
Saimonella typhimurium 13076 37 Aerobic Nutrient 
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agar 

Salmone lla enteridis 700931 37 Aerobic TSB 

Staphylococcus aureus subsp 700699 37 Aerobic BHI 
aures 
Streptococcus mutans 89/1591 37 Aerobic BHI 

Streptococcus suis 700610 37 Aerobic BHI 

Streptococcus agalacticae 12403 37 Aerobic BHI 

Bacillus subtilis (spores) 6633 26 Aerobic TSB 

Reinforced 
Clostridium sporogenes(spores) 11437 37 Anaerobic clostridial 

medium 
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Table 3.2. MICs (Two biological replicates done in duplicate) and mean IR's (2 
biological replicates) of SP 25A and Rhamnolipid mixture against screened organisms. 
(ND represents Not Determined). 

IR IR SP 
Genus Rhamnolipids MIC(µg /ml) 25A MIC(µg /ml) 

(60µg /ml) (50µg /ml) 

Bacillus megaterium 1.043 4 0.005 
,.., 
_) 

Listeria innocua 0.014 5 0.005 
,, 
_) 

Listeria monocytogenes 0.032 6 0.005 
,, 
_) 

Bacillus cereus 0.834 4 0.004 4 

Bacillus subtilis 1.807 4 0.006 4 

Clostridium sporogenes 0.698 4 0.008 4 

Flavobacterium devorans 0.518 16 0.002 4 

Lactococcus lactis subsp. Lactis 1.219 4 0.008 4 
Micrococcus luteus 0.183 8 0.006 4 

Mycobacterium smegmatis ND 4 ND 4 

Streptococcus mutans 0.164 4 0.003 4 
Streptococcus suis 1.018 4 0.006 4 
Bacillus subtilis (spores) ND 4 ND 4 

Clostridium sporogenes(spores) ND 4 ND 4 
Enterococcus faecalis 0.482 >60 0.001 8 
Lactobacillus acidophilus 0.196 16 0.003 8 
Staphy lococcus aureus subsp. aureus 0.894 >60 0.003 8 
Streptococcus agalacticae 1.073 4 0.004 8 
Lactobacillus plan/arum 0.287 32 0.003 16 
Aeromonas caviae 0.000 >60 0.000 >50 
Citrobacter fruendii 0.000 >60 0.000 >50 
Enterobacter aerogenes 0.000 >60 0.000 >50 
Erwinia herbicola 0.000 >60 0.000 >50 
Eschereschia coli Kl 2 0.000 >60 0.000 >50 

Klebsiella pneumoniae subsp. 
Pneumoniae 0.000 >60 0.000 >50 
Salmonella typhimurium 0.000 >60 0.000 >50 
Salmonella enteridis 0.000 >60 0.000 >50 
Brevibacterium linens 0.512 ND 0.009 ND 
Eschereschia coli H7: 015 7 0.000 ND 0.000 ND 
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CHAPTER4 

GENE EXPRESSION PROFILE OF LISTERIA MONOCYTOGENES EGDE IN 

RESPONSE TO SUB-MIC DOSES OF SYRINGOPEPTIN 25A AND 

RHAMNOLIPIDS 

Abstract 
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Two antimicrobial compounds that target the cell membrane , syringopeptin 25A 

and an equimolar mixture of two rhamnolipids , were used to determine the cellular 

response during sub-MIC treatment with Listeria monocytogenes EGDe. Cell growth, 

membrane permeabilization and the gene expression profile was determined immediately 

prior to treating the cells with either antimicrobial , after 30 min of exposure , and after 

120 min of exposure . Cell membrane permeabilization was highest after treating the cells 

with rhamnolipids , which also resulted in a 4 7 % reduction in growth. However, growth 

inhibition was 100% after treatment with SP 25A, despite having only - 2% increase in 

dye uptake . Treatment of L. monocytogenes with SP 25A significantly changed the 

expression of 139 genes , while treatment with rhamnolipids resulted in significantly 

different expression of 3 9 genes. SP 25A repressed 97% of the differentially regulated 

genes, while RLs induced 70% of the differentially regulated genes after 120 min of 

treatment. The effective reduction in cell density after treatment with SP 25A was 

associated with the repression of key genes involved in cell division and genome 

replication; hence , inhibiting cell division. SP 25A also repressed key genes in central 
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metabolism , generation of precursor metabolites , transcription, and translation resulting 

in repression of RNA production , protein biosynthesis, cellular energy , and virulence. 

Rhamnolipids , conversely , affected only a few genes within any single functional 

category that were not associated with any single phenotypic observation . Hence , SP 25A 

caused repression in the cell's metabolism , which was independent of the observed pore 

forming activity. Taken together these data led us to conclude that both the compounds , 

even-though acting on the cell membrane , produced distinctly different gene expression 

profiles with SP 25A being more effective to inhibit cell growth in L. mono cytoge nes. 

Introduction 

The increase in multiple antibiotic resistant strains , which leads to more 

nosocomial infections and community-acquired infections , has fueled the search for new 

antibacterial compound s, including peptides. Antimicrobial peptides are pervasive 

components of prokaryotic and eukaryotic defense mechanisms against invading 

organisms (9). Though structurally diverse , the amphipathicity and cationic nature of 

these peptides allows them to interact and disrupt the bacterial cell membrane leading to 

cell death (3 5). Subsequent effects on intracellular molecules have also been observed , 

leaving some investigators to conclude that membrane disruption is only a portion of the 

antimicrobial activity (16, 36) . 

The mode of action to disrupt the membrane with peptide antibiotics is thought to 

follow the "barrel stave" model that form pores across the membrane or the "carpet" 
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model, where the molecules align orient parallel to the membrane and disrupt the lipid 

structure (28) . While it seems alluring to endow the antibacterial effect of these 

compounds solel y to thes e two models , these mechani sms alone do not account for the 

physiological effects that these peptide s produce in bacterial culture s (8). Wu et al. (35 ) 

and Friedrich et al. (16) observed that some cationic peptides failed to depolarize the 

bacterial membrane , yet effectively inhibited growth. At the MIC concentration these 

peptides did not disrupt the bacterial membrane , giving conclusive evidence that a 

general membran e disruption mechanism alone cannot account for antimicrobial 

properties of all peptide s (15 , 35). Furth er, Tomasin sig et al. (32) and Hon g et al. (17 ) 

found that cationic peptides resulted in changes in gene expression profiles in E. coli in 

addition to perrneabilizing the membrane. Taken together , these data provide evidence 

that it is unlikely that the diverse groups of peptides act via only membrane disruption 

alone . Once inside the cytoplasm these peptides may bind proteins , DNA , RNA , or other 

macromolecules to alter replication and metabolism (8) . 

Cyclic lipopeptides are potent antimicrobial and two compounds of this class 

polymyxin B (14) and daptomycin (26) are approved by the Food and Drug 

Administration for clinical use . Syringopeptin 25A (SP 25A), a cyclic lipodepsipeptide 

produced by Pseudomonas syringae pv. syringae is structurally similar to daptomycin. SP 

25A consists of 25 amino acid residues with the N-terminal being acylated with 3-

hydroxydecanoic acid. An eight -member lactone ring is formed via an ester bond 

between allothreonine and C-terminal tyrosine (3, 5, 19). Hydrophobic amino acids 



account for 68% in syringopeptins with the peptide being composed of primarily D­

amino acids (3, 5, 19). 
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In a previous study, rhamnolipids (RLs) showed a similar spectrum of activity to 

inhibit bacteria , as compared to SP 25A (13). RLs are surfactants with 11 homologues 

produced by some strains Pseudomonas aeruginosa and consist of one or two moieties of 

rhamnose covalently linked to a 3-~ hydroxy acid, where the chain length of the acid is 8, 

10, or 12 carbon atoms (6) . In some cases they may also have 3-hydroxy decanoate 

linked to the fatty acid moiety via an ester bond. RLs are usually a mixture of various 

homologues , depending upon the strain and carbon source provided during growth (23) . 

In a previous study Desai and Weimer (13) found no correlation between the bactericidal 

activity and membrane permeabilization of SPs and RLs. In a multi drug resistant strain of 

Staphylococcus aureus, RLs induced higher propidium iodide (PI) uptake , indicating an 

increase in membrane penneabilization , as compared to SP 25A, but RLs did not inhibit 

the cell growth. This confirms the observations of others for the disconnection of 

membrane disruption and growth inhibition (8, 13, 15, 16, 18, 33, 35). 

A number of groups have used transcription profiling during challenges with sub­

MIC doses of antimicrobial compounds to find that some antimicrobial peptides invoke 

cellular changes that are not lytic and not lethal (1, 10, 17, 32, 34 ). These experiments are 

leading to the discovery of the multiple targets for antimicrobial peptides beyond the 

membrane . Such observations imply that the peptides directly or indirectly interact with 

membrane proteins leading to regulatory components, which affects the susceptibility of 

the organism to the compound, which has been observed in Salmonella enterca and P. 



aeruginosa (32). In this study, we hypothesized that sub-MIC doses of SP 25A or RLs 

will evoke distinct gene expression responses that will provide genetic targets that are 

additional mechanisms of action to inhibit bacterial growth that are not membrane 

associated. 

Materials and Methods 

57 

Purification of antimicrobials . P. syringae pv. syringae Ml was obtained from the 

Utah State University culture collection. SP 25A was produced and purified as described 

by Bidwai et al. (7). In brief, the culture was grown to stationary phase for 10 d standing 

culture at room temperature (- 25°C). After collecting the supernatant , SP 25A was 

extracted with acidified acetone, concentrated with a rotary evaporator , purified to 

homogeneity by reverse phase HPLC , and lyophilized for storage at 4 °C for further use . 

The purity and molecular weight were verified by MALDI -TOF analysis at the Center for 

Integrated BioSystems (Utah State University , Logan, UT). 

Commercial RL samples were obtained as a 25 .1 % aqueous solution (product 

JBR-425; Lot#021004) from Jeneil Biotech, Inc. (Saukville , WI). The purity and 

molecular weight of the RLs were determined using MALDI-TOF at the Center for 

Integrated BioSystems. The relative concentrations via molar ratios between the two 

different rhamnolipid moieties (Decanoic acid , 3-[(6-deoxy-L-maimopyranosyl) oxy ]-1-

(carboxymethyl) octyl ester, and Decanoic acid, 3-[(6-deoxy-2-0 (6-deoxy-L­

mannopyranosy l )-L-mannopyranosy l] oxy ]-1-( carboxymethyl )octy 1 ester) in the 
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commercial rhamnolipid mixture were determined by 13C NMR as described by Sim et al. 

(29) . 

Bacterial strain, growth conditions and gene expression profiling. Listeria 

monocytogenes EGDe was thawed and subcultured twice at 37°C in brain heart infusion 

broth (BHI) (DIFCO , Franklin Lanes, NJ). An overnight culture was diluted 10 fold in 

sterile medium and grown for 4 h to an OD600 of 1. 7, which corresponded to ·- 109 cfu/ml. 

The cell preparation was exposed to either 3µg /ml SP 25A or 6 µg/ml RLs. Previously, 

Desai and Weimer (13) determined the MIC for L. monocytogenes with SP 25A to be 3 

µg/ml and 6 µg/ml with RLs . This study used these concentrations , but increased the cell 

population to - 109 cfu/ml, rather than 105 cfu/ml , the cell density used to determine the 

MIC. Thereby, making SP 25A and RLs sub-MIC at 3 µg/ml and 6 µg/ml , respectively . 

Total RNA was extracted from 1.8 ml culture immediately before treating the 

cells with SP 25A and RLs (To), after 30 min (T30), and at 120 min (T120) of exposure at 

37°C. Simultaneously, the cell density was measured at OD600. Membrane 

permeabilization was determined by measuring the PI uptake as described by Desai and 

Weimer (13). Total RNA extraction and reverse transcription (from 10 µg total RNA) 

was done as described by Yi et al. (36) to produce biotinylated cDNA, which was sheared 

with DNasel as described by the protocol ofNimbleGen Systems (Madison, WI). The 

custom, optimized NimbleScreen chip contained 12 wells, enabling the entire experiment 

to be done on a single chip. Each well contained five probes for each open reading frame 

in the entire genome. 
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Hybridization of the fluorescently-labeled (Cy3 -st reptavidin ; Amers ham 

Biosciences , Piscataway , NJ) cDNA (500 ng) was done using a custom NimbleScreen 

chip optimized for L. monocytogenes EGDe, as described by the NimbleGen Systems 

protocol. Hybridization was detected with a Genepix 4200A array scanner (Axon 

Instruments , Union City, CA) at the Center for Integrated BioSystems. Data extraction 

from the scanned images was completed at NimbleGen Systems . The raw expression data 

from the entire experiment were normalized together using R with the robust multichip 

average (RMA) method ( 18). Appendix C lists the R code used for RMA normalization . 

Annotations for Listeria monocytogens EGDe were obtained from the ERGO database 

(Integrated Genomics , Chicago, IL) . 

Statistical analysis and data visualization. RMA normalized data were analyzed 

using SAM Version 2.01 (33) with a one class time course experimental design using the 

xCluster R module (Center for Integrated BioSystems). Any gene with at least a log2 ratio 

of ±0.58, which is equivalent to a 1.5 fold change, and a Q<0.3 was considered 

significant (30). The entire biological experiment was replicated twice. 

Heat maps were drawn with log2 values of the RMA normalized data after 

calculating the average of the biological replicates using Hierarchicai Clustering Explorer 

version 3.0 (27). The log2 ratios were calculated by taking a difference in log2 intensity of 

a single time point with the preceding time point. 



Results 

Compound purity and growth inhibition. The commercial RL preparation was 

tested using MS and 13C NMR to determine the isoform content and relative 

concentration , respectively. 13C NMR analysis revealed Rhamnose-C 10-C 10 (MW= 

503.31) and Rhamnose-Rhamnose-ClO-ClO (MW= 649 .33) to be present in an 

equimolar ratio . These observations are in agreement with the product data sheet. 
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The compound purity was tested to ensure the compound identity before use in 

the study of growth inhibition . SP 25A isolated in this study was a single compound 

(Appendix A, Fig Al) , but the commercial RL preparation was a mixture of two isoforms 

(Appendix A, Fig A2). The pure SP 25A had a molecular weight of 2,400 .37 Da, which 

was in agreement with the reported molecular weight for SP 25A (24) . 

Both antibacterial treatments caused membrane permeabilization (Fig . 4.1 A) , but 

reduced cell growth (Fig. 4.18) of L. monocy togenes by different amounts . Addition of 

RLs resulted in more membrane permeabilization than did the addition of SP 25A. After 

30 min of incubation with RLs the permeabilization increased by 53% ; while 

permeabilization due to SP 25A increased 2.6% during the same time . Interestingly , the 

permeabilization declined after 120 min of treatment with RLs. 

The cell density was highest in the control , as expected , and lowest with addition 

of SP 25A. The control culture increased growth by 15 .3 % during 120 min , while the 

culture treated with RLs increased by 8%, but those treated with SP 25A did not increase. 

The membrane permeabilization and the cell density changes did not correlate (Fig. 4.1 ), 

suggesting that the mechanism of action for both compounds was not just membrane 



permeabilization. To determine the underlying mechanisms responsible for these 

differences, gene expression profiles were determined. 
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Gene expression profiling with RLs. The expression data were examined for genes 

that were constitutively expressed above the mean expression level , but none were found , 

indicating that gene expression changed over the exposure time. At T 30 RLs induced eight 

genes and repressed two genes. Treating the cells for 120 min with RLs significantly 

altered the expression of 39 genes. Regulation of 21 common genes was observed 

between SP 25A and RLs (Table 4.1 ). Despite regulating these common genes , the 

patterns of expression between the two classes of the antimicrobial compounds were 

different. At T120, 27 genes were induced and eight were repressed. 

Intermediary metabolism and oxidative phosphorylation. RLs induced three 

PEP/PTS components, a-mannosidase (LM00401), and five other genes involved in 

glycolysis and pentose phosphate pathway (Table 4.2). Conversely , all these genes were 

repressed when cells were treated with SP 25A during the same time period. The H+­

transporting ATP synthase C (atpE) was induced at T30, but subsequently repressed at 

T 120. Fig D 1 and D2 from Appendix D gives the heatmaps of genes affected in these 

functional category 

Protein biosynthesis and virulence factors. No genes related to transcription were 

differentially regulated after treatment with RLs. Only one gene related to protein 

biosynthesis, phenylalanyl-tRNA synthetase alpha chain (pheS (LM01221)) was induced 

at T30. An acetyltransferase (LM00624) involved in post translation modification was 



repressed at T3o, but induced at T120 (Table 4.2). Fig D3 and D4 from appendix D gives 

the heatmaps of genes affected in these functional category 
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Of the four virulence factors in the genome , only listeriolysin O (hly) was induced 

after 120 min of treatment. Expression of the remaining virulence factors was not 

change d by addition of RLs. 

Stress genes. Four stress -related genes -- single strand bindin g protein (ssb), non­

heme iron binding ferr itin (fri), and heat shock protein cspL, and peroxide operon 

regulator p erR (LM01683) -- were induced after 120 min . However , none of the genes in 

the perR regulon were induc ed. No other genes were significantly regulated durin g 

treatm ent with RLs. 

Gene express ion pro.filing with exposu re to SP 25A.Treat ing L mono cytogenes 

with SP 25A significantly altered the transcript profile of - 5% of the genes of the 

genome. Addition of SP 25A repressed 97% of the 139 differentially regulated genes 

(Table 4.3). The data set was also analyz ed for genes that were constitutively expressed 

above the mean level during the treatment in an effort to find genes that may be essential 

for survival of bacteri a under the antimicrobial stress . No genes were found that were 

constitutively expressed above the mean . Most functional categori es contained genes that 

were repressed . No categories contained genes that were only induced . However , a few 

categories (ABC transporters , carbohydrate metabolism , transcription regulators, 

secretion, virulence factors, and unknown genes) contained genes that were induced and 

repressed. 



63 

Cell division. Four genes involved in cell division and chromosome replication 

were repressed. Genes required for cell division initiation protein , Div IV A (LMO 1888), 

ATPase associated with chromosome architecture /replication (LM02759), DNA gyrase 

subunit B (gyrB) , and DNA gyrase subunit A (gyrA) were repressed with addition of SP 

25A. The transcription factor , lytR, which is correlated to the decrease in activity of 

autolytic enzymes (11), was also repressed (Table 4.4). 

Membrane prot eins. PEP/PTS transporters specific for ~-glucosides , fructose , and 

trehalose ; cx-mannosidase (a sugar hydro lase) ; and 22 other genes in carbohydrate 

metabolism were differentially expressed during the treatment time . From the entire set 

of genes in the intermediary metabolism category , only L-glutamine-fructose-6-

phosphate transaminase (LM00726) and 6-phospho-~-glucosidase (LM00739) were 

induced at T30. However , at T, 2o all of the 26 genes in sugar transport and intermediatery 

metabolism were repre ssed (Table 4.4). Eac h PEP/PTS components were repressed after 

120 min (Table 4.4). 

In addition to the sugar transporters and A TPases that were repressed, the large­

conductance mechonosensitive ion channel (LM02064) was induced at T30, but repressed 

at T120- This mechanoreceptor is involved in osmoregulation. Other studies using gene 

expression profiling did not observe an expression change in this ion channel , despite its 

importance in restoring the osmotic stability in a cell. This observation may be indicative 

of membrane perturbation early in the treatment time. 

Jntermediatery metabolism and respiration. The repressed genes in central 

intermediatery metabolism included genes involved in glycolysis - 6-phospho-beta-
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glucosidase (LM00739) , the pyruvate dehydrogenase operon (pdhA, pdhB , pdhC , pdhD), 

lactate dehydrogenase (ldh), pyruvate kinase (pykA), and phosphoglyceromutase 

(LM02205). Repression of genes in the pentose phosphate pathway were also observed -

ribose 5-phosphate isomerase (LM00736) , transaldolase (LM02743) , ribulose 5-

phosphate 3-epimerase (LM00735 , LM02659) , and fructose-1 ,6-bisphosphate aldolase 

(jbaA). The dihydroxyacetone kinase enzyme complex (LM02695 , LM02696 and 

LM02697) , which is responsible for phosphorylation of dihyroxyacetone and glycerol 

prior to entry into the glycolytic pathway , was also repressed. Four (out of six) genes 

involved in Fe-S cluster biosynthesis (sujD, lscU, sufB, cysteine desulfurase (LM02413)) 

were repressed. 

Repression of key genes for cellular respiration was observed. After 120 min , two 

genes ( out of eight) of the H+ transporting ATP synthase enzyme complex , which code 

for the alpha and c subunits (atpA and atpE) , were repressed. Three of the four subunits 

for quinol oxidase (LM00014, LM00015 , LM00016) were also repressed. 

Protein biosynthesis. At T30 two genes involved in protein biosynthe sis, 

(LM025 l 1 and rpsU) were induced. The gene LM025 l l codes for the ribosome 

associated factor Y, which is a global translation inhibitor , while rpsU codes for the S21 

protein in the 30s ribosomal complex. After 120 min of treatment with SP 25A, three of 

the four subunits of RNA polymerase (rpoA, rpoB, rpoC) were repressed . After 120 min 

1 1 ribosomal proteins ( out of 59) were repressed and two elongation factors ( out of total 

four) were repressed. Hence , after 120 min genes needed for transcription and translation 

were repressed . 
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Virulence factors. At T 30 two of the virulence genes hly (listeriolysin O precursor) 

and fibronectin binding protein (LM00727) were induced , while iap (an invasion 

associated protein) was repressed. At T 120, phospholipase C (plcA) was also repressed. 

Hence , after 120 min SP 25A led to the repression of four genes directly required for host 

invasion by L. monocytogenes. 

Stress response. At T30 five stress-related genes were repressed , while four genes 

were induced. Among the repressed gene s two chaperone protein s (groEL, grpE), tlu·ee 

oxidative stress genes (sod , msrA , trxB) , and one gene related to toxic ion resistance 

(LM01967). During the same period, the induced stress proteins were DNA binding 

protein (fri) , organic hydroperoxide resistance protein (LM02 l 99), arsenate reductase 

(LM02230) , and a universal stress protein (LMO 1580). After 120 min , an additional six 

stress related genes were repressed. These included hrcA (a negative regulator of class I 

heat shock genes) , a general stress protein (LMO 160 I) , a protein related to oxidative 

stress (msrB) , and three genes involved in DNA recombination and repair (i.e . single 

strand binding protein (ssb ), an endonuclease involved in recombination (LMO 1502), and 

exinuclease ABC subunit A (urvA)). Three ATP-dependent endopeptidases needed for 

protein turnover (clpE, clpB , clpX)(22) were also repressed . At T30 one transcription 

regulator of the marR family (LM02200) , which is a negative regulator of antibiotic 

resistance proteins in E. coli (2) was induced, while at T 120 another transcription of the 

same family (LM00266) was repressed. 
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Discussion 

This study explored the cellular response to treatment with two antibacter ial 

compounds that presumably target the cell membrane for inhibition (5, 12, 21). The cell 

permeabilization , cell density , and the transcription profile between these compounds 

were markedly different. RLs caused an increase of - 53% in membrane 

permeabilization , and inhibited growth by - 4 7%, a reasonable correlation between 

membrane permeabilization and growt h inhibition. Converse ly, SP 25A permeabilized 

the membran e by - 2%, but led to complete inhibiti on of cell growt h, demonstra ting the 

disconnection between membrane permeabilization and cell growth inhibition . Other 

studies with E. coli and S. aureus have made similar observations (16, 35). Friedrich et al. 

(16) observed that treatment of S. aureus with CP26, an a-helical peptide , led to only 

partial membran e depo larization, even with 90% inhibition of the population. Wu et al. 

(35) found similar results using CP26 and bactenecin in E. coli. Tomas insig et al. (32) 

found that a specific sequence of a praline-rich peptide interacted with the membrane 

leading to growth inhibition and that the same peptide fragment led to gene expression 

changes that were not related to membrane disruption. In contrast this study found RLs 

to be linked to membrane disruption to bacterial inhibition for lytic activities . 

Alternatively, use of SP 25A confirmed that additional mechanisms beyond membrane 

disruption for bacterial inhibition may be involved. 

With this observation , gene expression profiles were used to determine the genetic 

targets of these bacterial inhibitors . SP 25A significantly changed expression of 139 

genes , while RLs significantly changed expression of 39 genes. Both the compounds 
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affected twenty-one common genes , but the expression profile for all these genes ( except 

sujB) was significantly different. While SP 25A caused repression of all these genes after 

120 min of treatment , RLs caused an induction (Table 4.3) , lendin g support to the 

observation of growt h inhibition by SP 25A (Fig. 4 .1 ). Tomasinsig et al. (32) found that 

genes from the same functional categories to be repressed with the Bac7 ( 1-35) peptide 

fragment in E. coli. 

SP 25A repressed key genes involved in cell division . After 120 min four prot eins 

invo lved in cell divi sion were repres sed; two DNA gyrase subunits , one was an A TPase 

assoc iated with chromosome rep licat ion, and one was the cell division initiation protein, 

Div IV A, which is crucial for the initiation of cell division (15). Hence , repre ssion of this 

protein alone would inhibit cell division (15). RLs , in contrast , did not affect any of the 

proteins involved in cell division and had only a small reduction in cell density (Fig. 1 ). 

In addition , repression of ly tR was correlated to a decrease in autolytic enzyme activit y, 

which resulted in inhibition of cell divi sion in S. mutans (11 ). Use of SP 25A also led to 

repression of fytR in L. monocytog enes in this study. These observation s explain the 

inhibition of growth , rather than membrane disruption, with the addition of SP 25A. It 

also points to the regulatory link between lytR and Div IV A to completely inhibit cell 

growth (Fig. 4. lA , Table 4.4). 

SP 25A caus ed significant changes in intermediary metabolism, especially 

glycolysis and pathways needed for energy production (Table 4.4). Repression of central 

metabolism would lead to a lack of enzymes needed for generation of precursor 

metabolites and energy needed for growth. Repression of pyruvate dehydrogenase 



68 

complex (8- to 16-fold), pyruvate kinase (1.6 fold), and phosphoglyceromutase (1.5 fold) 

would virtually stop energy production from glycolysis. 

Glycolytic intermediates are also important for generation of acetyl CoA , 

pyruvate and phosphoglycerate, which are precursor metabolites for production fatty 

acids and amino acids . RLs induced expression of the E3 subw1it of pyruvate 

dehydrogenase , phosphoglyceromutase , and two more enzymes in the pentose phosphate 

pathway , indicating that glycolysis was induced and energy production improved . This 

may explain the reduction in membrane permeabilization after 120 min of exposure to 

RLs. In contrast , addition of SP 25A , five enzymes in the pentose phosphate pathway 

leading to generation of ribose-5-phosphate , which acts as a precursor metabolite in 

purine and pyrimidine metaboli sm, were repressed by 1.5-to 3- fold. The lack of 

induction of alternative pathways for formation of these metabolites left the cell with no 

method to produce energy or intermediates to use in cell division. The same repression of 

several key enzymes of the central intermediatery metabolism was also observed in E. 

coli when challenged with sub-MIC doses of Bac7(1-JS), including sugar transporters and 

glycolytic intermediates , which was associated with inhibition of cell growth (32). 

SP 25A led to a - 5-fold repression of four proteins needed for synthesis of Fe-S 

clusters . These are essential in diverse reactions , including electron transport , regulation 

of gene expression, and mediation ofredox as well as non-redox catalysis (4). SP 25A 

also caused down regulation of two subunits of the proton pump by 1.5-fold and quinol 

oxidase by 2-fold, causing disruption of the oxidative phosphory lation machinery . RLs in 

contrast led to a 3-fold induction of one subunit of proton pump (atp/<.,J at T30 and a 3.5-



fold repression at T 120. Hence, after 120 min SP 25A repressed the cells ability to 

generate precursor metabolites , as well as energy , while RLs did not have that effect at 

all. In E. coli, repression of iron metabolism was found only in transport (jecA), other 

genes were not affected (32). 
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Genes associated with transcription and translation were repressed between 1.5-

and 12-fold with the addition of SP 25A. It repressed three out of four RNA polymerase 

subunits by 1.5- to 2-fold , which completely disrupted transcription. Coupled to this 

decline , translation activity was also repressed. This effect was widespread with 

repression (1.5- to 4-fold) of 11 ribosomal genes after 120 min, and two elongation 

factors (2.5- to 12-fold). Contrary to this study, Tomasinsig et al. (32) observed an 

induction of ribosomal genes after exposure to a pro line rich antibacterial peptide. 

Regulation of stress-related genes was widespread with the addition of SP 25A 

(Table 4.4). Multiple systems were regulated during the exposure time , which included 

osmotic regulation , DNA repair , chaparonenes, and peroxide resistance. For example , 

the large conductance mechonosensitive channel (mscL) was induced at T30, but was 

repressed at T ,20. This gene is associated with hypo-osmotic shock (31) , likely caused by 

the interaction of SP 25A with the membrane. Induction of mscL demonstrates the cells 

effo1i to modulate the osmotic change with the addition of SP 25A. Repression of the 

membrane protein at T120 likely indicates that the cell is no longer under osmotic stress. 

This exp lanation seems likely considering the membrane permeabilization declined at 

T,20. No other group (17, 25, 32) has observed this phenomenon in response to an 



antimicrobial peptide, despite observing changes in membrane and transport proteins 

associated with sugar and ion flux. 
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Interestingly , in all cases, stress-associated genes were repressed after 120 min of 

exposure to SP 25A. This may indicate that the cell has adapted to the effects of SP 25A , 

but it may also represent the inability to produce new RNA and proteins with the 

repression of the transcription and translation apparatus observed in this study. Three 

Clp A TPase implicated in regulation of the stresses by virtue of their protein reactivation , 

remodeling activities , and their capacity to target misfolded proteins for degradation (22) 

were repressed by SP 25A. There are no reports in literature of stress related genes bein g 

repressed in response to exposure with antimicrobial peptides (1, 10, 17, 32, 34). 

Four virulence genes essential for intracellular survival of L. monocytogenes were 

repressed with treatment with SP 25A after 120 min of exposure. Fibronectin binding 

protein and hly were induced and iap was repressed at T 3o, but after 120 min each of these 

genes and plcA were repressed. In contracts , addition of RLs induced hlyA expression 

after 120 min . Down-regulation of these genes would make L. monocytogenes EGDe less 

virulent with extended exposure by repressing the binding proteins and impairing the 

capacity for intracellular survival as well (20). 

Conclusion 

Treatment of L monocytogenes EGDe with sub-MIC doses of SP 25A and RLs 

led to complete inhibition of growth or a reduction of growth, respectively . However , this 



inhibition was uncoupled from membrane perrneabilization in the case of SP 25A. The 

gene expression profile of cells treated with SP 25A revealed that genes related to cell 
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division, chromosome replication, intermediatery metabolism , transcription, translation , 

and virulence were repressed. These effects were not produced in cells treated with RLs. 

These observations indicate that SP 25A permeabilizes the membrane , but the 

mechanisms associated with cell death are likely related to other targets that inhibit cell 

division ; while, the antibacteria l activity of RLs is likely due to its interaction with the 

membrane. 
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Table 4.1. Functional categories that contained the genes that were significantly 
differentially expressed in response to treatment with sub-MIC doses of RLs . 

No. of differentially expressed genes 
Total 

Functional category genes 111 T30 Tl20 
category 

Induced Repressed Induced Repressed 

A BC transporters 134 0 0 2 I 

Ion channels 4 0 0 0 0 
PEP/PTS components 80 0 0 3 0 
Polysaccharide degradation 18 0 0 I 0 
Central intermediate,)' metabolism 272 0 I 4 0 
Cofactor and coenzyme metabo lism 116 0 0 0 0 
Amino ac id metabolism 179 0 0 2 0 
Electron transport and oxidative 

61 0 0 
phosphmylation 
Cell wall metabolism 57 0 0 0 0 
Transcription regulators 142 I 0 2 0 
Transcription 36 0 0 0 0 
Protein biosynthesis 158 0 I 
Protein fate 92 0 I 0 
Secretion 63 0 0 0 
Virulence factors 131 0 0 I 0 
Stress 50 0 0 2 0 
Ce ll division 17 0 0 0 0 
Phage protein s 18 I 0 0 2 
Unknown /Hypoth etical proteins 4 0 7 2 
Total 1628 8 2 27 7 
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Table 4.2. Significantly differentially regulated genes during exposure to RLs. 

Log2 Ratios 

Protein ORF Cellular Role Q 
T30 T120 value 

ABC transporter (Metal binding protein) LM01073 A BC transporter s -0.18 0.97 0.26 

ABC transporter (ATP-bind ing protein) LM02 l 93 A BC transporters 0.33 0.32 O. ll 

A BC transporter-associated protein, sufB LM024l I ABC transporters -0.43 -0.17 0.23 

Fructose-specific phosphotransferase LM00399 PEP/PTS components 
enzyme IIB 

0.21 0.38 0.11 

Fructose-specific phosphotransferase LM00400 PEP/PTS components 
enzyme ITC 

0.05 2.54 0.11 

Beta-glucoside-specific enzyme TIABC LM00738 PEP/PTS components 0.46 1.36 0.11 
component 

Alpha mannosidase LM00401 
Polysaccharide 

-0. 15 2.70 0. 11 
degradation 

Ribose 5-phosphate isomerase LM00736 
[ntermediatery 

-0.03 1.72 0.11 
metabolism 

6-phospho-beta-glucos idase LM00739 
lntermediatery 

0.04 2.86 0.1 I 
metabolism 

Pyruvate dehydrogensae ( dihydrolipoamide LMOI055 
Intermediatery 

0.24 0.96 0.11 
dehydrogenase , E3 subunit) , pdhD metabolism 

Phosphoglyceromutase LM02205 
Intermediatery 

-0.73 0.86 0.15 
metabolism 

Ribulose-phosphate 3-epimerase LM0 2659 
lntermediatery 

0.0 I 1.70 0. I I 
metabolism 

G Jyc ine dehydrogenase ( decarboxylating) LM01350 
Aminoacid 

-0.4 I 1.21 0. I I 
subunit 2 metaboloism 

Threonine 3-dehydrogenase LM02663 
Aminoacid 

-0.06 1.98 O. l I 
metaboloism 

H+-transporting ATP synthase C chain, 
Respiration and 

LM02534 oxidative 1.64 - I .81 0.11 
atpE phsphorylation 

Peroxide operon regulator, perR LMOJ683 Transcription regulator -0.13 1.03 0.11 

Transcriptional regulatory protein degU LM02515 Transcription regulator 0.12 1.39 0.16 

Phenylalanyl-tRNA synthetase alpha chain, 
LMOl221 Protein biosynthesis 0.62 -0.45 0.29 

pheS 

Acetyltransferase LM00624 
Post translational 

-0.62 I.OJ 0.29 
modification 

ATP-depe ndent endopeptidase clp ATP-
LM00997 Protein degradation -0.03 1.28 0. I I 

binding subunit, clpE 

Oxidoreducatse involved in TA Tpathway LM00737 Secretion 0.05 1.02 0. I I 
secreted proteins 
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I isteriolysin O precursor , hfy LM00202 Virulence 0 .24 1.90 0.11 

Single-stranded DNA-binding protein, ssb LM00045 Stress -0.01 1.33 0.11 

Cold shock protein, cspL LMOl364 Stress 0.14 0.45 0.29 

Non-heme iron-bindin g ferritin ,.fi'i LM00943 Stress 0.09 0.81 0.11 

Phage proteins LM02287 Phage proteins 0.66 -0 .58 0.11 

Phage proteins LM02327 Phage proteins 0.27 -0 .6 1 0.11 

Hypothetical Protein LM00743 Unknown 0.12 0.82 0.15 

Hypothetical Protein LM01113 Unknown 0.77 -0.39 0.11 

Hypothetical Protein LM02257 Unknown 0.00 0.94 0.1! 

Hypothetical Protein LM02432 Unknown -0.20 3.24 0. 11 

Stage V sporulation protein G LMOOl97 Others 0.86 -0. 61 0.11 

Rhodanese-related sulfurtransferases LM01384 Others 0.60 -0.48 0.11 

Glycerol uptake facilitator protein LMOl539 Others 0 .21 0.82 0.14 

Creatinine amidohydrolase family protein LM01968 Others 0.77 -0.56 0. 11 

Protease I LM02256 Others 0.17 0.99 0.26 

Putative tran scr iptional regulator, McrR 
LM02728 Others -0.05 0.63 0.15 family 

Putative transcriptional regulator , MerR 
LM02334 Others 0.57 -0 .66 0.15 family 
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Table 4.3. Functional categories that contained the genes that were significantly 
differentially expressed in response to treatment with sub-MIC doses of SP 25A. 

Number of differentially expressed genes 
Total 

Functional category genes m T30 T120 
category 

Induced Repressed Induced Repressed 

ABC transporters 134 3 2 8 
Ton channels 4 0 0 
PEP/PTS components 80 0 4 0 4 
Polysaccharide degradation 18 0 0 I 
Central intermediatery metabolism 272 2 13 0 24 
Cofactor and coenzyme metabolism 116 0 4 0 5 

Amino acid metabo lism 179 0 0 4 

Electron transport and oxidative 
61 0 4 0 5 phosphorylation 

Cell wall metabolism 57 0 I 0 2 
Transcription regulator s 142 I 0 I 4 
Transcription 36 0 0 0 3 
Protein biosynthesis 158 2 3 0 12 
Protein fate 92 0 

,, 
0 4 .) 

Secretion 63 I 2 0 3 
Virulence factors 13 I 2 I 0 4 
Stress 50 4 5 0 13 
Cell division 17 0 2 0 4 
Phage proteins 18 0 0 0 0 
Unknown /Hypothetical proteins 12 13 2 34 
Total 1628 26 60 5 135 
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Table 4.4. Significantly differentially regulated genes during exposure to SP 25A. 

Log 2 Ratios 
Protein ORF Cellu lar Role Q 

T30 T120 
value 

Manganese uptake Mn ABC transporter LM01847 A BC transporters 0.66 -3.85 0 .00 

Metal cations ABC transporter , permease 
LMOl848 A BC transporters -3.43 -2.43 0.00 protein 

ABC transporter, ATP-binding protein LM02415 A BC transporters -0.47 -0.65 0.00 

Heavy metal-transporting A TPase LM00641 A BC transporters -0.45 -0.42 0.01 

Manganese transport proteins NRA MP LM01424 A BC transporters -2.10 0.01 0.01 

Metal cations ABC transporter, ATP-
LM01849 A BC transporte rs -0.89 -0 .78 0.04 binding proteins 

A BC transporter-associated protein 
LM0241 I A BC transporters -0 .51 -0.20 0.04 (suffi) 

Oligopeptide ABC transporter (ATP-
LM02193 ABC transporters -0.24 -0.46 0.17 binding protein) 

Acetoin uptake permease protein LM02239 ABC transport ers -0.24 0.68 0.17 

ABC transporter (ATP-binding protein) LM02 139 ABC transporters 0.07 0.60 0.23 

Large conductance mechanosensitive 
LM02064 Ton Channel 1.96 -2.70 0.00 channe l 

Fructose-specific phosphotran sferase 
LM00400 PEP/PTS components -1.78 -0 .34 0.00 enzyme rrc 

Beta-glucoside-specific enzyme llA BC 
component 

LM02373 PEP/PTS compone nts 0.39 -0.83 0.00 

Beta-glucoside-specific enzyme !IA BC 
LM00738 PEP/PTS components -1.04 -1.04 0.00 component 

Trehalose specific enzyme lIBC LMOl255 PEP/PTS components -3.74 -0.40 0.00 

Alpha mannosidase LM00401 
Polysaccharide 

-2 .6 1 -0.78 0.00 degradation 

6-phospho-beta-glucosidase LM00739 
I ntermediatery 

0.97 -2.39 0.00 metabolism 

6-phospho-beta-glucosidase LM00536 
lntermediate1y 

-038 -0.24 0.23 metabolism 

A lpha ,alpha-ph osphotrehalase LMOl254 
lntermediate,y 

-2.10 -0.04 0.00 metabolism 

Pyruvate dehydro genase (EI alpha 
LMOI052 

Tntermediate1y 
-2.74 -0.38 0.00 subunit), pdhA metabolism 

Pyruvate dehydrogenase (EI beta 
LMOI053 

Intermediatery 
-3 .04 - l.38 0.00 subunit), pdhB metabolism 

Pyruvate dehydrogenase 
LM01054 

Intermediatery 
-2 .04 -2.62 0.00 (dihydrolipoamide acetyltransferase E2 metabolism 
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subunit), pdhC 

Pyruvate dehydrogensae ( 
lntermediatery 

dihydrolipoamide dehydrogenase, E3 LM01055 -2.58 -2.31 0.00 
subunit), pdhD metabolism 

L-lactate dehydrogenase , ldh LMOI057 
fntermediatery 

- I. 11 -0.52 0.04 metabolism 

Pyruvate kinases, pyk.A LMOl570 
r ntermediatery 

-0.60 0.38 0.03 metabolism 

Ribose 5-phosphate isomerase LM00736 
lntermediatery 

-0.81 -0.32 0.00 metabolism 

Ribulose-5-Phosphate 3-Epimerase LM00735 
Intermediatery 

-0.43 -0.48 0 00 metabolism 

Transaldolase LM02743 
lntermediatery 

-0.62 -0.13 0.29 
metabolism 

Fructose-1,6-bisphosphate aldolase ,.fbaA LM02556 
r ntermediatery 

-0.22 -0.38 0.07 metabolism 

Dihydroxyacetone kinase LM02695 
Intermediatery 

-0.49 -0.71 0.03 
metabolism 

Dihydroxyacetone kina se LM02696 
Intermediatery 

-0.51 -0.81 0 .00 
metabolism 

Dihydroxyacetone kinase 
LM02697 

Intermediatery 
0.41 -1.51 0.01 phosphotransfer protein metabolism 

Glucosam ine-6-Ph oasp hat e isomerase LM00957 
lntermediatery 

-0.52 -0.31 0.07 metabolism 

L-gl utam ine-0- fructose-6-phosphate 
LM00727 

lntermediater y 
0.76 -2.90 0.00 amidotransferase metabolism 

Phosphoglyceromutase LM02205 
fntermediatery 

-0.21 -0.42 0.03 
metabolism 

Branched-chain alpha-keto acid 
dehydrogenase E2 subunit (lipoamide LMOl374 Amino acid metabolism -0.56 -0.11 0.03 
acy ltran sferase) 

G lycerate dehydrogenases LMOI684 Amino acid metabolism -1.26 -1.22 0.00 

Glyc ine dehydrogenase ( deca rboxylating ) 
LM01350 Amino acid metabolism -0 .34 -1.68 0.00 

subunit 2 

A Ian ine dehydrogenase LMOl579 Amino acid metabolism -0.38 -0.25 0.00 

IscU protein LM02412 
Cofactor-coenzyme 

-1 .39 -1.00 0.00 
metabolism 

Cysteine desulfurase LM024 13 
Cofactor-coe nzym e 

-2.04 -0.40 0.10 
metabolism 

SufD protein LM02414 
Cofactor-coenzyme 

-1 .50 -0.94 0.00 metabolism 

Pyridoxine biosynthesis protein LM02101 
Cofactor -coenzyme 

-1.82 -0.40 0.00 
metabolism 

Pyridoxine biosynthesis amidotransferase LM02102 
Cofa ctor-coenzyme 

-0 . 15 -0.83 0.00 
metabolism 

AA3-600 quinol oxidase subunit I LMOOOl4 
Respiration and 

-0 .91 -0 09 0. I 0 
oxidative phsphorylation 
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AA3-600 quinol oxidase subunit JJJ LMOOOl 5 
Respiration and 

-0 .73 -0.50 0.03 
oxidative phsphorylation 

AA3-600 quinol oxidase subunit IV LMOOOl6 
Respiration and 

-0.52 -0.37 0.17 
oxidative phsphorylation 

H+-transporting ATP synthase chain 
LM02531 

Respiration and 
-0.58 0 . 11 0 .29 

alpha, atpA oxidative phsphorylation 

H+-transporting ATP synthase C chain , 
LM02534 

Respiration and 
-1.14 0 .32 0.00 

atpE oxidative phsphorylation 

UDP-N-acetylglucosamine 1-
LM02526 Cell wall metabolism - I. l 0 -0 .21 0.00 carboxyvinyltransferase , murA 

Peptidoglycan anchored protein (LPXTG 
LM02714 Cell wall metabolism -0 .03 -0.98 0 .00 

motif) 

Transcriptional regulator , MarR family LM00266 Transcription regulator -0.25 0 .89 0.29 

Transcriptional regulator , MarR family LM02200 Transcription regulator 0.62 -2 .07 0 .00 

Transcriptional regulator , Ly tR family LM00433 Transcription regulator -0.5 3 -0.80 0.01 

Heat-inducible transcription repressor , 
LMOl475 Tran scription regulator -0 .56 -0.16 0.00 

hrcA 

Peroxide operon regulator , p erR LMOl683 Tran scription regulator 0.28 -2.71 0 .00 

Negative regulator of genetic competence 
LM02190 Transcription regulator 0.24 -0.62 0.02 

mecA 

RNA polymerase (alpha subunit),1p oA LM02606 Transcription -0.3 I -0 .30 0.01 

RNA polymerase (beta subunit),rpoB LM00258 Transcription -0.47 -0.76 0.02 

RNA polymerase (beta' subunit) , rpoC LM00259 Transcription -0.12 -0.46 0 .00 

Ribosomal protein S6, 1psF LM00044 Protein biosynthesi s -0.47 -0.70 0.00 

Ribosomal protein S 18, rpsR LM00046 Protein biosynthe sis 0. 15 -0.67 0.00 

Ribosomal protein S2 l , rpsU LMOl468 Protein biosynthesis 1.37 -2 .22 0.00 

Ribosomal protein L 16, rp!P LM02625 Protein biosynthesis -0 .16 -0.56 0.00 

Ribosomal protein L2, rp!B LM02629 Protein biosynthesis -0 .52 -0.29 0.00 

Ribosomal protein S2, rpsB LMOI658 Protein biosynthesis -0.26 -1.04 0.02 

Ribosomal protein L27 , rpmA LMOJ540 Protein biosynthesis -0.2 I -0.60 0.03 

Hypothetical ribosome-associated protein LMOl54l Protein biosynthesis 0.00 -0.59 0.03 

Ribosomal protein L 15, rplO LM02613 Protein biosynthesis -0.62 0.06 0.23 
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Ribosomal protein L23 , rp/W LM02630 Protein biosynthes is -0 .38 -0.19 0.29 

Translation elongation factor G 
LMO 

Protein biosynthesis -1.00 -0.35 0.02 2654 

Translation elongation factor EF-Tu 
LMO 

Protein biosynthesis -2.50 -1.13 0.00 2653 

Ribosomal-protein-alanine 
LMOl301 Protein biosynthesis -0 . 18 -0.40 0.23 acetyltransferase 

Ribosome associated factor Y (global 
LM02511 Protein biosynthesi s 1.41 -3 .85 0 .00 translation inhibitor) 

A cety ltransferase LM00624 
Post translational 

0.39 -0.82 0.00 modification 

ATP-dependent endopeptida se clp ATP-
LM00997 Protein degradation -0.70 -1.23 0.00 binding subunit , clpE 

ATP-dependent endopeptidase clp ATP-
LMOl268 Protein degradation -0.78 -0.41 0.17 binding subunit , clpX 

ATP-dependent clp endopeptidase Clp 
LM02206 Protein degradation -0 .72 -0.07 0.10 ATP-binding chain B, ClpB 

Oxidoreducatse involved in TATpathway 
LM00737 Secretion 0.61 -2.64 0.00 secreted proteins 

60 kDa inner membrane protein yid C LM0!379 Secretion -0 .59 -0.57 0.00 

Protein translocase subunit sec Y LM02612 Secretion -0.79 -0.03 0.02 

1-phosphatidylinositol phosphodiesterase 
LM00201 Virulence -0.33 -0.92 0.00 precursor , plcA 

listeriolysin O precursor, hly LM00202 Virulence 1.31 -2.70 0.00 

Invasion associated protein , iap LM00582 Virulence -0 .99 -0.58 0.00 

Fibronectin-binding protein LM00721 Virulence 0.76 -1.44 0.00 

General stres s protein LMOl601 Stress 0.16 -0.73 0.00 

Universal stress protein family LMOl580 Stress 0.66 -0.19 0.00 

Toxic ion resistance proteins LMOl967 Stress -0.74 -0.29 0.00 

Arsenate reductase LM02230 Stress 0.59 -1.03 0.00 

Superoxide dismutase , sod LMOl439 Stress -1.39 -4.35 0.00 

Non-heme iron-binding ferritin ,_Fi LM00943 Stress 1.23 -3 .65 0 00 

Peptide methionine sulfoxide reductase s, 
LMOl860 Stress -1 .68 -0.25 0.00 

msrA 

Peptide methionine sulfoxide reductase, 
LMOl859 Stress 0.19 -0 .90 0.00 msrB 
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Organic hydroperoxide resistance 
LM02199 Stress 0.79 -1.51 0.00 protein 

Thioredoxin reductase, lrxB LM02478 Stress -1.61 -0.63 0.00 

Heat shock protein , grpE LMOl474 Stress -0 .87 -0.03 0.04 

Class I heat-shock protein (chaperonin), 
LM02068 Stress -0.88 -0.44 0 .03 groEL 

Single-stra nded DNA-binding protein , 
LM00045 Stress 0.53 -3.84 0.00 ssb 

Excinuclease ABC (subunit A), uvrA LM02488 Stress -0.53 -0 .84 0.04 

Endonuclease involved in recombination LMOJ502 Stress /Cell division -0.4 8 -0.86 0.03 

DNA gyrase subunit B, gyrB LM00006 Cell division -0.85 -0.29 0.00 

DNA gyrase subunit A, gyrA LM00007 Cell division -0 .5 1 -0. 14 0.02 

A TPase associated with chromosome 
LM02759 Ce ll division 0.46 -0.77 0 00 arc hitecture /replic ation 

Ce ll division initiation protein DivlVA LMOl888 Ce ll d ivis ion -0.65 -0.28 0.03 

Hypothetical Protein LM00377 Unknown -0 08 -0 .73 0.00 

Hypothetical Protein LM00393 Unknown 0.87 -0 .95 0.00 

Hypothetical Protein LM00647 Unknown 1.00 -2.42 0.00 

Hypothetical Protein LMOl380 Unknown -0.63 -0.07 0.00 

Hypothetical Protein LMOl423 Unk11own -1 .04 - 1.28 0.00 

Hypothetical Protein LMO l612 Unknown 1.20 -1.69 0.00 

Hypothetical Protein LM02257 Unknown 0.74 -0 .75 0.00 

Hypothetical Protein LM02432 Unknown 3.52 -3.23 0.00 

Hypothetical Protein LM02828 Unknown 0.79 -1.05 0.00 

Hypothetical Protein LM02156 Unknown 0.72 -0.88 0.01 

Hypothetical Protein LMO l8 93 Unknown -0 .06 -0 .5 1 0.03 

Hypothetical Protein LMOl980 Unknown 0.58 -0.39 0.07 

Hypothetical membrane spanning protein LM00625 Unknown 0.12 -1.29 0.00 
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Hypothetical membrane spanning protein LM00653 Unknown -0.52 -0.31 0.01 

Hypothetical membrane associated 
LM02119 Unknown -0.62 -0 .54 0 .00 protein 

Hypothetical membrane spanning protein LMOl690 Unknown -1.04 -0 .63 0.00 

GatB/ Yqey domain protein LMOl468 Unknown 0.25 -0.92 0.00 

Hypothetical cytosolic protein LMOl501 Unknown 0.05 -1.45 0 .00 

Hypothetical cytosol ic protein LM02472 Unknown -0.58 0.21 0 .00 

Hypothetical cytosolic protein LM00964 Unknown -3.18 -0.84 0.00 

Cytosolic protein containing multiple 
LMOl576 Unknown - I. 18 -0.16 0.00 

CBS domains 

Stage V sporulation protein G LMOOl97 Others -0.38 -0 .31 0.23 

Stage V sporulation protein G LMOOl96 Others -0 .72 -0.27 0.23 

Acetyl esterase LM02089 Others -0.30 -1.19 0.00 

Protease I LM02256 Others 0.83 -2 .28 0.00 

Glyoxalase family prot ein LM02437 Others 2.91 -4.22 0.00 

Predicted hydro lases or acyltransferases 
LM02453 Others -0.80 0.13 0.10 

(alpha/beta hydrolase superfarnily) 

Hydrolase (HAD superfamily) LMOl399 Others -0 .87 -0.38 0.17 

Putative transcriptional regulator, AraC 
LMOOI09 Others -0.50 -0.14 0. 10 

family 

Putative ranscriptional regulator , ArsR 
LMOOIOI Others -0 .30 0 .58 0.03 

family 

Putative tran scription regulator LM00740 Others 0.13 0.76 0.29 

Phosphoesterase, DHH family protein LMOl575 Others -0 .56 -0 .37 0.00 

Carboxylesterase LM02452 Others -0.92 0.03 0.00 

Glycerol uptake facilitator protein LMOl539 Ot hers -0.56 -0.37 0.07 

Permease LM02148 Others 0.15 0.64 0. 17 
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Fig 4.1. Membran e permeabili zation determined by the increase in fluorescence (RFU) 
with PI uptake during treatment of L. monocyto genes with SP 25A and RLs (A), and cell 
growth when treated with SP 25A, RLs and saline (control) over a period of 120 min (B). 



CHAPTER 5 

SUMMARY 
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Development of antibiotic resistance in bacteria is one of the most troublesome 

issues facing health sciences today. There is no certain way to circumvent this problem , 

but discovery and development of novel compounds that inhibit bacteria by different 

mechanisms is required on a consistent basis. Secondary metabolites from 

microorganisms have been the most abundant source of new antimicrobials in the past. 

This study used two secondar y metabolites from fluorescent pseudomonads , 

syringopeptin 25A (SP 25A) and rhamnolipids (RLs) , a lipodepsipeptide and a surfactant, 

respectively , to determine the potential for their use as antimicrobial agents. 

Several criteria must be met before a compound can be added to the arsenal of 

antibiotics in daily use: 1) the range of activity against bacteria must be known , 2) the 

MIC must be low enough to permit active doses that are not toxic , 3) an estimation of the 

mechanism of action must be determined , 4) the pharmacokinetics of the compound fate 

must be known, and 5) the compound must be approved for human use. This study 

focused on the first three criteria as a measure of the need to pursue criteria four and five. 

Both the compounds, though from different chemical classes , are thought to act 

on the bacterial cell membrane to cause cell lysis and death . RLs have a very low critical 

micelle concentration (1-1 Oµg/ml) and are thought to have a detergent-like action on the 

bacterial cell membrane causing it to dissolve (2). SP 25A, and syringopeptins generally , 
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on the other hand is thought to form transmembrane pores in the cell membrane; thereby , 

disrupting the permeability barrier of the bacteria ultimately leading to lysis ( 4, 7). 

Previous studies with these compounds showed that they inhibit a number of bacteria , but 

the range of organisms used was somewhat limited (1, 2, 5, 6). However , an ever­

increasing data set is emerging that is challenging these models for antimicrobial action. 

These studies screened a large number of diverse bacteria and mold to determine the 

activity range of these two compounds , subsequently, used gene expression arrays during 

exposure of Listeria monocytogenes to sub-M IC doses of these compounds to determine 

non-membrane targets associated with growth inhibition. 

Hypothesis 

Syringopeptin 25A (SP 25A) and rhamnolipids (RLs) inhibit many bacterial 

species by disrupting the cellular membrane . 

Objectives 

1. Screen candidate compounds for microbial inhibition and determine the minimum 

inhibitory concentration for these compounds against selected bacteria 

2. Determine the cellular responses to sub-MIC levels of SP 25A and RLs using 

gene express10n arrays. 
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To screen the antimicrobial potential of these compounds they were tested against 27 

different organisms , which included Gram-positive and Gram-negative bacteria and mold 

that are multiple drug resistant human pathogens, food spoilage organisms, bacterial 

spores, and fermentative bacteria . The initial screening was done using a rapid technique 

to determine the membrane permeabilization with a fluorescent DNA-binding dye that is 

blocked from entering the cell by an intact membrane. Subsequently, the MIC for each 

compound with each inhibited organism. Both the compounds inhibited growth of all the 

Gram-positive organisms . Mycobacterium smegmatis, the surrogate test organisms for 

Mycobacterium tuberculosis, was also inhibited. SP 25A also inhibited the. Interestingly , 

SP 25A inhibited two multiple antibiotic resistant strains of Staphylococcus aureus and 

Enterococcus faecalis and spore germination of bacterial spores. For all the organisms 

tested SP 25A showed similarly lower MIC values as compared to RLs with a range from 

3 µg/ml to 16 µg/ml; reasonable concentrations for therapeutic use . 

While the MICs were reasonable , we sought to reduce it further by combining the 

compounds to determine if they were synergistic in their activity. We demonstrated a 

synergistic activity against Listeria monocytogenes , which allowed the concentration of 

SP 25A to be reduced to below the MIC level , yet increase the cellular inhibition Neither 

compound was toxic to three mammalian cell lines at the concentration of the effective 

MICs. Hence , taking into account the lower MICs, anti-spore activity, antimycobacterial 

activity, inhibition of multiple antibiotic resistant strains and no toxicity to mammalian 

cell lines SP 25A appears to be a promising therapeutic agent. 
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During the course of this study we observed a lack of correlation between 

membrane permeabilization and growth inhibition for SP 25A. When L. monocytogenes 

was challenged with sub-MIC doses of both the compounds, RLs induced PI uptake 

while SP 25A did not , yet it completely inhibited cell growth. A number of other groups 

have also observed that membrane-active antimicrobial peptides exert effects on cell 

growth beyond their ability to interact with the membrane (3, 8). This apparent lack of 

correlation between membrane permeabilization and inhibition of cell growth led us to 

suspect that the pore forming model alone may not be responsible for all of the 

antimicrobial properties of SP 25A. Therefore, we hypothesized that SP 25A represses 

gene expression to cause growth inhibition . To test this we challenged L. monocytogenes 

with sub-MIC concentrations of SP 25A and RLs and monitored gene expression profiles 

before treatment with antimicrobials , 30 min after treatment , and 120 min after treatment 

using a custom commercial high-density, whole genome oligonucleotide arrays (Chapter 

4) . 

The gene expression profile was distinct between the two antimicrobials. SP 25A 

repressed genes required for cell division , chromosome replication and segregation, 

intermediary metabolism , transcription , translation , and virulence genes. Conversely, RLs 

induced a broad set of genes that were related to energy production. Hence , these data 

indicate that even though both the antimicrobials may interact with a conunon cellular 

structure (i.e. the cell membrane) their mode of action is different, with SP 25A having 

little ability to damage the membrane, but substantial ability to inhibit production of 

proteins critical to cellular replication . This supports the concept that antimicrobial 
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peptides do not entirely rely upon their membrane permeabilizing ability to exert their 

anti bacterial action . This study brings forth SP 25A as a promising therapeutic agent that 

has a unique cellular target (e.g. Div IVA) to inhibit cell growth of a pathogenic bacterium 

at a reasonable MIC. 

Future work with this compound needs to demonstrate the other criteria for 

antibiotics. Additional work needs to be done to assess the antimycobacterial potential 

and the efficacy in vivo for the inhibition of other Gram-positive pathogens. 
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Fig A2. 13C NMR spectra of RL mixtur e obtained from Jeniel Biotech. 
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Fig B 1. Mean PI uptake by L. lactis IL1403 treated with saline (negative control for the 
PI assay) over a period of 120 min. 
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APPENDIXC 

R CODE F'OR DAT A NORMALIZATION 



Code For RMA Normalization In R Of Raw 
Data Received From NimbleGen Systems: 

Library (affy) 

Data=read. table(" lmono . txt" ,nrows=400000,sep="\t" ,check.names=false,header=true) 

Corrected.data<-apply( as.matrix( data[,3: 14 ]),2,bg.adjust) 

Normalized. data <-normalize . quantiles( corrected. data) 

Probe.data <-cbind( data[ , 1 :2],normalized.data) 

Expression.data<-data.frame() 

Seq.ids <-unique(a s.vector(probe.data$seq_id)) 

Express ion .data <-data.frame() 

For (seq.id in seq.ids) { probes <-

100 

new("probeset" ,id=seq .id,pm =as.matrix(subset(probe.data[ ,3: 14] ,probe.data$seq_id ==se 

q.id))) 

Ev= express.summary .stat(probes ,summary="medianpolish" ,pmcorrect="pmonly ") 

Expression.data<-rbind( expression.data ,t( ev$exprs )) 

} 

Expression.data<-as . data. frame( cbind( seq .ids,expression.data)) 

Names( expression.data) <-names( data)[ c( 1,3: 15)] 

write. table( expression.data,file=" nfile . txt" ,col.names=na ,quote=f ,sep="\t") 
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APPENDIXD. 

HEATMAPS OF EXPRESSION DAT A 
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