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ABSTRACT 

Development and Characterization of 

Eukaryotic Biomimetic Liposomes 

by 

Bradley Jay Taylor, Doctor of Philosophy 

Utah State University, 2004 

Major Professor: Dr. Marie K. Walsh 
Department: Nutrition and Food Sciences 

l1l 

This study developed and characterized phospholipid vesicles, or liposomes, that 

mimic cell surfaces. Microemulsified liposomes contained biotinylated 

phosphatidylethanolamine, allowing them to be immobilized to avidin-coated glass. 

Laminin (LN), glycosphingolipids (GMl and GM3), and Escherichia coli's 

mechanosensitive channel of large conductance (EcoMscL) were embedded into 

liposome membranes. It was determined whether these embedded molecules exhibited 

their physiological roles of adhesion, cell recognition, and mechanosensation, 

respectively. Confocal laser scanning microscopy (CLSM) was employed to examine the 

interaction of fluorescently probed proteins, toxins, and bacteria with the immobilized 

microemulsified liposomes. Capture of individual and simultaneous multiple species of 

bacteria by GMl, GM3, or LN liposomes was quantified using ELISA and PCR. 

Surface-bound liposomes were unilamellar and immovable, allowing removal of 

unincorporated probes and biomolecules. Liposomes remained intact and stable against 
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leakage of encapsulated sulforhodamine B for several months after immobilization. 

Functional reconstitution of EcoMscL was examined using CLSM during modulations in 

the immursing solution. 

Cholera toxin(~ subunit) (CTB), bovine lactoferrin (BLF), and E. coli 0157:H7 

were co-localized proximate to the surface of GMl liposomes. ELISAs determined E. 

coli 0157:H7 and Salmonella enteritidis were captured on GMl liposomes containing 

GMI at 8.9 molar percent of total lipid. Listeria monocytogenes and Listeria innocua 

were not captured on the same liposomes. 

PCR identified the capture of specific bacterial species from individual species 

and mixtures of several species on liposomes. Simultaneous assays with mixtures of 

multiple species showed that the receptor-associated binding of bacteria, described with 

PCR assays of an individual species, were independent of competitive microorganisms. 

L. monocytogenes and L. innocua were more frequently bound to LN liposomes than 

other liposomes, indicating LN promotes adhesion of both the pathogenic and a non­

pathogenic strain of Listeria. E. coli 0157:H7 was more frequently captured on GMI 

liposomes than other liposomes, indicating a specificity for this bacteria. S. enteritidis 

bound to all liposomes, indicating a non-specific interaction. 

Known eukaryotic biomolecules implicated in cell recognition, adhesion, and 

mechanosensation were embedded in a system of artificial bilayers immobilized on a 

solid support. Liposomes constitute a biomimetic capable of specifically interacting and 

capturing proteins, toxins, and bacteria in solution. 

(190 pages) 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Scientists are now learning to produce more complex materials and machines 

inspired by what is seen in nature. The most remarkable and technologically attractive 

differences between natural and synthetic materials are the great hierarchical complexity 

and multifunctionality of natural materials. New materials are being synthesized, not 

identical to, but patterned after or analogous to those in plants, animals, and 

microorganisms. These biomimetic structures respond to biologic stimuli similar to their 

natural counterparts. Technology is advancing at an unprecedented pace and scientists 

see the need for more advanced materials for medically exploring and manipulating the 

normal and ailing human body . Deep oceanic and space exploration require new, 

dynamic, and complex instrumentation using advanced materials. 

Biomimetics are human-made processes, substances, devices, or systems that 

imitate or mimic nature. The art and science of designing and building biomimetic 

apparatus is called biomimetics, and is of special interest to researchers in 

nanotechnology, robotics, artificial intelligence, and medicine. Biomimetics are 

changing molecular biology research and look to replace it as the most challenging and 

important biological science of the 21 si century [l]. This revolution is the extension of 

the directions and achievements in the engineering design of composite materials and 

robotics. Molecular biology contributes to this goal. The achievement of this goal will 



result from renewed vigor in basic research on the mechanisms of the function of cells, 

tissues, organs, organ systems, and the organisms of which they are parts. 

2 

This study focused on developing and characterizing a liposome-based system 

designed to mimic cell surfaces by incorporating molecules into artificial bilayers, which 

retained biological activity in vitro. Biomimetic liposomes composed of lipids and 

proteins imitating those found in human systems, were immobilized onto a glass surface. 

The physiological activity of membrane proteins and glycosphingolipids in lipid bilayers 

was examined using confocal laser scanning microscopy (CLSM). The information 

garnered from this research may lead to the development of beneficial biosensors to study 

molecular interactions of proteins, lipids, and microorganisms. A biosensor, based on 

similar technology , which captures and detects multiple medically important pathogenic 

agents and proteins , would reduce time requirements for presumptive positive tests to 

minutes rather than hours or days as are currently required. Specifically, increased 

understanding immobilized liposomes is necessary before liposome-based biosensors can 

be developed. 

The liposomes and membrane bound proteins featured in this study, functioned as 

a dynamic system immobilized covalently on the surface of glass that responded to 

external chemical and physical stimulation. CLSM was used to visualize and 

characterize immobilized microemulsified liposomes. Surface-available receptor 

molecules, Monosialoganglioside GM 1 (GM 1) or laminin (LN), anchored in the artificial 

lipid bilayers of the liposomes, were exposed to solutions containing fluorescently­

labeled proteins. Subsequently, interactions of proteins or bacteria and liposomes, 

indicated by co-localization of probes, were studied. Similarly, the interaction between 



3 
liposomes and viable bacteria in solution was studied using CLSM, enzyme-linked 

immunosorbant assays (ELISAs) and polymerase chain reaction (PCR) identification 

methods. Finally, CLSM was utilized to study the physiological response of proteins 

embedded in the lipid bilayer (Escherichia coli's mechanosensitive channel of large 

conductance, denoted EcoMscL). New CLSM methodologies were developed to observe 

interactions between bacteria interacting with specific eukaryotic receptor molecules at 

the surface of liposomes. The capture and interactions of these bacteria with gangliosides 

(GMI and GM3) and receptor protein LN was observed and imaged using CLSM 

supported by PCR identification and ELISAs. Standard t-tests and logistic regression 

were used to statistically analyze microbial binding of immobilized biomimetic 

liposomes. 

Antibodies are commonly used as capture molecules in molecular biology for 

biosensors because they offer a high degree of specificity . The most well known 

commercial example of an antibody-based detection system is the home pregnancy test. 

The commercially available products are based on an ELISA developed for the 

measurement of microamounts of substances in samples, in this case, human chorionic 

gonadotropin in urine. The specificity of an ELISA makes these tests useful in routine 

analytical determinations regarding many small molecules and even bacteria such as 

foodborne pathogens. It is desirable to replace antibodies with other capture molecules 

due to their susceptibility to degradation in dynamic environmental conditions (i.e., low 

or high pH, low water activity, and ionic strength). Antibodies are also subject to 

variation among lots, leading to inconsistent binding of antigens in routine laboratory 

tests. 
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Replacement of antibodies with other capture molecules is a paradigm shift 

because alternative molecules may lack the required binding and specificity. Molecular 

mechanisms resulting in recognition and attachment to host cells are remarkably specific 

and exquisitely sensitive. The approach in this work exploited molecular 

complementarity between the signal and receptor molecules mediated by noncovalent 

forces that occur in enzyme-substrate and antigen-antibody interactions. The mechanism 

of molecular pathogenesis by bacteria and viruses occurs via specific receptors in the host 

cell membrane and exposed to the cell surface. Eukaryotic cell binding is a prerequisite 

to invasion and pathogenesis by microbes and toxins. While many types of cell surface 

interactions can occur, glycoproteins and glycolipids are the most common receptors for 

pathogens [2]. Membrane receptors of microbial pathogens include proteins, 

phospholipids, and glycolipids [3]. 

Glycosphingolipids ' relative stability and binding make them attractive antibody 

replacement molecules. Glycoshingolipids are stable to drying, stable in organic 

solvents, and bind bacteria including emerging and bioengineered pathogens. These 

complex lipids also and have protein (toxins, hormones, etc.) and bacterial association 

constants that are similar when compared to antibodies specific for the same antigen. 

The association constant between toxins and various gangliosides ranges from 10
5 

to 10
8 

M-1 [4] and dissociation constants up to 10 10 M have been reported [5]. Therefore, these 

interactions are at least as strong as antibody/antigen complexes and are sufficiently 

strong to capture and tightly hold bacteria and proteins (toxins, hormones, etc.). As 

multiple bacterial species recognize and tightly bind membrane receptors, liposomes 

embedding gangliosides or glycoprotein molecules can be used to capture cells in a 



mixed culture. In contrast, antibodies are specific for a single antigen and therefore are 

ineffective in capturing multiple species in mixed cultures. 
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The environment to which it is exposed influences the system developed and 

characterized during the course of the study, consisting of immobilized liposomes on 

glass. The modified glass surface facilitates imaging using progressive CLSM 

techniques. Liposomes are located a finite distance from the glass solid surface after 

immobilization via the avidin biotin complex. This introduces an element of spatial 

control resulting in the ability to view multiple liposomes in a single xy plane. 

Immobilization also allows unencapsulated and unincorporated materials to be physically 

removed via wash steps leaving the surface and liposomes, including encapsulated and 

embedded molecules of interest, intact. CLSM provides a means for the direct 

observation and characterization of microbes and proteins before, during, and after 

attachment [6]. It allows for direct monitoring of the Iiposomes during a variety of 

experimental conditions. 

LITERATURE REVIEW 

Liposomes: Current Methodologies. A liposome is a small capsule, made of 

phospholipids. Phospholipids are unique in that half of the molecule is soluble in water 

and half is not. Phospholipids form stable sheets of molecules in solution, in which the 

polar heads point outwards interacting with the aqueous solution and the nonpolar 

hydrophobic tails associate together in the middle of the sheet. A dynamic, intrinsically 

stable sphere vesicle is formed trapping water in the interior. This aqueous phase of the 



vesicle is encapsulated by a single artificial lipid bilayer. The bilayer consists of an 

ordered sheet two molecules thick measuring approximately 47 A [7]. A vesicle defined 

by an ordered bilayer sheet of phospholipids is a unilamellar liposome. Multilamellar 

liposomes contain multiple bilayers of phospholipids stacked inside each other. 

Liposomes have been used to deliver drugs, notably peptide drugs, because they 

offer protection from digestion in the stomach thereby ensuring delivery and absorption 

in the intestine, where they are absorbed. A specific organ can be targeted using 

liposomes either absorbed or injected into the blood stream. In the latter example, the 

organ recognizes the lipids and specifically absorbs them and the encapsulated contents. 
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Trapping molecules in liposomes is a form of encapsulation, and as such can be 

used in many other areas including biosensors. In the past liposome biosensor 

applications have relied on the high-electrical resistance of bilayer films or optical 

properties of films. Electrical sensors utilizing liposomes are based on the ability of 

some proteins to carry ions across a lipid membrane. Some membrane and transport 

proteins can be inserted into the artificial bilayer of a liposome allowing cross-membrane 

movement involving molecules inside or outside the liposome while maintaining the 

integrity of the sphere. The protein allows an amino acid, a protein, or simply ions to 

cross the membrane. The membrane conducts current in the presence of both charged 

molecules and a transport protein. In the absence of the transport protein, the membrane 

has a much higher resistance, because there is no path for any other charged species to 

cross. Thus the membrane can be used as a very sensitive detection system. 

Optical sensors involving liposomes rely on the interference effects of these 

bilayers on reflected light. Light reflectance is critically dependent upon the thickness of 



these ultra thin layers. When complexes form at the surface of the artificial bilayer (i.e. 

antibodies covalently bound to the bilayer binding antigens in solution) the thickness of 

the liposome bilayer is increased and this event can be detected optically. 

The weakness of liposome based sensors stems from their mechanical and 

chemical instability. Many of the potentially useful proteins for liposome based 

biosensors are also chemically unstable or sensitive. Thus, liposome properties have 

been demonstrated in laboratories for some very simple, model systems. Only recently 

have results translated into any realistic sensor applications [8]. 
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Liposomes are used extensively in the laboratory for diverse research, diagnostic 

and pharmacologic applications. The application and extension of research involving 

liposomes are limited by lack of technology allowing the reproducible manufacture of 

liposomes of predictable and uniform size. A variety of different approaches including 

freeze-thaw, reverse phase evaporation, sonication , and extrusion have been described for 

preparing liposomes [9-15]. Use of liposomes in drug delivery as target carriers of drugs 

and enzymes is extensively studied in pharmaceutical and cosmetic industries [ 12, 16, 

17]. 

Unilamellar vesicles are more appealing than multi-lamellar vesicles (ML Vs) 

when developing in vitro models of lipid bilayers. One concern with ML Vs is that the 

interaction between different bilayers , which is absent in unilamellar vesicles and most 

membranes, might alter the bilayer structure. Interactions between unilamellar bilayers 

are too small to affect the fully hydrated bilayer structure of microemulsified liposomes 

because the water layer is appreciable [18]. Characterization of liposomes prepared using 

a microemulsifier found that using the principles of fluid dynamics , unilamellar 



liposomes are created in a reproducible manner [19, 20] . Using the microfluidizing 

method, liposomes are prepared in amounts sufficient for pharmaceutical quality 

assessment, toxicological studies and multicenter clinical trials [20]. The automated 

high-pressure system uses a "microemulsion" process avai lable commercially as the 

Microfluidizer™ (Microfluidics Corp., Newton, MA, USA). Microfluidization of lipids 

results in uniform lipid vesicle dispersions with the ability to encapsulate bioactive 

macromolecules. The encapsulation and protective effect of the liposome vesicle is only 

effective for a finite period of time. Compromised microemulsified liposomes leach or 

leak encapsulated material. 

8 

MELs, or microemul sified liposomes, generally contain phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), sphingomyelin (SPM), 

cholesterol and triacylglycerols. Glycosphingolipids, including gangliosides, can be 

incorporated into liposomes during their formation since they contain a hydrophobic 

moiety [21]. Viruses fuse with liposomes containing PC : PE:cholesterol (1 : 1 : 1.5) and 

SPM [22]. Phospholipids, PE and PC can be derivatized to contain biotin or an amino 

functional group that can then be used to covalently link the liposomes to a glass surface. 

Currently , most liposomes are noncovalently adsorbed to plastic surfaces. Adsorption 

has many drawbacks, including establishment of an equilibrium with the liquid media, 

thus desorption is common. Immobilization facilitates wash steps and removal of 

unincorporated and weakly associated lipids, probes, and vesicles. 

Glycolipids can be directly immobilized to a surface, or be incorporated into a 

liposome, which is then attached to a surface. Various chemistries are available for the 

covalent attachment to derivatized glass surfaces [23, 24]. Typically glass is silanized to 
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provide an active attachment site on the glass, such as derivatization with 3-

aminopropyl-triethoxysilane (APTES) to generating free amino groups. APTES beads 

can be succinylated with succinic anhydride to generate surface carboxyl groups. For the 

immobilization of gangliosides , saponification generates a free amino group to conjugate 

the ganglioside to succinylated glass using water-soluble carbodiimide. This forms a 

covalent link between the ganglioside and the glass surface. Similar methods can be used 

to covalently attach avidin to glass via the formation of a stable amide bond [23]. 

Reconstituted EcoMscL and Glycolipids in Liposomes. For many years it has 

been assumed that the permeability of the lipid bilayer was sufficient to allow the rapid 

equilibration of water during dramatic changes in the osmolarity of the medium. Over 

the past several years is has been established that bacteria have in their cytoplasmic 

membranes relatively large mechanosensitive channels. In E.coli at least three channels 

of different physical dimensions and conductances have been identified by patch clamp 

techniques [25]. The channels display little ion or solute preference with ions moving in 

both directions through channels. Osmolites that migrate through channels include: K+, 

ATP, compatible solutes , glutamate. At neutral pH, E. coli cells recover rapidly from the 

transient opening of the channels , but are completely inhibited by sustained activity [25]. 

The proposed role of mechanosensitive channels is protection of the integrity of 

the cell. Two conditions generate high turgor in the cell: the accumulation of compatible 

solutes, or "osmotic balancing," and the transfer of the cell into media of lower 

osmolarity. In both cases the cell responds with the release of solutes from the cytoplasm 

to reduce the turgor pressure. The discovery of the genes coupled with membrane 

reconstitution of the three identified mechanosensitive channels of large, small, and mini 



conductance (respectively termed MscL, MscS, and MscM) in E. coli has elucidated 

the roles of the Msc channels in the physiology of E. coli [25). The MscL and MscS 

channels of E. coli remain active after solubilization and reconstitution into liposomes 

[26). EcoMscL has the highest pressure threshold for activation and numerous reports 

have shown that the EcoMscL protein is probably a pentamer of 17 kDa subunits that 

form a 3 nS conductance [27). The size of this channel is such that the small protein 

thioredoxin can exit the cell via this channel during hypoosmotic shock [25, 27, 28]. 
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EcoMscL has been reconstituted into large, and apparently unilamellar, blisters 

formed on the surface of multilayer liposomes for patch-clamp experiments [28]. Other 

methods include: 1) disrupting bacterial membranes by French-press and reconstituting 

EcoMscL into patchable artificial liposomes, 2) solubilizing bacterial membranes in the 

detergent octylglucoside followed by reconstitution into liposomes and dialysis to remove 

the detergent, and 3) after detergent solubilization, EcoMscL can then be purified by 

affinity chromatography and reconstituted into artificial liposomes [29-34]. The protein 's 

biological activity can be monitored after incorporation in artificial bilayers. 

EcoMscL is a thermostable protein and does not undergo any unfolding of its 

secondary structure between 25-95°C [29]. High thermal stability is common for 

membrane proteins. Its structure is highly helical with roughly 111 amino acids in a­

helical configuration oriented in a net transbilayer orientation. Only one-third of the 

protein is protected from amide H+;o + exchange by the lipid bilayer [29, 30]. 

Liposome Interaction and Binding Studies. Concanavalin A (Con-A) has been 

studied in a liposome-based model system for the simulation of lectin-induced cell 

adhesion using CLSM [35]. The liposomes were extruded (Extruder, Lipex 
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Biomembrane, Vancouver, Canada) 6 times through a 400 nm polycarbonate 

membrane (Costar, Bodenheim, Germany). A head-group labeled phospholipis, 7-nitro-

2-1,3-benzoxadiazol-4-yl phosphotidylethanolamine (NBD-PE), was incorporated into all 

preparations at a concentration of 1 mol% [35). Con-A was coupled by covalent linkage 

to a hydrophobic anchor and found in large unilamellar vesicles formed through 

extrusion. The liposomes in the model were able to simulate the lectin-mediated 

adhesion of cells in a shear flow [35). 

A general method for measuring interaction of liposome-protein (or potentially 

small molecules) without the use of CLSM was developed utilizing biotinylated 

liposomes to incubate with interactants [36). Streptavidin-coated paramagnetic resins 

were added to the liposomes and then quickly separated using a magnetic field or slow 

speed centrifugation. The concentration of unbound materials in the supernatants was 

directly determined [36]. 

Bacterial and Toxin Pathogenesis Initiated by Adhesion. Bacterial and protein 

(toxin) pathogenesis is often initiated by the attachment of the pathogen to the surface of 

the host cell [37, 38). Attachment, or adhesion, occurs by a variety of mechanisms that 

depend on the pathogen species or toxin and host cell type, and can result in subsequent 

internalization of the pathogen or toxin by phagocytosis or by endocytosis. In most 

cases, host and pathogen cells, or toxins, participate in this adhesion process, and activate 

or modify host cell signaling pathways [39, 40). Stimulation of these signaling pathways 

can lead to enhancement of pathogen attachment or invasion. Signaling is mediated 

through a variety of cell surface receptors. 
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Adhesion involves components of both the pathogen and host cell, and can lead 

to internalization of the pathogen. Bacterial pathogens produce molecules or 

macromolecular structures that are generally referred to as adhesins [ 41-43). Adhesins 

are grouped into two broad classes termed fimbrial (pili or pili-like) adhesins which are 

filamentous structures and afimbrial adhesins which are usually proteins and account for 

most other adherence molecules [44). The adhesin molecules or structures specifically 

interact with host cell receptors to facilitate attachment and subsequently invasion. 

Examples of bacterial adhesins include invasin (Yersinia ssp.), internalin (Listeria ssp.), 

MarkD (K. pneumoniae), and FimH (Salmonella ssp.) [38, 43, 45). 

There are a variety of mammalian cell surface receptors that interact with 

bacterial adhesins . These receptors can be proteins (integrins, cadherins, LN, fibronectin, 

and type V collagen), glycolipids such as gangliosides, or carbohydrates such as N­

acetylneuraminic acid (sialic acid) [35, 46-48). They can act alone or in combination 

with additional receptors. Advances in cellular microbiology have revealed some of the 

specific molecular events that occur following attachment of adhesins to these receptors. 

Among the changes that often occur in the host cell after pathogen binding are 

modifications of multiple signal transduction pathways and remodeling of the 

cytoskeleton [ 4 7]. 

There are two identified general mechanisms by which pathogenic bacteria invade 

non-phagocytic host cells. Both involve significant alterations in host cell signal 

transduction and rearrangement of the actin filaments. Some Salmonella and Shigella 

species utilize a "trigger" mechanism characterized by the induction of host cell 

protrusions that "reach up and around" the pathogen and ultimately leads to invasion into 
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the host cell [3]. Listeria monocytogenes and Yersinia pseudotuberculosis utilize a 

"zipper" mechanism where the pathogen presumably slides or zips into the cell surface to 

accomplish invasion [39, 47]. Both the "trigger" and "zipper" mechanisms are initiated 

with modifications of host signal transduction pathways that lead to major local 

rearrangements of the actin cytoskeleton [39, 49, 50]. Salmonella typhimurium, a close 

relative of E.coli, is an enteric pathogen that is easily cultivated and genetically 

manipulated. As an extremely valuable tool for studying invasion and intracellular 

survival, this Salmonella species has enabled researchers to identify and characterize 

many of the factors involved in these processes [ 49, 50]. Salmonella species produce a 

number of adhesins. These include type 1 fimbriae, plasmid-encoded fimbriae, long 

polar fimbriae and thin aggregative fimbriae. 

Glycoproteins and Glycolipids. Most of the proteins present on the surface of 

cells, viruses, and in the blood of animals are glycosylated. Sugars can be linked onto the 

proteins through the amide groups of asparagine in the short peptide sequence Asn-X­

Ser/Thr, or more rarely, through the hydroxyl of serine and threonine. Therefore the 

extent of glycosylation can be predicted from a protein's amino acid sequence, therefore 

from the sequence of its gene. 

Such glycosylation is a form of co- and/or post-translational modification, 

meaning modification of the protein's chemistry during or after translation. Other protein 

glycosylation, termed glycation, is chemical and occurs whenever a protein is exposed to 

sugar in solution for a considerable amount of time. 

Although proteins have well-defined glycosylation sites where carbohydrate 

moities are added , which carbohydrate moiety is coupled on depends on many vaiiables. 
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Among these variables are the cells the proteins are made in, and the metabolic state of 

the cells [51]. Glyconjugates commonly act as receptors for a variety of compounds 

including interferon, serotonin, and glycoprotein hormones [52) . Thus proteins come in 

variants with different sugars linked onto the same polypeptide chain- these variants are 

called glycoforms. One cell can also make a mixture of different glycoforms. The 

different glycoforms have different functional properties in many cases, and are 'seen' as 

different by the immune system. 

LN is a large multidomain glycoprotein important in cellular functions including 

induction of cell adhesion, growth promotion, and enhancement of the metastatic 

phenotype of tumor cells [53]. LN is a heterotrimeric glycoprotein that is found only in 

the basement membrane of tissues. LN is composed of a, ~' and y chains held together in 

an alpha-helical coiled-coil structure linked by disulfide bridges to form a characteristic 

asymmetric cruciform structure [54). These classes of chains are in turn composed of 

subunits eight of which have been identified and characterized: A, B 1, B2, S, M, K , B2t, 

and B lk. Normal and neoplastic cells interact with LN via a variety of different cell 

surface proteins including the integrins. The primary LN receptor has a molecular weight 

of 68-72 kDa and is found in both normal tissues and carcinomas. Expression of both LN 

and its receptor is regulated by TGF ~l as is fibronectin and its receptor. LN binds to 

various components of the basement membrane and probably links these to one another 

[55) . Cell surface receptors that may play a role in LN-mediated cell adhesion have been 

isolated from metastatic tumor cells [56) and platelets [57). LN, a glycoprotein known to 

be involved in binding and adhesion of cells, acted as a membrane receptor protein in the 

characterized liposome system described. 
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Other molecules can be glycosylated, especially cell surface lipids such as 

sialic acid containing gangliosides, which are the most complex class of 

glycosphingolipids. The resulting glycolipids act as tags to allow the body to recognize 

its cells, especially cells in the blood. Thus gangliosides may be important functional 

components of liposomes, enabling the formulation of liposomes to mimic cell surfaces 

in the body. These 'stealth liposomes' fool the body into thinking that they are cells. 

Glycolipids are especially interesting because the variety in their chemical structure is 

attractive for use as an anchor since the lipid is glycosylated at a single site, unlike 

glycoproteins. The carbohydrate moieties tend to be concentrated on the external side of 

the cell membrane [2]. Glycolipids can also be readily incorporated into liposomes and 

self-assembling monolayers to mimic cell membranes [58]. 

Gangliosides GM 1 and GM3 consist of sialic acid containing oligosaccharides 

covalently attached to a ceramide lipid. The lipid portion is embedded in the host cell 

membrane, and the oligosaccharide is exposed on the host cell surface. Toxins, 

microorganisms and other biomolecules recognize the oligosaccharide moieties of these 

gangliosides. GM l and GM3 are found on the surfaces of many types of cells including 

normal tissues of the intestinal epithelium and carcinomas and are located in the plasma 

membrane, where they represent a small percentage of the total lipids. The amphiphilic 

structures of these eukaryotic receptor molecules are shown in Figures 1 and 2. 

Molecular Interactions Between Bacteria and Their Toxins with Host Cells. 

A number of enteric pathogens invade cultured mammalian cells by triggering actin 

rearrangements that ultimately result in the formation of pseudopods, which engulf the 

bacteria. Gram-negative Salmonella species force host cells to engulf them, but the 
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process appears somewhat different from that seen in other enteric pathogens. Binding 

of S. typhimurium to cultured cells causes a change in the appearance of the surface of the 

host cell that resembles a liquid droplet splash on a surface. This "splash" effect, termed 

membrane ruffling, results in the internalization of the bacteria inside an endocytic 

vesicle. Ruffling and internalization of the bacteria are accompanied by extensive actin 

rearrangements in the vicinity of the invading bacteria. After the bacteria are engulfed in 

a vesicle, however, the host cell surface and the actin filaments in the region return to 

their native state [59]. 

Several cholera-like toxins and enterotoxins have been described in Salmonella 

subspecies (ssp.). Diarrheagenic enterotoxin figures prominently as a Salmonella ssp. 

virulence factor responsible for the onset of diarrheal symptoms in human cases of 

salmonellosis. Whereas early studies suggested a serological relationship among the 

Salmonella ssp. enterotoxin, cholera toxin (CT), and the heat-labile toxin (LT) of 

enterotoxigenic E coli, more recent serological and nucleic acid studies indicate they are 

distinct entities [60]. However, the Salmonella ssp. enterotoxin appears to be structurally 

similar to CT, with a molecular mass of 90 to 100 kDa and consisting of A and B 

subunits that act, respectively , to stimulate host cell adeny late cyclase and produce a pore 

through which the former enters. Increased levels of cellular cyclic adenosine 

monophosphate (cAMP) lead to a net massive increase in concentration of sodium and 

chloride ions and a consequent accumulation of fluid in the intestinal lumen [3]. 

Salmonella ssp. strains also produce a thermolabile, membrane-bound proteinaceous 

cytotoxin, which is serologically and genetically distinct from Shiga toxins of Shigella 

ssp. and E. coli. The virulence attribute of cytotoxin stems from its inhibition of protein 



synthesis and lysis of host cells, thereby promoting the dissemination of the viable 

salmonellae into host tissues. Host cell lysis may also result from the chelation of 

divalent cations by the toxin , causing disruption of the host cell membranes [61] . 

Yersinia, another Gram-negative organism, utilizes a very different mechanism 

than Salmonella to achieve invasion. Yersinia species has an outer membrane protein 

invasin, which mediates attachment and entry into epithelial cells [49]. Invasion 

specifically binds to another class of integrin receptors, B 1 integrins, expressed on the 

surface of the host cell. Yersinia activates host signaling pathways that ultimately 

involve protein tyrosine kinases . Yersinia manipulation of the host cell results in 

zippering the host cell membrane around itself to achieve invasion [ 47, 49]. 
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Listeria monocytogenes is a Gram-positive, facultative highly motile rod that 

causes a potentially serious type of foodborne infection. Outside host cells, L. 

monocytogenes is motile because of its flagella. As it enters a cell, these flagella are lost, 

but the bacteria are still motile because of their ability to polymerize actin into long actin 

tails that propel the bacteria through the cytoplasm. Another unusual feature of L. 

monocytogenes that contributes to its ability to cause disease is that it grows well at 37°C 

but also grows at refrigerator temperatures of 4°C. 

L. monocytogenes attaches to and invades tissue culture cells. Adherence and the 

invasion process are thought to mimic what happens during a Listeria infection. The 

steps include invasion, cell-to-cell transfer, and virulence factors. Initially , the 

phagocytosed bacteria are contained within a vacuole that has a single membrane. They 

escape the vacuole by rupturing the vacuolar membrane. The bacteria then begin to 

polymerize actin filaments at one end, forming long actin tails that propel them through 



the cytoplasm. The bacteria can move by this mechanism into adjacent cells, 

producing long projections, which are then pinched off in a newly invaded cell. At this 

point, the bacteria are encased in a vacuole surrounded by a double membrane. They 

eventually escape from this vacuole and enter the cytoplasm of the newly invaded cell 

[59]. 
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L. monocytogenes has the potential to infect a variety of eukaryotic cells including 

phagocytic and nonphagocytic cells, both in vivo and in vitro. This process involves 

several different steps, and the virulence factors involved in each of these steps have been 

identified. The surface proteins internalin A (lnlA) and B (InlB), encoded by inlA and 

inlB genes belonging to a multigene family, are required for the entry of the organism 

into epithelial cells. Both these proteins are members of the superfamily of leucine-rich 

repeats containing proteins known to be involved in protein-protein interactions. The 

inlA gene also confers invasiveness to the non-invasive species L. innocua [62]; hence, its 

product was named internalin . The release of internalin begins during the exponential 

phase of growth when the cell wall-associated form is most abundant. 

A surface protein is utilized to bind specific host cells by L. monocytogenes, 

which invades via a zipper mechanism. The protein internalin mediates entry into 

mammalian cells by binding to the receptor, E-cadherin [39, 47]. Following binding of 

internalin with E-cadherin, a host cell signaling pathway is activated where the key 

enzyme is a lipid kinase called phosphatidyl inositol 3-kinase [37]. Activation of 

phosphatidyl inositol 3-kinase is required during infection of host cells by the bacterium 

[47, 49]. 
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L. monocytogenes has been shown to preferentially target Peyer's patches, the 

lymphoid follicles of the gut, in some studies but its preferential site of translocation in 

the intestine is yet to be proven conclusively. The organisms are then internalized by 

resident macrophages, in which they can survive and replicate. They are subsequently 

transported via the blood to regional lymph nodes. Ultimately, Kupffer's cells in the liver 

and spleen phagocytize invasive listeriae [62). Infection is not localized at the site of 

entry but involves entry and multiplication in a wide variety of cell types and tissues. 

The bacteria are disseminated through the bloodstream to the brain and even the placenta 

when present. 

Little is known about adhesins of Enterohemorrhagic E. coli (EHEC) strains, all 

of which are Gram-negative, except that they mediate the same type of binding and actin 

reorganization seen with Enteropathogenic E. coli (EPEC) strains [59). EHEC strains 

have an eaeA gene (encoding inti min) that is similar to the eaeA gene of EPEC strains 

and probably has the same function (i .e., to mediate tight binding of bacteria to the host 

cells). 

The first stage in association of E.coli 0157:H7, the most recognized strain of the 

EHEC family, with the host cell is non-intimate binding, which is mediated by pili called 

bundle-forming pili. In the second stage, attachment of the bacteria to the host triggers a 

signal transduction event, which is associated with activation of host cell tyrosine kinases 

and results in increased host cell intracellular Ca2
+ levels. In the third stage, the bacteria 

associate more closely with the host cell (intimate binding), and extensive rearrangement 

of actin in the vicinity of the bacteria occurs. Histologically, the second and third stages 

are seen as a deformation of some of the microvilli, and elimination of others, as well as 
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the formation of a pedestal-like structure at locations on the host cell surface where 

bacteria have adhered. The pedestal-like structure is composed of a dense mat of actin 

fibers that causes an outpouching of the host cell membrane [59]. The genes encoding 

proteins involved in the attaching-effacing process are designated eae for E. coli 

attachment-effacement. Intimin, a 94-kDa outer membrane protein, mediates the binding 

of EPEC strains to host cells. This protein is essential for the actin rearrangements that 

lead to the formation of the pedestal-like structure in the host cell, but other proteins may 

also be involved in this process. 

To date, the main difference found between EPEC and EHEC strains is that 

EHEC strains produce a toxin that is virtually identical to Shiga toxin (STx), a toxin that 

is probably responsible for the dysentery caused by Shigella species. Shigella species 

also cause Hemolytic Uremic Syndrom (HUS). There are two types of EHEC Stx-Stx I, 

which is most like the classical Stx from Shigella species, and Stx2, which is related to 

Stx I but differs enough at the amino acid sequence level that there are antibodies which 

differentiate Stxl from Stx2. This difference is more of an academic interest, because 

Stx2 is more often associated with the EHEC strains that cause HUS than Stxl [59]. 

Stx is an important virulence factor in EHEC infections. Receptors for the toxin 

are found on kidney cells as well as intestinal cells. Thus, dissemination of Stx to the 

kidney after bacterial colonization of the intestinal mucosa could be responsible for the 

acute kidney failure and kidney hemorrhages that are hallmarks of the fatal form of 

EHEC infections. 

Enterotoxigenic E. coli (ETEC) strains produce different enterotoxins known as 

heat-labile toxin (LT) and heat-stable toxin (ST). Heat-stabilc is defined as retention cf 
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toxin activity after incubation at 100°C for 30 min, and "heat labile" means that toxin 

activity is lost in 30 min under the same conditions. There are two types of LT (LT-I and 

LT-II). LT-I shares a high degree (nearly 75%) of amino acid identity with CT [59]. 

Given this , it is not surprising that LT has the same structure (five B subunits, one A 

subunit) and the same mechanism of action as CT. The B subunits of LT-I even interact 

with the same host cell receptor as cholera toxin's beta subunit (CTB), the host cell 

surface antigen GM 1. LT appears to cause diarrhea by activating a specific intracellular 

mechanism. The B subunits of LT bind to host cell antigen GM 1, and the A subunit 

ADP-ribosylates G,, a protein which normally controls cAMP production [59]. The 

ensuing ion imbalance results in water loss and diarrhea. 

ST is not a single toxin but is rather a family of small (~2 kDa) peptide toxins that 

fall into two subgroups: methanol-soluble ST (STa) and methanol-insoluble ST (STb) . 

The small size of STs explains why they are not inactivated at high temperatures as 

rapidly as a full-length protein. High temperatures inactivate large proteins by unfolding 

them . A peptide as short as ST would not be affected to the same extent as a large 

protein under the same conditions. STa is excreted into the medium as a larger peptide (a 

72 amino acid sequence) where it is cleaved to its final 17-19 amino acid form by a 

process that is not well understood. STb undergoes a similar process when excreted and 

activated. 

STa activates host cell guanylate cyclase, the enzyme responsible for regulating 

levels of intracellular cyclic GMP (cGMP). STa causes an increase in the cGMP level in 

the host cytoplasm, which leads to the same type of fluid loss caused by an uncontrolled 

rise in cAMP. cGMP, like cAMP, is an important signaling molecule in eukaryotic cells, 



and changes in cGMP affect a number of cellular processes, including activities of ion 

pumps [59]. 

Vibrio cholerae is a Gram-negative curved rod with a single polar flagellum. 
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When V. cholerae is ingested the pH shock and temperature increase it experiences 

initiates gene expression resulting in the production of virulence factors. The bacterium 

adheres to and colonizes small-intestinal mucosa (flagella, Tep, and others yet to be 

proven) and produces toxins. The bacterium and its associated toxin continue to cause 

much morbidity and mortality. The toxin causes extensive fluid and ion loss from tissues 

leading to hypertension, electrolyte imbalance, and death. 

CT is an impo1tant, well-studied and understood disease virulence factor. This 

toxin is clearly responsible for most of the pathology seen in people with cholera. 

Naturally occurring strains or mutants of V. cholera that do not produce CT do not cause 

the full-blown form of the disease, either in animals or in human volunteers. CT has been 

intensively studied at the biochemical and genetic levels , and is currently one of the best 

understood of all the bacterial toxins [59]. 

Secreted CT attaches to the surface of a host mucosa) cell by binding to GM 1 

gangliosides. The hydrophilic oligosaccharide head group is recognized by CTB. GMl 

is found on the surfaces of many types of cells including those of the intestinal 

epithelium. Also found on many host cell surfaces are gangliosides with longer chains of 

sialic acid residues. V. cholera secretes a neuraminidase (also called a sialidase) that 

removes sialic acid residues from these more complex oligosaccharides to make them 

structurally more similar to GM I. It has been suggested that neuraminidase contributes 



to the virulence of V. cholera by increasing the number of receptors available to bind 

cholera [59]. 
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Once CTB is bound to GM 1, the A 1 subunit is released from the toxin, 

presumably by the reduction of the disulfide bond that links it to A2, and enters the host 

cell by an unknown translocation mechanism. There has been much speculation about 

this mechanism. One hypothesis, though still controversial, is that the five B subunits 

insert themselves into the host cell membrane and form a pore through which the Al 

subunit passes (59]. 

A final example of toxins and their recognition and binding specificity for 

receptors, is tetanus toxin. This toxin binds at least 10 different gangliosides with 

varying affinity, and the specific interaction between the toxin and the ganglioside 

changes after treatment with a sialidase [63]. Tetanus toxin binds GTlb and GDlb more 

inefficiently after treatment with sialidase, while binding is unchanged for GMI. The 

opposite observation is true for CTB with GTlb and GD lb. 

Altogether, the description of infection by the bacterial pathogens above reveals 

common mechanisms of divergent infection pathways. Among the common mechanisms 

are interactions of pathogen and host cells via receptors, modulation of host cell signaling 

pathways, and rearrangement of host cell cytoskeleton resulting in subsequent invasion. 

Pathogen Detection: Current Methodologies. The traditional method of 

identifying a pathogen is to cultivate it on artificial media, isolate it in pure culture, and 

then identify it by means of physical and biochemical characteristics. Culture-based 

methods generally involve enrichment of the target bacteria to increase the cell number to 

a detectable level, followed by presumptive detection on selective media and 
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confirmation by biochemical or serological assays. Detection of Salmonella and E. 

coli 0157:H7 may require 5 or more days to complete and may provide ambiguous 

results due to competing microbiota and variability in the possession or expression of 

biochemical immunological traits [64]. Although a presumptive identification can be 

made in 1 to 2 days, full identification takes 4 to 5 days for most bacteria and fungi, and 

longer for slow-growing or difficult-to-cultivate microbes. 

Current rapid methods used to detect pathogens generally use immunological tests 

(EIAs) that are considered to be rapid (20 minutes to 4 hours). Limitations associated 

with antibody capture methods include expense and susceptibility of the immobilized 

antibody to degradation and environmental conditions and the need to enrich the sample 

via incubation. 

Bacteriological Analytical Manual (BAM) is a current protocol endorsed by the 

Food and Drug Administration for culturing Salmonella in detection schemes. Shearer et 

al. (2001) outlined a procedure using BAM for the detection of Salmonella. It includes 

multiple overnight culturing incubations in selective media followed by plating. Plates 

were observed for typical Salmonella colonies [64]. The total time for this test is 72 h. 

PCR detection schemes have been developed for a number of common foodborne 

pathogens using a variety of approaches for specific applications. The latest innovation 

of PCR detection has been real-time PCR. In real-time PCR, e.g., the 5' nuclease 

chemistry renders the automated and direct detection and quantification of PCR products 

possible. This application of 5' nuclease PCR for quantification of L. monocytogenes in 

pure cultures, water, skim milk, and unpasteurized whole milk was developed [65-67]. A 

detection and differentiation scheme for Listeria spp. by a single reactior: based on 
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multiplex PCR has been developed [68]. 

BAX is a polymerase chain reaction (PCR) detection system that utilizes 

amplification of a specific target deoxyribonucleic acid (DNA) sequence for the detection 

of S. enteritidis, E.coli 0157:H7, and L. monocytogenes on fresh produce [64]. For this 

test, an aliquot of an overnight culture grown in buffered peptone is added to Brain Heart 

Infusion (BHI) broth and incubated for 3 h at 37°C. An aliquot of the BHI culture is 

subjected to PCR followed by agarose gel separation [64]. It has been reported that the 

PCR method allowed detection of S. enteritidis, E. coli 0157:H7, and L. monocytogenes 

at least 2 days earlier than the conventional culture methods (BAM) [64]. 

A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic 

Salmonella strains and E.coli 0157:H7 has been developed and evaluated for use in 

detecting very low levels of these pathogens in meat and feces [69]. Fluorogenic reporter 

probes were included in the PCR assay for automated and specific detection of amplified 

products . Detection of amplification products could be completed in~ 4 h after 

enrichment [69]. 

Detection of Salmonella in poultry using a chip-based biosensor has been 

investigated [70]. S. typhimurium was detected at levels as low as 119 colony forming 

units (CFU) using the Treshold® Immunoassay System. This system utilizes solution­

based binding of the biotin and fluorescein labeled antibodies to Salmonella, followed by 

filtration-capture of the immunocomplex on a biotin-coated nitrocellulose membrane. 

Ultimately , an anti-fluorescein urease conjugate is bound to the immunocomplex [70]. 

Detection of the bound immunocomplex is made possible via the silicon chip-based light­

addressable potentiometric sensor. In the presence of the urea, urease converts the 



substrate to ammonia and C02 and this induces a pH change at the silicon surface. The 

resultant pH change is monitored with time and the signal output is reported [70]. The 

assay can be accomplished in less than 15 minutes. 
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Automated detection of Salmonella ssp. in foods was investigated and found 

useful [71]. Liquid eggs, shell eggs, dry eggs, skim milk, and chicken were spiked with 

S. enteritidis, S. typhimurium, or S. newport. Following pre-enrichment in universal pre­

enrichment broth at 42°C for 6 h (eggs and milk) or 16 h (chicken) immunomagnetic 

beads coated with Salmonella antibody (Vicam, Watertown, MA, USA) were used to 

capture Salmonella [71]. The beads were incubated in liquid media at 42°C and positive 

samples were identified by black discoloration of the media during incubation. Total 

time for this test is estimated at 18 to 36 h. 

A group of researchers at the University of Georgia, developed detection of 

Salmonella and simultaneous detection of Salmonella and Shiga-like toxin-producing E. 

coli (SLTEC) using the magnetic capture hybridization polymerase chain reaction (MCH­

PCR) [72]. Salmonella was detected either individually by a single (MCH-PCR) 

targeting the inv gene or simultaneously with SLTEC by a multiplex MCH-PCR in which 

SL TEC were detected using primers for the slt genes. Both assays were found to be 

specific for tested pathogens and the results indicated that MCH-PCR can be used as 

means of detecting single or multiple bacterial pathogen(s) [72]. This complex procedure 

requires a minimum of 8 h. 

PCR-based assays for detection of foodborne bacterial pathogens have provided 

increased sensitivity, allowed for more rapid processing times , and enhanced the 

likelihood of detecting bacterial pathogens [37]. The reliability of PCR detection 
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methods depends, in part, on the purity of the target template and the presence of 

sufficient numbers of target molecules. With complex matrices such as foods, steps must 

be taken to limit the effects of any potentially inhibitory compounds present that may 

limit PCR amplification of the intended target. Filters have been used to trap and lyse 

microorganisms on contact. Released DNA is sequestered and preserved intact within a 

membrane. Following brief washes, the filters can be used directly in PCR assays or as a 

solid medium to store samples for later use [73). 

The development and evolution of laboratory and field techniques regarding the 

study and identification of food borne pathogens has recently undergone a rapid period of 

change and advancement. Detection schemes each have their advantages and 

disadvantages but cost, speed, and reliability are at the forefront of any agenda regarding 

the reliance on a particular test be it for a food product for global distribution, medical 

diagnostics , or use for service men and women in the armed forces. Traditional plating 

and chemical tests are slow and labor intensive but as a method with a long history of 

reliability, remain the preferred methods used by food companies and medical 

professionals worldwide. Presumptive positive plates are often confirmed with the use of 

antibody-based tests in microbiology laboratories servicing the food and medical 

industries. Only recently have PCR methods been implicated in the detection and 

identification work critical to the food and medical industries. There is a distinct 

economic benefit and need to decrease the time a food product must be held awaiting 

microbiological analysis before it can be distributed to retail outlets or more importantly, 

served to a customer. In medicine, diagnostic efficiencies could be dramatically 



improved through basic research and new techniques based on emerging technologies 

such as PCR detection and CLSM. 
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Advances in Microscopy: Confocal Laser Scanning Microscopy. Attachment 

of microorganisms to surfaces (food, tissues, glass, etc.) is a dynamic process, in which, 

cells suspended in liquid at the surface attach over time and are absorbed onto structures. 

CLSM provides a means for the direct observation and characterization of microbes 

during and after the attachment process. Although there is currently little published on 

the use of CLSM to study microbial attachment, the application of this technology has the 

potential to provide a deeper understanding of this process [6]. This tool can explore and 

observe captured cells, protein interactions, and characterize biological and biomimetic 

structures. It can be used to confirm the presence of surface receptor molecules without 

the need for antibodies specific for the antigen of interest. Also, CLSM can investigate 

and elucidate interactions between immobilized liposomes and captured cells revealed 

using ELISAs and PCR. 

The power and advantage of CLSM lie in its potential to image fully hydrated 

systems in their natural state. This is accomplished by obtaining thin optical sections of 

the specimen using focused laser light which scans the field, and a pinhole detector to 

remove out-of-focus light. Since only light emanating from the focal plane is collected, 

the resulting image has little depth of field, but is highly focused [6, 74]. Multiple 

labeling techniques using specific fluorescent probes, impart flexibility in monitoring 

artificial and natural biological entities. Co-localization, or physical localization of two 

or more probes excited simultaneously, results in blending of monitor colors. Depth of 

image can be achieved by collecting optical sections at different sample depths and us~ng 
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computer software to combine them into a 'stacked' image that projects the three­

dimensional data in two-dimensions. The depth of field capability is critical. It allows 

examination of microbial attachment resulting from molecular recognition events in more 

dimensions than possible with other forms of microscopy and without the use of chemical 

or physical fixation. 

NULL HYPOTHESIS 

The reported molecular activity of biomolecules is not maintained in vitro when 

incorporated into immobilized liposomes. 

RESEARCH OBJECTIVES 

Objective 1. To verify biological activity of liposomes containing a 

mechanosensitive channel from Escherichia coli (EcoMscL). The artificial membrane 

bilayers (liposomes) were immobilized onto a glass surface and observed for channel 

opening with confocal microscopy. 

Objective 2. To verify biological activity of liposomes containing 

glycosphingolipids (GM 1 or GM3). The liposomes were immobilized onto a glass 

surface and challenged with bacteria and proteins (including cholera toxin) . The in vitro 

assay used confocal microscopy, ELISA, or genetic-based detection systems to determine 

bacterial and toxin interactions. 

Objective 3. To verify biological activity of a liposome containing LN, a 

eukaryotic protein receptor for bacteria. The liposomes were immobilized onto a glass 



surface and challenged with bacteria and proteins (including cholera toxin). The in 

vitro assay used confocal microscopy, ELISA, or genetic-based detection systems to 

determine bacterial and toxin interactions. 
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Figure 1. Amphiphilic structure of ganglioside GMl. Gal = galactose; 
GalNAc = N-acetylglactosamine; Glc = glucose; Neu5Ac = N-acetylneuraminic acid 



Figure 2. Amphiphilic structure of ganglioside GM3. Gal = galactose; Glc = glucose; 
Neu5Ac = N-acetylneuraminic acid 
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CHAPTER II 

IMMOBILIZATION OF BIOMIMETIC LIPOSOMES 

ABSTRACT 

A stable biomimetic system consisting of liposomes containing embedded 

ganglioside GMl or laminin was developed as a tool for the investigation of molecular 

interactions using confocal laser scanning microscopy (CLSM). In this study, 

microemulsified liposomes composed of phospholipids, cholesterol and N-biotinyl 

phosphatidylethanolamine were formulated , microemulsified, and immobilized to glass 

coverslips containing covalently immobilized avidin. The stability of immobilized 

microemulsified liposomes containing membrane-embedded or encapsulated 

biomolecules was monitored over time by following the release of sulforhodamine B. 

Interactions between 5-(and-6)-carboxynaphthofluorescein (CNF) labeled soluble cholera 

toxin 13 subunit (CTB), bovine lactoferrin (BLF), bovine serum albumin (BSA), or 

ovalbumin (OVA) and GMI or laminin (LN) embedded liposomes were characterized by 

the presence of CNF. Destabilization was first observed at 59 days for CNF-BSA 

liposomes while destabilization of laminin liposomes were observed at 116 days. 

Destabilization of control liposomes, and GMl liposomes was observed on days 146 and 

131 respectively. After incubation with the labeled proteins in solution, specific 

interactions between liposomes containing GM 1 were observed with confocal 

microscopy. CTB and BLF were co-localized proximate to liposomes containing GMl. 

CTB, BLF and OVA were not associated with control liposomes lacking GM l. These 

results clearly show the potential of using immobilized liposomcs as biomimetics to study 



molecular interactions between small and large molecules embedded in artificial 

bilayers and proteins. 

INTRODUCTION 
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Liposome Production. Liposomes are used extensively in the laboratory for 

diverse research, diagnostic and pharmacologic applications. The applications and 

extension of research involving liposomes are limited by lack of technology allowing the 

reproducible manufacture of liposomes of predictable and uniform size. A variety of 

different approaches including freeze-thaw , reverse phase evaporation, sonication, and 

extrusion have been described for preparing liposomes [1-7]. Use of liposomes in drug 

delivery as target caJTiers of drugs and enzymes and in the cosmetics industry is a subject 

of great interest and is extensively studied [ 4, 8, 9]. Characterization of Jiposomes 

prepared using a microemulsifier found that using the principles of fluid dynamics, 

unilamellar liposomes can be produced in a reproducible manner [10, 11]. Using the 

microfluidizing method, liposomes are prepared in amounts sufficient for pharmaceutical 

quality assessment, toxicology studies, and multicenter clinical trials [11]. The 

automated high-pressure system uses a "microemulsion" process available commercially 

as the Microfluidizer™ (Microfluidics Corp., Newton, MA, USA). Microfluidization of 

lipids results in uniform lipid vesicle dispersions with the ability to encapsulate bioactive 

macromolecules [3, 12]. All liposomes, including microfluidized unilamellar liposomes, 

lose the ability to encapsulate over time. Leaky liposomes ineffectively encapsulate 

biomolecules [ 13]. 
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Trapping molecules in the aqueous phase, or internal lumen, of liposomes is a 

form of encapsulation which is useful for compartmentalization in biosensors. The 

weakness of liposome based sensors stems from their mechanical and chemical 

instability. Many of the potentially useful proteins for liposome based biosensors are also 

chemically unstable or sensitive to the environment outside of a laboratory. Thus, 

liposome properties have been verified in laboratories for some very simple, model 

systems. Only recently have results translated into any realistic sensor applications for 

signal amplification [ 14]. 

Unilamellar vesicles are more appealing than multilamellar vesicles when 

developing in vitro models of lipid bilayers. In multilamellar liposomes, the interaction 

between different bilayers , absent in unilamellar vesicles and most membranes, is a 

concern. Interactions between unilamellar bilayers are too small to affect fully hydrated 

bilayer structure of microemulsified liposomes because the water layer is appreciable 

[15]. 

Microemulsified Liposomes. Microemulsified liposomes generally contain 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), 

sphinogmyelin (SPM), cholesterol and triacylglycerols. Phospholipids, PE and PC can be 

modified to contain biotin or an amino functional group that can be used to covalently 

link liposomes to a glass surface. Currently, liposomes are noncovalently adsorbed to 

plastic surfaces [14]. Adsorption has drawbacks, including establishment of an 

equilibrium with the liquid media leading to desorption. Immobilization is advantageous 

because unincorporated and weakly associated lipids, probes, and vesicles can be 



removed by appropriate wash steps. Immobilized microemulsified liposomes are 

stable and may be useful in studying cellular interactions using emerging technologies. 

Cellular Interactions. Cell interactions are observed in cancer, infection, 

fertilization, and immunological responses. Viruses fuse with Iiposomes containing 

42 

PC : PE : cholesterol (1 : 1 : 1.5) and SPM [ 16]. A well-characterized interaction occurs 

between CTB and the ganglioside GM 1. GM 1 consists of a sialic acid-containing 

oligosaccharide covalently attached to a ceramide lipid. Naturally, the lipid portion is 

embedded in the host cell membrane, while the oligosaccharide is exposed on the host 

cell surface. The oligosaccharide moiety is recognized by toxins, microorganisms and 

other biomolecules. GM 1 is found on the surfaces of many types of cells including 

normal tissues of the intestinal epithelium and carcinomas [ 17, 18]. 

Gangliosides are important cellular surface molecules that allow self-recognition. 

Thus, gangliosides might be important functional components of liposomes, enabling the 

formulation of liposomes to mimic cell surfaces in the body. Gangliosides are especially 

unique because the variety in their chemical structure. Since the lipid is glycosylated at a 

single site, unlike glycoproteins , and gangliosides it tends to be concentrated on the 

external side of the cell membrane [19]. Glycolipids are readily incorporated into 

liposomes and self-assembling monolayers to mimic cell membranes [20]. 

Cholera toxin (CT) is an A-B ADP-ribosylating toxin, containing one A 

(enzymatic) subunit and five B (binding) subunits. The excreted toxin attaches to the 

surface of a host mucosa! cell by binding to GMI. Once the CT 13 subunit (CTB) is 

bound to GM 1, the A 1 subunit is released from the toxin. This is presumably by the 
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reduction of the disulfide bond that links it to A2, entering the host cell by an unknown 

translocation mechanism [21]. 

In addition to CTB, BLF binds surface structures found on bacteria, while 

interacting with eukaryotic cells. Specifically, BLF has been shown to bind 

glycosaminoglycans, fibrinogen, collagen type I, collagen type IV, and laminin [22]. 

Recently, BLF has been shown to bind bovine gangliosides [23, 24] . 

Laminin. LN is a large multidomain glycoprotein important in cellular functions 

including induction of cell adhesion, growth promotion, and enhancement of the 

metastatic phenotype of tumor cells [25]. LN is a heterotrimeric glycoprotein that is 

found only in the basement membrane of tissues. LN is composed of a, /), and y chains 

held together in an alpha-helical coiled-coil structure linked by disulfide bridges to form 

a characteristic asymmetric cruciform structure [26]. Normal and neoplastic cells interact 

with LN via a variety of different cell surface proteins including the integrins. The 

primary LN receptor protein has a molecular weight of 68-72 kDa and is found in both 

normal tissues and carcinomas. Membrane proteins such as LN can be uniformly 

incorporated in large unilamellar homogenous liposomes using microemulsification [27]. 

LN binds to various components of the basement membrane and likely links these to one 

another [28]. 

Confocal Microscopy. Visualization of molecular interactions between 

liposome-embedded receptors can be performed with CLSM. CLSM is a powerful 

microanalytical tool that provides a means for direct observation and characterization of 

dynamic processes in living structures or mimetics of these structures. The ability of 

CLSM to precisely image fully hydrated systems sets it apart from other forms of 
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microscopy [29, 30]. Sample preparation is non-invasive and permits the examination 

of physiologically active structures. Systems, living and artificial, can be selectively 

labeled and experiments including treatments that induce dynamic structural changes can 

be monitored during analytical processes [29]. 

CLSM was used to study the interaction between soluble concanavalin A­

liposomes and immobilized mannose [31]. Interactions were indicated by observed 

patterns of fluorescently labeled phosphatidyl ethanolaminine concanavalin A liposomes 

in a flow system. Adhered liposomes appeared as defined, resolved points whereas, free 

flowing liposomes in the medium were visible as trails. 

In this study, microemulsified unilamellar phospholipid liposomes were designed, 

formulated, and immobilized to avidin-containing glass coverslips. Immobilized 

microemulsified liposomes were formulated to contain an encapsulated 5-(and-6) 

carboxynaphthofluorescein (CNF) labeled soluble protein (BSA), a CNF-labeled 

membrane protein (LN), or an unlabeled membrane receptor (GMJ). GMl, CNF-BSA, 

CNF-LN, and control liposomes were characterized directly with respect to size, 

composition, and stability using CLSM. After establishing the stability of liposomes, a 

procedure and application was developed to survey interactions between soluble CNF­

protein conjugates and liposomes encapsulating sulforhodamine B (SRB). GMI, LN, and 

control liposomes, formulated lacking CNF but encapsulating SRB, were allowed to 

interact with CNF-conjugate proteins (CTB, BLF, BSA, or OVA) in solution. 

Interactions between CNF-conjugate proteins and liposomes were determined directly by 

monitoring CNF co-localized with encapsulated SRB. 
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MATERIALS AND METHODS 

Liposome Formulation Materials. Phosphatidylcholine (PC), 

phosphatidyglycerol (PG), NBD-phosphatidylethanolamine (NBD-PE) ( 1,2-Dioleoyl-sn­

G lycero-3-Phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl), biotiny 1-

phosphatidy lethanolamine (biotinyl-PE) ( 1,2 Dioleoy l-sn-glycero-3-

phosphoethanolamine-N-(Biotiny I)), and carboxyfl uorescein-phosphoethanolamine 

(fluorescein-PE) (l ,2-Dioleoyl-sn-Glycero-3-phosphoethanolamine) used in formulating 

unilamellar microemulsified liposomes were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL, USA). Cholesterol was purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). The amine reactive probe, CNF, and the polar tracer probe SRB were 

purchased from Molecular Probes Inc. (Eugene, OR, USA). The ganglioside GM 1, was 

purchased from Alexis Corporation (Lausen, Switzerland). BSA, OVA, BLF and LN 

were purchased from Sigma Chemical Co. (St. Louis, MO, USA). CTB was purchased 

from Calbiochem (La Jolla, CA, USA). 

Immobilization reagents including l-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and N-Hydroxysulfosuccinimide (Sulfo-NHS) were 

purchased from Pierce Chemical Co. (Rockford, IL, USA). Buffer salts, acetic 

anhydride, glass cover slips, and 3-aminopropyl-triethoxysilane were purchased from 

Fisher Scientific (Pittsburgh, PA, USA). A vidin and succinic anhydride were purchased 

from Sigma Chemical Co. 

Unilamellar Microemulsified Liposome Formulations. The base lipid 

composition for the formulation of unilamellar microemulsified liposomes consisted of 
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PC, cholesterol, PG, PE, and biotinyl-PE. Lipids, purchased dry and suspended in 

chloroform to facilitate formulation, were added to 50 mM Tris-Cl (pH 7.2) at lipid molar 

ratios of 73 : 15 : 10: 2: 0.15, respectively. Head-labeled lipid probes NBD-PE and 

fluorescein-PE were substituted for PE at concentrations of 0.15 lipid molar percent to 

probe the artificial bilayers of liposomes. Polar tracing SRB was encapsulated during 

microfluidization to label the lumen of the liposomes. While holding the lipid component 

of the formulation constant, a dilution series was designed to determine the appropriate 

SRB concentration generating liposome lumens that could be viewed and imaged using 

the CLSM system. The range of the dilution series was 0.45 µM - 4.5 mM SRB as 

expressed as a concentration of the polar tracer applied prior to processing the buffered 

lipid containing solution in the Microfluidizer™ 1 lOS (Microfluidics International Corp. 

Newton, MA, USA). The concentrations used in the series can also be expressed as 

SRB : total lipid molar ratios. These included 0.011, 0.110, 1.10, 11.0, and 101 moles 

SRB to every 1 mole of the total lipid in a specific formulation. 

The base lipid composition was used to formulate liposomes encapsulating a 

soluble protein conjugate (CNF-BSA), a membrane protein conjugate (CNF-LN), or 

glycoshingolipid, ganglioside (GM 1 ). Control liposomes consisted of the identical lipid 

composition with encapsulated SRB (ganglioside and laminin absent). The lipids were 

suspended in 10 mL 50 mM Tris-CJ (pH 7 .2) and microemulsified in the presence of 

CNF-protein conjugates (lipid : protein molar ratios of 5844 : 1.0) or ganglioside 

(ganglioside : lipid molar ratios of 0.089 : 1.0). The SRB : total lipid molar ratio of 

1.1 : 1.0 was constant in these formulations. 
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Liposomes were formed using a Microfluidizer™ equipped with a 10 ml sample 

hold volume and a cooling loop submerged in an ice bath. The lipid solution was 

microemulsified for 270 sat maximum pressure (10,000 psi). Immediately following 

microemulsification, the microemulsified liposome solutions were suspended in agarose 

or immobilized onto glass coverslips via biotin-avidin interactions. The total volume of 

solution applied to the Microfluidizer ™ was constant in all preparations at 10 ml. 

A vidin and Microemulsified Liposome Immobilization. A vidin containing 

coverslips were prepared by derivatizing the entire surface area of glass coverslips 22 x 

22 mm2 (484 mm2 x 2 = 968 mm2
) using 3-aminopropyl-triethoxysilane followed by 

succinylation with succinic anhydride and acetylation with acetic anhydride [24]. 

A vi din, 6.0 ng ( 1.0 x 10·13 moles) per coverslip, was presented to the derivatized 

coverslips for immobilization via EDC and Sulfo-NHS using 10 ml 0.1 MMES (2-(N­

morpholino)ethanesulfonic acid) and 0.5 M NaCl (pH 6.0, adjusted with NaOH) [32]. 

The coverslips were incubated with avidin for 45 min at room temperature on a platform 

shaker (150 rpm) followed by 3, 10 ml washes using 50 mM Tris-Cl containing 1 M 

NaCl (pH 7.2) to eliminate nonspecifically bound avidin. A vidin bound coverslips were 

stored at 4°C in 50 mM Tris-Cl (pH 7.2) . The lipid solutions were formulated , 

microfluidized, and reacted with avidin containing coverslips to immobilize the 

biotinylated liposomes via the avidin-biotin interaction. 

Prepared liposome suspensions were distributed to beakers containing 5 

immobilized avidin coverslips (1.12 x 10-6 moles total lipid assuming 100% recovery I 

4840 mm2 total glass surface area) in 10 ml 50 mM Tris-Cl (pH 7.2). The liposome 

suspensions were allowed to react with coverslips at room temperature for 30 min while 



shaking at 150 rpm followed by 3, 10 mL washes of 50 mM Tris-Cl (pH 7.2) 

containing 1 M NaCl (pH 7.2) to eliminate non-specifically bound liposomes. 
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Immobilized Liposome Stability Determination. The stability of liposomes 

was followed during storage. Each liposome formulation contained SRB at the same 

concentration. The release of encapsulated SRB was used to as an indicator of bilayer 

integrity. A stable Iiposome was defined as a liposome characterized by internal 

encapsulation of SRB surrounded by a lipid bilayer that exhibited no leakage of SRB. A 

destabilized, or compromised Iiposome, was defined as a Iiposome characterized by SRB 

localized external of the artificial lipid bilayer. Three coverslips of each Jiposome type 

(CNF-BSA, CNF-LN, GMI, and control liposomes lacking CNF-conjugates or GMl) 

were stored dry at 4°C and monitored at 2-week intervals to observe the integrity of the 

liposomes over a six month period. Three representative fields containing 15+ liposomes 

were used to determine the percent destabilized liposomes (estimated to the nearest 10). 

Fluorescent Labeling of Proteins. Proteins (BSA, BLF, CTB, LN, and OVA) 

were labeled with CNF. Proteins (0.8 µM) in 0.1 MMES and 0.5 M NaCl (pH 6.0, 

adjusted with NaOH) were reacted for 45 min with EDC (4.8 µM) and Sulfa-NHS (13 

µM). CNF (1.5 µM) was added to the solutions and the reactions allowed to proceed for 

2 h at room temperature. The reactions were quenched upon addition of hydroxylamine 

hydrochloride to a final concentration of 10 mM. The labeled proteins were dialyzed in a 

Slide-A-Lyzer® lOK cassette (Pierce) for 72 hr against 50 mM Tris-CJ (pH 7.2) at 4°C to 

remove excess CNF. 

ELISAs for GMl and LN Liposomes. ELISA used antibodies (Abs) to confirm 

the presence of GM 1 embedded in liposome bilayers and confirm the presence of 
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biologically active recognition sites. The Ab was specific for the carbohydrate moiety 

of GM 1. Immobilized GM 1 liposomes were formulated containing GM 1 at a 

concentration of 8.9 (molar percent of total lipid). Each ELISA utilized rabbit anti­

ganglioside GM I IgG Ab (Calbiochem). The tests were performed in triplicate; 

liposomes lacking GMI were tested identically and acted as the negative control. Anti­

ganglioside GMI Abs, 10 µl of a 100 µg/ml stock, was diluted 1 : SOO and 1 ml was used 

to bind and label the GM 1 embedded in the liposome membranes. This was followed by 

a wash step (30 min, 30 ml of SO mM Tris-Cl, pH 7.2). Samples were then transferred to 

a new sterile tube and exposed to goat anti-rabbit IgG alkaline phosphatase conjugates 

(Sigma). Anti-rabbit IgG alkaline phosphatase conjugate, 1 µl of a 1.0 mg/ml stock, was 

diluted 1 : 33,000 and 33 ml added to samples followed by another wash (30 min, 30 ml 

of SO mM Tris-Cl (pH 7.2) in SO ml tube). 

Individual coverslips were placed in individual wells of six-well ELISA plates 

(Costar, VWR, Brisbane, CA, USA) and submerged in 3 ml glycine buffer (pH 10). The 

alkaline phosphatase substrate, para-nitrophenyl phosphate (pNPP) (Sigma), 3 ml, of a 

0.2S mg/ml solution in glycine buffer was added to each well. Presence of the product 

was followed measuring absorbance with a detection wavelength fixed at 40S nm using a 

HTS 7000 Bio Assay Reader (Perkin Elmer, Wellesley, MA, USA). After 3S min of 

product formation, the absorbance measurement for each treatment, in triplicate, were 

averaged resulting in a single value per treatment. Liposomes prepared in the absence of 

GMl acted as negative controls. A signal -to-noise ratio value was calculated for each 

treatment by subtracting the average absorbance of negative controls from the average 

absorbance of the treatment. 



Abs were used to confirm the presence of the membrane protein LN embedded 

in artificial lipid bilayers of liposomes by ELISA. The Ab was specific for LN. 

Immobilized liposomes containing LN at a ratio of 59 : 1 (w/w) lipid to protein 

50 

(5844 : 1 mole lipid to protein) were immobilized on a glass solid support. Rabbit anti­

laminin IgG Ab (Sigma) was used in the ELISA and the assays were performed in 

triplicate. Anti-laminin Ab, 1 µ1 of a 100 µg /ml stock, was diluted 1 : 25,000 and 25 ml 

was used to bind and label the GMl embedded in the liposome membranes. This was 

followed by a wash step (30 min, 30 ml of 50 mM Tris-Cl, pH 7.2) . Samples were then 

transferred to a new steri le tube and exposed to goat anti-rabbit IgG alkaline phosphatase 

conjugates (Sigma). Anti-rabbit IgG alkaline phosphatase conjugate, 1 µI of a 1.0 mg/ml 

stock, was diluted 1 : 33,000 and 33 ml added to samples followed by another wash (30 

min , 30 ml of 50 mM Tris-CJ (pH 7.2) in 50 ml tube) . 

Individual coverslips were treated as described in the GMI ELISA procedure. A 

signal to noise ratio value was calculated for each treatment by subtracting the average 

absorbance of negative controls, liposomes lacking LN, from the average absorbance of 

the treatment. 

Soluble Protein Binding Studies. GMl and LN liposomes were separately 

incubated with CNF-CTB, CNF-BSA, CNF-BLF, or CNF-ovalbumin at 6.7 x 10-9 moles 

protein in 10 mL 50 mM Tris-Cl (pH 7 .2) for 1 h at room temperature. The total surface 

area containing GMl or LN liposomes was 3872 mm2
. Liposomes formulated in the 

absence of ganglioside and protein and immobilized on the same amount of surface area 

acted as controls. The incubation was performed on a shaking platform ( 100 rpm) in 

triplicate. Coverslips were washed with 50 mM Tris-Cl (pH 7.2) foliowed by 0.5 M 



NaCl, 50 mM Tris-Cl (pH 7.2) and finally 1 M NaCl, 50 mM Tris-Cl (pH 7.2) washes 

of 30 ml each. 

Immediately following the incubation, CLSM was used to observe the 

localization of CNF-protein conjugates. Three coverslips were monitored for the 

presence of CNF using the blue monitor channel (668 nm) during a progressive scan. 

GM I and LN liposomes encapsulating SRB, monitored using the red monitor channel 

(598 nm) were labeled blue or magenta in the presence of an interaction between the 

CNF-labeled proteins and immobilized liposomes. GM I and LN liposomes exhibiting 

co-localization were compared against control liposomes formulated in the absence of 

receptor molecules subjected to the same CNF-protein conjugate under the same 

conditions. Evidence of an interaction by comparison with the appropriate control was 

noted as absent (liposomes simply red), possible (some co-localization), strong (strong 

co-localization), or definite (intense co-localization). 
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Confocal Laser Scanning Microscopy. Confocal laser scanning microscopy 

images were generated using a Keller type MRC l 024 krypton/argon laser scanning 

confocal system (Bio-Rad, Hercules, CA, USA) interfaced with an inverted microscope 

(Diaphot TE300, Nikon, Tokyo, Japan). The pinhole diameters were 2.5, 2.5 and 4.0 mm 

respectively for the 488, 598, and 668 nm laser lines and the objective lens was a Nikon 

IOOX, plan apo, oil immersion with a numerical aperture of 1.40. The 488 nm line 

excited the fluorescein-PE and NBD-PE encaged as components of the liposome bilayers. 

The 647 nm laser line was used for liposomes containing CNF-protein conjugates. The 

568 nm laser line was used to excite the encapsulated SRB. Dual and triple labeling of 



microemulsified liposomes afforded flexibility and specificity in monitoring the 

artificial structures. 
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Images (512 x 512 pixels and 226.50, 1,415.64, or 22,650.25 µm 2
) were taken 

consecutively with the dichroic beam splitters and filters to minimize cross talk between 

channels. The photomultiplier gain/sensitivity/contrast was adjusted to give a slightly 

over-modulated signaling in the normal scan mode. Holding all other factors constant, 

the photobleaching, or quenching, of probes was investigated by continuously scanning 

fields of liposomes at increased magnification for 60 s. The resulting RGB images were 

overlaid using LaserSharp® version 3.2 (Bio-Rad). 

RESULTS AND DISCUSSION 

Composition of Liposomes. Liposomes produced using the Microfluidizer™ 

were immediately embedded in agarose and CLSM was used to characterize the 

liposomes. The 488 nm laser line was used to excite the probe labeled lipid bilayer 

components (fluorescein-PE and NBD-PE) while the encapsulated SRB was excited 

using the 568 nm laser line. The 488 nm line was processed to the green channel while 

the 568 was monitored by the red channel. A population of agarose matrix embedded 

NBD-PE, fluorescein-PE, SRB probed liposomes is shown in Figure 3. The size and 

shape of a representative liposome with a 2.3 µm diameter is shown inset (Figure 3). 

The yellow appearance results from the combined green and red probes imaged 

simultaneously. This phenomenon is known as co-localization. The average diameters 

of agarose entrapped liposome was 1.8 µm. The diameters ranged± 1.5 µm (n=IO) in the 
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population but did not exceed 3.5 µm . Liposomes were clearly observed as distinct 

entities. The probe molecules, NBD-PE and fluorescein-PE used to illuminate the 

membrane structures, were localized in the bilayer of the liposomes resulting in a green 

coloration. SRB was localized in the aqueous void space, or lumen. The Iiposomes were 

unilamellar and similar to one another in all measures and observations. No clumping, 

aggregation or agglutination was observed. There was no evidence of interactions 

between individual liposomes. 

The distribution of liposomes embedded in agarose was random. Figure 3 shows 

fluorescent artifacts of liposomes located directly above and below the .xy scan plane. 

Artifacts appear as dull , unclear, out of focus blotches of green/yellow fluorescence 

contrasting with distinct cross-section of spheres located centrally in the scan plane. 

Such artifacts result because fluorescently labeled three-dimensional subjects are imaged 

two-dimensions. 

Immobilized Liposome Formulations. The liposome formulations consisted of 

lipids and various combinations of fluorescent probes. The probes were selected for their 

ability to label and identify liposomes. A legend of the microemulsified liposome type, 

probed component(s), fluorescent probes and monitor channel is attached as Appendix A. 

For example, the lipid head-group labeled probes used to illuminate the lipid bilayers of 

liposomes embedded in agarose also labeled immobilized liposomes. The fluorophores 

of these probes were located physically on both the internal and external membrane 

surface, thus marking bilayers of agarose embedded and immobilized liposomes. 

Similarly useful in both liposome formulations, SRB was found to specifically label the 

lumen after encapsulation during processing in the Microfluidizer™. After 



immobilization and washes of immobilized liposomes with the buffers described, the 

only visible SRB fluores were encapsulated inside the liposomes. Therefore, SRB 

specifically labeled the liposomal lumen of individual immobilized liposomes. 
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The fluorescent artifacts observed using the agarose matrix were successfully 

eliminated using the avidin-biotin immobilization procedure (Figure 4). Use of head­

group labeled phospholipids and encapsulatd SRB probes allowed for direct visualization 

of co-localized fluorophores (yellow). The composition of immobilized liposomes and 

liposomes embedded in agarose were identical. The average diameters of immobilized 

liposomes was 1.5 µm (mean± 1.2 µm, n=lO). Physical comparison of immobilized 

liposomes to the liposomes embedded in agarose (Figure 3) found no observable 

differences other than the physical location resulting from avidin-biotin immobilization. 

An immobilized liposome viewed at increased magnification (diameter of this liposome 

was estimated at 1.3 µm) , is shown in the inset (Figure 4). 

The advantage of immobilization lies in facilitating the removal of unincorporated 

and weakly associated lipids, probes, and vesicles without affecting the liposomal surface 

or lumen. A liposome must contain at least one biotinylated phospholipid to potentially 

be immobilized on the glass surface containing avidin as these two molecules constitute 

the necessary link relied on in the immobilization strategy described. Liposomes were 

designed to contain biotinyl-PE at an appropriate concentration that would result in 

effective immobilization. The biotinyl-PE was used at a molar ratio of 0.015: 1.0 

(biotinyl-PE : total lipid) . This ratio is equivalent to 1.5 biotinylated phospholipids for 

every 100 lipids in the formulations processed using the Microfluidizer ™. Theoretically, 
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each liposome was composed of at least 67 lipids contains a potential binding site, a 

biotinyl-PE molecule, for immobilization using the methods and formulations described. 

Another advantage of the described unique immobilization protocol is the ability 

to control the spatial location of liposomes. The confocal advantage of highly focused 

light in optical sections allowed the vertical scanning of individual fields of liposomes at 

close range near the limits of the microscope and vertical scans of individual liposomes in 

detail. This specificity of location, especially at high powers of magnification, 

necessitates the liposomes be located in the same xy plane in order to view multiple 

liposomes and image similar cross sections of multiple liposomes. Examination of 

populations of liposomes proved that these vesicles were immobilized in relatively the 

same plane. In other words , they were equidistant from the surface of the coverslips to 

which they were bound. This was not the case of the randomly distributed liposomes 

embedded in the agarose matrix . The shape of liposomes was consistent before and after 

immobilization, indicating no evidence of a non-specific interaction between the 

liposomes and the glass support (other than the intended, specific immobilization). 

Probes indicating the location of the artificial membrane bilayers (NBD-PE and 

fluorescein-PE) were subject to photobleaching, or quenching, more profoundly than the 

SRB or CNF-conjugates. This was easily observed during continuous scanning 

representative fields of liposomes at increased magnification. While scanning using the 

continuous mode, the originally brilliantly green and yellow Jiposomes would fade to red 

holding all other factors constant over a 60 s period. The red signal, indicating the 

presence of SRB, was observed to be Jess susceptible to photobleaching over the same 

time period. CNF-protein conjugates, monitored using the blue channel was also less 
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susceptible to photobleaching when compared to the head-group labeled phospholipid 

probes. Due to the observed photobleaching effect on NBD-PE and fluorescein-PE, 

subsequent experiments were designed to rely on the encapsulated SRB as an indicator of 

liposome stability rather than the head-group labeled lipids. It was also noted that SRB, 

when used at an appropriate encapsulation concentration is a better illuminator of 

liposomes. NBD-PE and fluorescein-PE were effective when characterizing liposomes 

imbedded in agarose. Many of the liposomes were labeled simply red by SRB. Green 

probes, NBD-PE and fluorescein-PE, were absent in many of the smaller liposomes 

(diameters> 1.0 µm). 

Optimizing SRB Concentration. Unencapsulated fluores, when present above a 

specific concentration, cause increased background fluorescence. To increase the 

encapsulation of SRB and optimize CLSM visualization of liposomes using this polar 

tracing probe, various concentrations of SRB ranging from 0.45 µM - 4.5 mM or 

(SRB : total lipid molar ratio of 0.011 : 1 to 110: 1) were included in the soluble phase 

prior to microfluidization. It was desirable to include SRB at increased concentrations to 

facilitate identification of the maximum number of liposomes located in specific surface 

area. As shown in Figure SA, lumens of liposomes microfluidized with 0.45 µM SRB 

(SRB : total lipid molar ratio of 0.011 : 1) encapsulated little SRB. The SRB 

concentration was too high when liposomes were microfluidized with 450 µM SRB 

(SRB : total lipid molar ratio of 11 : 1). SRB bound the glass and therefore the 

immobilization surface was labeled red (Figure SB). It was not possible to distinguish 

Jiposome lumens from the background using the red monitor channel. 
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The optimum concentration of SRB in the soluble phase prior to 

microemulsification was determined to be 45 µM (SRB : total lipid ratio of 1.1 : 1) 

(Figure SC). Liposomes Jumens were labeled red while glass surface background 

fluorescence was minimized. This concentration was held constant for the liposomes 

formulations used to estimate the time required to observe destabilization and leakage of 

encapsulated SRB. 

Again, SRB was a more effective probe in identifying liposomes because it 

specifically labeled each individual liposome found throughout the population 

distribution. Liposomes encapsulating SRB are labeled red in the absence of other 

probes. A distrubution of red liposomes and are found interdispersed among the 

yellow/green liposomes at the concentrations tested (Figures SA-C). 

Characterization and Stability of Liposomes. Liposomes containing GM 1, 

CNF-BSA, or CNF-LN were homogenous distributions of individual liposomes. No 

complexes of Jiposomes interacting with other Jiposomes in any of the described 

formu lations were observed. All liposome, irrespective of incorporated biomolecule 

were successfully immobilized and viewed using the parameters described. The size, 

shape and distributions were nearly identical to liposomes formulated in the absence of 

protein and ganglioside. ELISAs confirmed the presence of GMl associated with GMl 

liposomes, and LN with LN liposomes. The stabilities of GMI, CNF-BSA, CNF-LN, 

and control liposomes were determined directly by monitoring leakage of encapsulated 

SRB . 

CNF-BSA and CNF-LN liposomes were easily distinguished from control 

liposomes. Immediately after immobilization, the co-localization of blue and red probes 
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resulted in a distinct magenta color of the liposome spheres. This co-localization was 

used for identification of membrane bound CNF-LN and CNF-BSA liposomes containing 

encapsulated SRB (insets Figures 6 and 7, respectively). This coloration contrasted with 

liposomes identified by SRB (red) or yellow co-localization of SRB (red) and head-group 

labeled phospholipids (green). 

After liposomes were stored dry at 4°C for a period of days, indications of 

compromised bilayer integrity was observed. SRB was observed diffusing in a 

symmetrical ring extending beyond the artificial bilayers. Figure 6 inset shows SRB 

located only in the liposomal lumen after immobilization. The aqueous lumen is red and 

the bilayer contains CNF-LN (blue) while the local area around the liposome is clearly 

void of fluorescence . Figure 6 shows a different, single destabilized liposome containing 

CNF-LN leaking SRB. Some SRB remained centrally located in the liposomal lumen; 

But, the characteristic red ring of diffused SRB is evident external of the blue liposome 

bilayer. The area immediately local to the liposome is unlabeled because the SRB has 

migrated evenly away from the centrally located bilayer. 

Figure 7 inset shows an liposome encapsulating CNF-BSA and SRB prior to 

destabilization. CNF-BSA (blue) and SRB (red) are co-localized in the aqueous lumen 

while the local area around the liposome is clearly void of fluorescence. Figure 7 shows 

a different, single destabilized liposome that initially encapsulated CNF-BSA and SRB. 

SRB is shown leaking in a uniform manner external of the bilayer as was noted from 

CNF-LN liposomes. The lumen is void of SRB and CNF-BSA; but, the red ring of SRB 

is clearly external of the magenta bilayer. Co-localization of CNF and SRB at the 



artificial membrane indicates that the CNF-BSA remains internally encapsulated but 

associated with the permeable bilayer that has released SRB. 
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In time, similar SRB leakage was evident in GM 1 liposomes. Figure 8 inset 

shows a GMI liposome prior to destabilization. This GMI liposome did not exhibit 

colocalization. GMI liposomes were probed using NBD-PE, fluorescein-PE, and 

encapsulated SRB. After destabilization, little SRB remained located in the lumen, but a 

distinct ring of SRB was located externally of the bilayers (Figure 8) . The 

concentrations of NBD-PE and fluorescein-PE were less effective as probes indicating 

bilayer integrity. Therefore, SRB was solely used as an indicator of bilayer permeability 

and destabilization. 

A field of destabilized CNF-BSA liposomes is shown in Figure 9. The SRB 

rings are evident in red emerging from central points of origin. Central to each ring are 

the liposomes formerly encapsulating CNF-BSA and SRB, while the yellow liposomes 

(CNF-BSA absent) show no evidence of SRB leakage. It was noted that CNF-BSA 

liposomes ultimately released some of the CNF-protein conjugate. As shown inset, a 

field of destabilized CNF-BSA encapsulating liposomes, CNF-BSA was primarily 

localized along the membrane. It was also found externally forming a second ring (blue) 

similar to the SRB ring (red). The inset of Figure 9 shows leakage of SRB and CNF­

BSA from another field of CNF-BSA liposomes. 

The permeation of SRB was non-uniform with respect to liposome type, but a 

linear, time dependent trend was evident (Table 1). The earliest evidence of SRB leaking 

from any liposome was found after at 59 days. Ten percent of the CNF-BSA liposomes 

ad lost their initial ability to encapsulate SRB after this period. Whereas, 50 percent of 
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the CNF-BSA liposomes had destabilized after 103 days and finally at 146 days, 80 

percent of the CNF-BSA liposomes were destabilized. CNF-BSA was also observed 

external of the membrane at 146 days. This contrasted with the observed destabilization 

of CNF-LN liposomes over the same period. Ten percent of the CNF-LN liposomes had 

lost the initial ability to encapsulate the polar tracing probe after 116 days. At 146 days, 

20 percent of the CNF-LN liposomes had destabilized and finally at 188 days, 50 percent 

of the CNF-LN liposomes were destabilized. CNF-LN was not observed external of the 

membrane, even after 188 days. The earlier release of SRB by CNF-BSA liposomes 

appears to be related to the encapsulation of the probed protein in the aqueous lumen 

when compared to CNF-LN liposomes. The hydrophobic probe, bound to soluble BSA 

encapsulated in the lumen, may have contributed to an earlier onset of SRB leakage when 

compared to the membrane bound CNF-LN conjugate. 

The control SRB encapsulating liposomes, composed of only of lipids, 

destabilized at slower rate than both the CNF-BSA and CNF-LN liposomes. Only 20 

percent of the control liposomes had destabilized at 188 days. The destabilization of the 

GM 1 liposomes was similar to the control liposomes with only 30% of the liposomes 

destabilized at 188 days . The percent destabilized as a function of time, listed in Table 

1, of the 4 liposome types is shown as percent calculated by determining the number of 

immobilized liposomes destabilized in 3 to 5 representative fields (estimated to the 

nearest 10). 

As noted in previous reports using CLSM, quantitative comparison of 

fluorescence intensities is not trivial for a variety of reasons, because of photo-bleaching 

and quenching [33]. The immobilized liposomes characterized in this study, labeled with 
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appropriate fluorophores, have the advantage of direct monitoring over a long period 

of time. Stabilities of GMl, CNF-BSA, CNF-LN, and control liposomes were compared 

over weeks and months rather than a period of minutes or hours as done previously with 

soluble liposomes [13, 34). 

Binding of Soluble Proteins. Interactions between soluble proteins and 

immobilized liposomes were determined directly using the blue and red monitor 

channels. GMI, LN, and control liposomes encapsulating SRB were exclusively red in 

the absence of soluble CNF-conjugate proteins, while magenta color indicated binding of 

soluble CNF-conjugates. 

CNF-CTB bound GMI liposomes. GMI liposomes were subjected to treatment 

with the CNF-CTB conjugate and subsequently labeled magenta due to co-localization of 

the SRB and CNF probes. This strong co-localization indicated a definite interaction 

between CNF-CTB and the GM 1 liposomes. CNF was absent in proximity to identically 

treated control liposomes. Therefore, no co-localization of the two probes was observed. 

CNF-LN liposomes interacted with CNF-CTB conjugate also exhibited magenta 

coloration indicating the presence of recognition and interaction of CNF-CTB with LN 

liposomes. The co-localization was not as pronounced as what was observed between 

CNF-CTB and GMl liposomes indicating the interaction is not as strong. Figures lOA, 

lOB, lOC and lOD show GMl liposomes after reaction with CNF-CTB, CNF-BLF, 

CNF-BSA, and CNF-OVA, respectively . The inset images show liposome groupings at 

similar or increased magnification. 

Co-localization, indicated by magenta coloration, of CNF-BLF and SRB was 

observed with GMl but not LN or control liposomes. The co-localization was similar in 
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fields of CNF-BLF (Fig lOB) and CNF-CTB (Fig. lOA). This indicates CNF-BLF 

recognizes and binds ganglioside GMI embedded in liposomes as does CNF-CTB. CNF­

CTB and CNF-BLF did not interact with liposomes. CNF-BSA did not bind to LN 

liposomes and only showed evidence of possible interaction with GMI and control 

liposomes. This interaction has not been characterized and appears to be non-specific. 

The presence of CNF-OVA was not observed after incubation with GMI, LN, and 

control liposomes. CNF-OVA therefore constituted a negative control in the protein 

binding studies. Representative GM I Iiposomes are shown after interaction with the 

respective CNF-protein conjugates. The binding interaction characterization of the CNF­

conjugate protein with GMI, LN, and control liposomes is summarized in Table 2. 

Interactions of soluble proteins and liposomes were characterized by the 

observance of co-localized probes. The channel mixing and resultant coloration schemes 

were easy to identify and interpret. In our system, images were captured in a static 

environment rather than a flow system, which identifies interactions, or lack there of, 

based on fluorescent trails compared to points [31]. Selection and optimization of 

probes, in particular SRB, afforded specificity in labeling liposome components and 

minimal non-specific labeling of the immobilization surface. SRB release, measured 

spectrophotometrically, has been used in other studies to indicate unilamellar liposome 

destabilization and membrane permeability [34]. Our system was designed to benefit 

from the capabilities of a confocal system to characterize and use immobilized 

microemulsified liposomes to study a well-characterized interaction between CTB and 

bilayer embedded GMI. The findings complement recent reports of nitrocellulose 



membrane supported ganglioside-liposome immunoassays designed to detect cholera 

[35] and botulinum toxins [36]. 

CONCLUSIONS 
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A stable biomimetic system consisting of immobilized microemulsified liposomes 

containing embedded GM 1 or laminin on a solid glass support was developed. The 

immobilization procedure did not alter the composition or dimensions of the liposomes 

but presented several advantages to alternative strategies. Immobilization affords an 

important element of spatial control. Confocal microscopy revealed that all liposomes 

irrespective of incorporated biomolecule were located in relatively the same .xy plane 

equidistant from the glass surface as compared to liposomes embedded in an agarose 

matrix. Therefore using the described methods, multiple immobilized liposomes can be 

observed in a single field under a number of treatments. A vidin-biotin immobilization is 

advantageous because nonspecifically bound molecules can be removed by washing the 

immobilized surface with buffer. After a wash, destabilization can be monitored directly 

over time by the observance of SRB located external of the bilayer. 

Confocal microscopy was used to analyze immobilized artificial structures 

formulated specifically for determining the stability and interactions of immobilized 

liposomes with proteins in solution. A stable liposome was defined as a liposome 

characterized by internal encapsulation of SRB surrounded by a lipid bilayer with no 

leakage of SRB. All liposome preparations were stable for a period of at least 46 days, 

and some up to 188 days. 
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Molecular interactions between molecules in solution can be identified using 

multiple labeling techniques. The molecular interactions between soluble CNF-protein 

conjugates (BSA, BLF, CTB, and OVA) and SRB encapsulating liposomes containing 

GMl and LN were investigated. CNF conjugated CTB and BLF co-localized with 

GMlliposomes. LN liposomes and CNF-CTB, but not CNF-BLF. CNF-CTB and CNF-

BLF did not bind liposomes containing only lipid and SRB. No interaction between 

CNF-OVA was observed with any of the liposomes tested. 

To our knowledge we are the first group to successfully develop immobilization 

methodology of unilamellar GM 1 and LN liposomes on glass and observe bilayer 

encapsulation and interactions using CLSM. 
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Table 1. Percent of Immobilized Microemulsified Biomimetic Liposomes Observed Leaking SRB by Day. 1 

DAY 

32 46 59 73 88 103 116 131 146 160 175 188 

Control 0 0 0 0 0 0 0 0 10 10 20 30 
Liposomes 

LN 0 0 0 0 0 0 10 10 20 20 30 50 
Liposomes 

GMl 0 0 0 0 0 0 0 10 10 20 20 30 
Liposomes 

BSA 0 0 10 20 20 50 60 70 80 80 80 80 
Liposomes 

1 Percent liposomes, rounded to the tenth, leaking SRB after surveying 5 representative fields for a total count of 45-65 liposomes 

GMl = monosialoganglioside 
BSA = bovine serum albumin 
LN = laminin 
SRB = sulforhodamine B 

~ 



Table 2. Binding Interactions Between Surface Containing Immobilized Microemulsified Liposomes Containing GMl or Laminin 
and Soluble Proteins.' 

Biomimetic Liposomes 
CNF -Protein 

Conjugate Control GMl LN 

CTB - +++ ++ 
BLF + +++ 
BSA - + 
OVA 

' Presence of CNF-protein co-localized on biomimetic liposomes observed with confocal microscopy 

(+++)indicates highest degree of co-localization, a definite interaction between CNF-protein in solution and liposomes 
(++)indicates high degree of co-localization, strong evidence of interaction between CNF-protein in solution and liposomes 

(+)indicates some co-localization, evidence of possible interaction between CNF-protein in solution and liposomes 
(-)indicates no co-localization, no evidence of interaction between CNF-protein in solution and liposomes 

BLF = bovine lactoferrin 
BSA = bovine serum albumin 
CTB = cholera toxin (beta subunit) 
GMl = monosialoganglioside 
LN = laminin 
OVA = ovalbumin 

$ 
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Figure 3. Field of unilamellar microemulsified liposomes embedded in agarose matrix 
directly after microemulsification. Liposomes contain NBD-phosphatidylethanolamine 
(green) and carboxyfluorescein-phosphatidylethanolamine (green) localized in the 
artificial bilayer. Encapsulated sulforhodamine B (red) was localized in the liposomal 
lumen. Co-localized green and red probes appear yellow. Single representative liposome 
shown in inset. Scale values represent µm. 
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Figure 4. Field of immobilized unilamellar microemulsified liposomes immobilized 
directly after microemulsification. Liposomes immobilized via biotinylated 
phospholipids on coverslips containing covalently bound avidin. Liposomes contain 
NBD-phosphatidylethanolamine (green) and carboxyfluorescein­
phosphatidylethanolamine (green) localized in the artificial bilayer. Encapsulated 
sulforhodamine B (red) was localized in the liposomal lumen. A representative liposome 
is shown at increased magnification in inset. Scale values represent µm. 



Figure 5. Liposomes microfluidized with 0.45, 450, and 45 µM SRB (SRB : total lipid 
molar ratios of0.011: 1, 11 : 1, and 1.1: 1 ), respectfully A, B, and C. A representative 
liposome grouping is shown at increased magnification in inset. Scales in µm. 
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Figure 6. SRB leaking from compromised membrane bound CNF-LN liposome. Scale 
values represent µm. Inset: Membrane bound CNF-LN (blue) in artificial bilayer and 
encapsulating SRB (red) prior to destabilization. Bar = 1 µm. Co-localization results in 
magenta coloration. 



Figure 7. SRB leaking from compromised CNF-BSA encapsulating liposome. Scale 
values represent µm. Inset: Liposome encapsulating CNF-BSA (blue) and SRB (red) 
prior to destabilization. Bar = 1 µm. Co-localization results in magenta coloration. 
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Figure 8. SRB leaking from compromised GMl liposome. Scale values represent µm . 
Inset: GMl liposome containing GMl in artificial bilayer and encapsulating SRB (red) . 
Bar= 1 µm. 
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Figure 9. Field of CNF-BSA encapsulating liposomes leaking SRB and CNF-BSA. 
Inset: Group of CNF-BSA encapsulating liposomes leaking SRB (red) and CNF-BSA 
(blue). Bars= 10 µm. 
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Figure 10. GMl liposomes after interaction with CNF-CTB, CNF-BLF, CNF-BSA, and 
CNF-ovalbumin, respectively A, B, C, and D. Co-localization of encapsulated SRB and 
CNF-protein conjugate results in magenta coloration. No co-localization of encapsulated 
SRB and CNF-protein conjugate results in red coloration. The inset images show GMl 
liposome groupings at similar or increased magnification. Scale values represent µm . 



CHAPTER III 

CHARACTERIZATION OF IMMOBILIZED MICROEMULSIFIED 

LIPOSOMES CONTAINING ESCHERICHIA COLI'S 

MECHANOSENSITIVE CHANNEL OF LARGE 

CONDUCTANCE (MscL) USING CONFOCAL 

LASER SCANNING MICROSCOPY 

ABSTRACT 
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Microemulsified liposomes composed of phospholipids, cholesterol, proteins and 

N-biotinyl phosphatidylethanolamine were immobilized on glass coverslips containing 

covalently immobilized avidin. Escherichia coli's mechanosensitive channel of large 

conductance (EcoMscL) was cloned, expressed, labeled with carboxynapthofluorescein 

(CNF), and incorporated as a membrane protein. CLSM was employed to visualize the 

diffusion and release of an encapsulated polar-tracing probe, sulforhodamine B (SRB), 

during osmotic stress (0-4 M NaCl) . The recombinantly produced CNF-EcoMscL 

localized in the artificial bilayers of liposomes decreased in fluorescence when compared 

to CNF-bovine serum albumin (BSA) liposomes encapsulating SRB and control 

liposomes, containing only lipids , encapsulating SRB under identical 0-4 M NaCl 

gradient environments. SRB was released in response to the osmotic stress indicating the 

large membrane protein channel was functionally reconstituted in immobilized 

Ii posomes. SRB was not released during application of gradients of 0-200 mM EDT A or 

0-300 mM NaCL 
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INTRODUCTION 

Phospholipid vesicle suspensions (liposomes) have been used in diverse research 

approaches as mimics or models to study various cellular interactions, penetrations, and 

permeations of the lipid bilayer. Confocal laser scanning microscopy (CLSM) provides a 

means for direct observation and characterization of dynamic processes in living 

structures. The ability of CLSM to precisely image fully hydrated systems in their 

natural state and during external stress situations sets it apart from other forms of 

microscopy [l , 2]. Sample preparation is non-invasive and permits the examination of 

physiologically active structures. Living systems can be selectively labeled and dynamic 

experiments including structural changes can be monitored during analytical processes 

[l]. In this study, a liposome system composed of immobilized unilamellar phospholipid 

vesicles was directly monitored using CLSM to visualize the in vitro activity of a 

membrane bound mechanosensitive channel protein. 

Recently, a consortium of scientists used a liposome system to study the 

permeability transition of liposomes induced by the formation of calcium ion/palmitic 

acid complexes [3] . The study was designed to mimic the permeability transition in 

mitochondria, which is currently thought to be involved in the palmitic-acid induced 

apoptosis of cardiomyocytes. Sulforhodamine B (SRB) was encapsulated in liposomes 

with palmitic-acid encaged in the bilayer. Calcium ion complexing palmitic acid 

containing liposomes resulted in an instant release of SRB from the interior aqueous 

phase of the liposomes. This release was hypothesized to occur through lipid pores [3]. 

We encapsulated SRB in immobilized unilamellar liposomes containing a 
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mechanosensitive channel protein and simulated environmental stresses using osmotic 

gradients at constant pH. Our study was designed to determine whether bioactivity of a 

large mechanosensitive channel could be directly observed using CLSM during osmotic 

events similar to what a bacterium experiences during environmental osmotic variation. 

This would confirm the reported functional reconstitution of EcoMscL utilizing a novel 

approach. 

To take advantage of CLSM's ability to highly focus light in hydrated systems, 

we developed techniques for capturing liposomes onto a surface via the incorporation of 

biotinylated phospholipids and the use of immobilized avidin slides. Similarly, CLSM 

has been used to study concanavalin A in a liposome-based model system for the 

simulation of lectin-induced cell adhesion using CLSM [ 4]. Interactions of liposome­

protein (or potentially small molecules) were measured utilizing biotinylated liposomes. 

In another study, streptavidin-coated paramagnetic resins were added to the liposomes 

and then separated using a magnetic field or centrifugation. The concentration of 

unbound materials in the supernatants was directly determined [5]. Immobilized 

liposomes impart flexibility to experimental approaches regarding artificial bilayers and 

their constituents. 

Before the discovery of aquaporins in Escherichia coli (aqpz) and other 

organisms, the permeability of the bacterial lipid bilayer was assumed sufficient to allow 

the rapid equilibration of water during rapid changes in environmental osmolarity [6]. It 

has been established that many Gram-positive and Gram-negative bacteria have in their 

cytoplasmic membranes relatively large mechanosensitive channels. In£. coli, discrete 



channels with conductances ranging from 0.1 to 3 nS have been identified by patch 

clamp techniques [7]. 
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The proposed role of mechanosensitive channels is to protect of the integrity of 

the cell. Two conditions generate high turgor in the cell: the accumulation of compatible 

solutes, or "osmotic balancing," and the transfer of the cell into media of lower 

osmolarity [8, 9]. In both cases the cell responds with the release of solutes from the 

cytoplasm to reduce the turgor pressure. The discovery of the respective genes coupled 

with membrane reconstitution of the three identified mechanosensitive channels (MscL, 

MscS, and MscM) in E. coli has elucidated the roles of the Msc channels in the 

physiology of E. coli [ 1 O]. 

The E. coli mscL gene encodes a protein of 136 amino acids and proteins of 

similar size are strongly conserved across Gram-negative and Gram-positive bacteria 

[11]. EcoMscL has the highest pressure threshold for activation and is probably a 

pen tamer of 17 kDa sub uni ts that form a 3 nS conductance [ 12]. Membrane tension is 

the governing factor in the opening of EcoMscL reconstituted in liposomes [13, 14]. The 

size of this channel is sufficiently large to allow the small protein thioredoxin passage via 

this channel during hypoosmotic shock [12]. 

EcoMscL is a thermostable protein that does not undergo unfolding of its 

secondary structure between 25-95°C [15]. Its structure is highly helical with roughly 

111 amino acids in a-helical configuration oriented in a net transbilayer orientation. 

Only one-third of the protein is protected from amide H+;o+ exchange by the lipid bilayer 

[15, 16]. EcoMscL displays little ion or solute preference and transient opening of the 

channel perturbs the normal ion gradients of the cell including K+, ATP, and glutamate 



[10]. These channels can be reconstituted in liposomes while maintaining their 

biological activity and likely represent the simplest example of a membrane-based 

mechanosensory response [ 17-19]. 
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The overall objective of this research was to develop and characterize a novel 

immobilized liposome system containing EcoMscL. The in vitro biological activity of 

MscL in a liposome was investigated in response to osmotic challenges using a buffered 

immersing solution. The first objective included the formulation, microemulsification 

and immobilization of liposomes, which could be directly immobilized on glass and 

submerged in buffered solution using CLSM. The second objective involved the 

expression of an osmotic sensitive protein (EcoMscL) and the incorporation of this 

protein into immobilized artificial liposome bilayers. The stability of immobilized 

EcoMscL liposomes was then estimated over a six-month period. Finally, the EcoMscL 

liposomes were monitored using CLSM for changes in fluorescence during changes in 

osmotic conditions. We designed methods to allow active monitoring of membrane 

channels imbedded in artificial membranes of Iiposomes during osmotic events in vitro 

using CLSM as a new approach to compliment and confirm reports of functional 

reconstitution using patch clamp techniques with the protein in its native location, the 

plasma membrane of microbial cells [20]. 

MATERIALS AND METHODS 

Unilamellar Microemulsified Liposome Composition and Preparation. The 

phospholipids used in formulating unilamellar microemulsified liposomes were 

purchased from A van ti Polar Lipids, Inc. (Alabaster, AL, USA) and cholesterol was 



purchased from Sigma Chemical Co. (St. Louis, MO, USA). The amine reactive 

probe, 5-(and-6) carboxynaphthofluorescein (CNF), used to label proteins, and polar 

tracer probe, sulforhodamine B (SRB), were purchased from Molecular Probes Inc. 

(Eugene, OR, USA). 

83 

Unilamellar microemulsified liposomes were formulated using 

phosphatidylcholine, cholesterol, phosphatidyglycerol, NBD-phosphatidylethanolamine 

( 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl), 

biotinyl- phosphatidylethanolamine ( 1,2 Dioleoyl-sn-glycero-3-Phosphoethanolamine-N­

(Biotinyl)), and carboxyfluorescein-phosphoethanolamine (l ,2-Dioleoyl-sn-Glycero-3-

Phosphoethanolamine) at concentrations of 30, 6, 4, 0.060, 0.060, and 0.002 µm, 

respectively. All liposome preparations were cast in 50 mM Tris-Cl (pH 7.2). Lipid 

formulations , dissolved in chloroform, were applied to a Microfluidizer™ 1 lOS 

(Microfluidics International Corp. Newton, MA, USA) and homogenized in the casting 

buffer. Polar tracing SRB probe molecules were encapsulated and used to label the 

lumen of the artificial bilayers. CNF-labeled proteins and SRB were microemulsified at 

concentrations of 0.002 and 45 µM, respectively. The total volume of solution applied to 

the Microfluidizer™ was 10 ml. 

The Microfluidizer™ l lOS was equipped with a 10 ml sample hold volume and a 

cooling loop. SRB dispersed in 50 mM Tris-Cl (pH 7 .2) and lipids dispersed in 

chloroform were microemulsified for 270 s. Immediately following microemulsification, 

the liposomes containing solution was immobilized on glass via biotin-avidin 

interactions. Please refer to Chapter II for more information on the methods used to 

produce and immobilize the liposomes. 
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Immobilization and Stability of Liposomes. A vidin containing slides were 

prepared by derivatizing glass cover slips using 3-aminopropyl-triethoxysilane (Fisher 

Scientific, Pittsburgh, PA, USA) followed by succinylation with succinic anhydride 

(Sigma) and acetylation with acetic anhydride (Mallinckrodt, Paris, KY, USA) [21]. The 

concentration of avidin (Sigma) available for immobilization was 0.6 ng avidin per 22 x 

22 mm cover slip. This protein was covalently immobilized to the cover slips via EDC 

and Sulfo-NHS (Pierce Biotechnology, Inc., IL, USA) in activation buffer 0.1 MMES [2-

(N-morpholino)ethanesulfonic acid] and 0.5 M NaCl (pH 6.0, adjusted with NaOH) [22]. 

The cover slips were incubated with avidin for 45 min at room temperature on a platform 

shaker (150 rpm) followed by washing of the slides using the same buffer (3x) to 

eliminate non-specifically bound avidin. Freshly prepared liposomes were incubated 

with avidin containing cover slips for 30 min followed by 3x washes of 50 mM Tris-Cl 

(pH 7.2). 

The stability of liposomes was determined by storing the cover slips dry at 4°C 

for six months . Monitoring release of encapsulated SRB using CLSM was used to 

estimate bilayer stability and integrity. Samples were imaged at 2-week intervals to 

observe the integrity of the liposomes over time during the course of six months. 

PCR, Cloning, and Sequencing of EcoMscL. The two primers used in PCR 

were designed from published E. coli MscL sequences namely EmsclFor and EmsclRev 

[23]. The primer sequences were ATGAGCATTATTAAAGAATTTCG and 

CCAGTGGCAAGAAAGTAAATC for EmsclFor and EmsclRev, respectively. The 

forward primer EmsclFor begins at the start codon (ATG) at the 5 ' end of EcoMscL to 
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ensure the correct reading frame and translation process. The reverse primer 

EmsclRev includes a stop codon and terminator sequence to ensure sequence termination. 

A PCR kit (Read-To-Go PCR, Amersham Biosciences Corp., Piscataway, NJ) 

was used for all PCR experiments. The PCR sample consisted of 1 µM of each primer, 

I µl of I nM E. coli genomic DNA as the template, 1 µl of Tag polymerase, and of sterile 

water for a final volume of 25 µ1. The cycling conditions for PCR included: 94°C/l min, 

52°C/l min, and 72°C/l min with a final 10 min extension at 72°C. 

The cloning vector and host used were purchased from Invitrogen (Carlsbad, CA, 

USA). The vector, pBAD/Thio, included an ampicillin resistance gene and the cloning 

site was surrounded by HP-thioredoxin, and 6xHis tag at the target protein's N-terminus 

and C-terminus. The E. coli host cell, TO Pl 0 has a genotype of F mcrA ~(mrr-hsdRMS­

mcrBC) ¢80/acZ~Ml5 ~lacX74 recAJ deoR araDJ39 ~(ara-leu)7697 ga/U galK rpsL 

(StrR) endAJ nupG. The cloning reaction was transformed into competent TOPlO and 

plated onto agar plates containing ampicillin. Ten colonies were picked the following 

day and assayed for plasmid DNA size. Colonies containing the correct insert size were 

purified and sequenced. The forward and reverse primers were supplied by Invitrogen 

and Utah State University 's Biotechnology and Genomics Research Center (Logan, UT, 

USA) performed the sequencing. 

E. coli Cell Growth and EcoMscL Induction. Recombinant E. coli was grown 

in 2 ml Luria broth (LB) containing 100 µg/ml ampicillin overnight at 37°C while 

shaking (225 rpm). The overnight growth was subcultured into five tubes each 

containing 10 ml of LB with 100 µg/ml ampicillin. Samples were grown at 37°C with 



shaking (250 rpm) to mid-log phase (OD600 = 0.5). A 1 ml aliquot of each sample was 

removed, pelleted and stored at -80°C as the zero induction point. 
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For induction of the EcoMscL-thioredoxin fusion protein, arabinose was added to 

each of the five tubes at final concentrations of 0.00002%, 0.0002%, 0.002%, 0.02% and 

0.2%. Samples were grown at 37°C with shaking for 4 hr. Aliquots, 1 ml, from each 

tube were collected and the cells pelleted. The cell pellets were resuspended in 100 µl of 

IX SDS-PAGE sample buffer along with zero time point samples collected as described 

above. Samples were heated for 5 min at 70°C and 10 µl of each sample analyzed on a 

10% SDS-PAGE gel. 

EcoMscL Fusion Protein Purification. Recombinant cells were grown in 500 

ml of LB/ Amp to mid log phase and induced with arabinose. Cells were pelleted and 

resuspended in 5 ml B-PER, bacterial protein extraction reagent (Pierce) containing 0.65 

µl of 0.1 M phenyl methyl sulphonyl fluoride. The sample was centrifuged and after 

careful removal of the supernatant, 5 ml of B-PER reagent was added again and the pellet 

was resuspended. Lysozyme (100 µl of 10 mg/ml stock solution) was added to the 

suspension for a final concentration of 200 µg/ml. After incubation for 5 min at room 

temperature, the soluble fraction was separated from the insoluble fraction by -

centrifugation at 10,000 rpm for 20 min. 

The 2 ml ThioBond resin (lnvitrogen) was equilibrated according to the 

manufacturers directions and the lysate was applied and incubated for 30 min at room 

temperature. The resin was drained and washed with 4 bed volumes (8 ml) of wash 

buffer containing 1 mM B-mercaptoethanol CB-ME). The fusion protein was eluted with 
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3 bed volumes (6 ml) of running buffer with increasing ~-ME concentrations of 5, 10, 

50, 100, 200, and 500 mM ~-ME. Elutants were collected and analyzed by SDS-PAGE. 

Fluorescent Protein Labeling. Recombinant EcoMscL-thioredoxin protein 

fractions were labeled with 5-(and-6)-carboxynaphthofluorescein (CNF). Recombinant 

EcoMscL-thioredoxin fractions (0.8 µM) were reacted for 45 min with EDC (4.8 µM) 

and Sulfo-NHS (13 µM). The activation buffer contained O.lM MES [2-(N­

morpholino)ethanesulfonic acid] (Merck, Darmstadt, Germany) and 0.5 M NaCl (pH 6.0, 

adjusted with NaOH). CNF (1.5 µM) was added to the solution and the reaction allowed 

to proceed for 2 h. The reaction was quenched upon addition of excess hydroxylamine 

hydrochloride (Mallinckrodt). The labeled protein was dialyzed in a Slide-A-Lyzer® lOK 

cassette (Pierce) overnight against 50 mM Tris-Cl , pH 7.2 at 4°C to remove excess CNF. 

Bovine serum albumin (BSA) was labeled with CNF as described above for EcoMscL. 

Liposome Formulations Containing EcoMscL. Lipids listed previously were 

di ssolved in 1 ml chloroform and microemulsified in the presence of 0.2 nM thioredoxin­

EcoMscL-CNF (hereafter CNF-EcoMscL) and 1.8 µM SRB. The total volume of the 

solution applied to the Microfluidizer ™ 1 lOS containing 50 mM Tris-Cl (pH 7 .2) and 

lipid components in chloroform was 10 ml. Liposome formulations were 

microemulsified at I 0,000 psi for 270 s. Liposome suspensions were distributed to 

beakers containing 5 immobilized avidin cover slips in 10 ml 50 mM Tris-Cl (pH 7.2). 

The liposome suspensions were allowed to react with coverslips at room temperature for 

30 min followed by 3x washes of 50 mM Tris-Cl (pH 7 .2). 

EcoMscL liposomes were observed using CLSM before, during, and after 

modulation of the microenvironment by addition of pH buffered gradients of various 
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concentrations to the immersing solution. Each cover slip containing immobilized 

liposomes was secured onto a 22 x 22 mm2 hole in a petri dish. For all treatments, the 

liposomes were immersed in 1ml50 mM Tris-Cl (pH 7.2) followed by the addition of 24 

ml salt containing 50 mM Tris-CJ (pH 7.2) buffers until the immersing solution (25 ml 

total volume) was 200 mM EDTA, 300 mM NaCl, or 4 M NaCl. Scanning and image 

collection was performed at 30 s intervals during a 270 s time period during each 

treatment. 

Identical lipid profiles were used for formulation of control liposomes consisting 

of Iiposomes produced encapsulating SRB in the absence of protein and CNF-BSA 

liposomes produced encapsulating and SRB. The control liposomes were produced, 

immobilized, and imaged using the same procedure as for EcoMscL liposomes. 

Confocal Laser Scanning Microscopy. Each series of confocal laser scanning 

microscopy images was generated using a Keller type MRC 1024 krypton/argon laser 

scanning confocal system (Bio-Rad, Hercules, CA, USA) interfaced with an inverted 

microscope (Diaphot TE300, Nikon, Tokyo, Japan). The pinhole diameters were 2.5, 2.5 

and 4.0 mm respectively for the 488 , 598, and 668 nm laser lines and the objective Jens 

was a Nikon 1 OOX, plan apo, oil immersion with a numerical aperture of 1.40. The 488 

nm laser line was used for the liposome formulation and immobilization studies. The 488 

nm line excited the fluorescein and NBD labeled phosphatidylethanolamine encaged as a 

component of the artificial bilayers of the liposomes. The 647 nm laser line was used for 

Jiposomes containing CNF labeled proteins. The 568 nm laser line was used to excite the 

encapsulated SRB. 
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The 647 nm line from the Kr/Ar laser was used to excite the amine reactive 

probe (CNF). CNF was used to label the membrane protein and exhibits an excitation 

and emission of 598 and 668 nm, respectively. The aqueous probe, SRB, was used to 

monitor the water-phase encapsulated by the liposome bilayer during the 

microemulsification of the lipid solutions. SRB exhibits an excitation and emission of 

565 and 586 nm, respectively. It was excited using the 568 nm line. SRB fluorescent 

emissions were detected and directed to the red channel while the 647 nm line from CNF 

were directed to the blue channel. The resulting red and blue images were overlaid using 

LaserSharp® version 3.2 (Bio-Rad) and analyzed using Adobe® Photoshop® 5.0 (Adobe 

Systems, Inc., San Jose, CA, USA). 

Images (82 X 82 µm 2
) were taken consecutively with the dichroic beam splitters 

and filters to minimize cross talk between channels. All images were acquired with 

identical settings. The photomultiplier gain/sensitivity/contrast was adjusted to give a 

slightly over-modulated signaling in the normal scan mode. The consecutive images 

represented time points 0, 60, 120, 180, and 270 s. Ten normal scans were performed on 

the time zero field to reduce photo-bleaching in subsequent scans as a comparison was 

made between time points 0 and 270 s. The time zero image, representing the starting 

point of the treatment gradient, was converted to a posterized (Adobe® Photoshop®) 

image with 2 levels. This resulted in images with one tonal level for each channel. The 

mapped pixels of each channel were tabulated using Adobe® Photoshop®'s histogram 

tool from this simplified image and compared to an identicaJJy treated posterized image 

coJJected at the termination, time= 270 s, of the osmotic treatment time series for a given 

field. This conversion, tabulation, and comparison aJJowed the images to be analyzed 
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quantitatively by comparing the pixels of images before and after the treatment. The 

change in fluorescence was expressed as a percent reduction of pixels for each treatment 

along each channel, red and blue, respectively. Each treatment was performed in 

triplicate and replicated at least once. Average pixel reductions generated from 

individual treatments were used to determine an approximate average pixel reduction for 

each gradient and liposome composition. 

RESULTS 

Unilamellar Microemulsified Liposome Composition and Preparation. The 

composition of the solution containing lipids and labeled proteins subjected to 

microemulsification met the goals of our experimental design in that when subjected to 

the Microfluidizer™, unilamellar liposomes were formed and dispersed in solution. The 

produced liposomes immobilized on coverslips and imaged. The selected probes 

specifically and consistently labeled liposome components (i.e. lipid bilayer monitored 

using the green channel, protea-lipid bilayer monitored using the blue channel, and lumen 

monitored using the red channel). See detailed methods in Chapter II. 

Immobilization and Stability of Liposomes. Figures llA-B were obtained 

using a series of scans (0.8 µm apart in the vertical or z plane) showing immobilized 

liposomes formulated in the absence of protein. SRB was encapsulated, labeling the 

lumen of the liposomes. The images of the dorsal (Figure llA) portion of the liposomes 

resulted in predominantly green images whereas , the central section (Figure llB) show 

strong co-localization of probes labeling both the bilayer and the lumen. Here bilayer 



embedded probes (green) and lumen encapsulated probes (red) undergo simultaneous 

excitation in the same location in space resulting in a pronounced yellow appearance in 

the image. 
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CNF-EcoMscL liposomes were produced, immobilized and imaged. As with both 

the liposomes embedded in agarose or immobilized directly after microemulsification, 

the immobilized CNF-EcoMscL liposomes were uniformly unilamellar. Please refer to 

Composition of liposomes in the Results and Discussion section of Chapter II and 

Figures 3 and 4. The diameters ranged from 0.2 - 2.1 µm and no clumping, aggregation 

or agglutination was observed. The encapsulation of SRB observed in immobilized 

CNF-EcoMscL liposomes was similar to liposomes immobilized on glass previously in 

the absence of CNF-protein conjugates. Co-localization of SRB and CNF imaged 

without exciting the head-group labeled phospholipids resulted in a vivid magenta 

(Figure 12A). The inset shows a grouping of immobilized CNF-EcoMscL liposomes in 

greater detail (Figure 12A, inset). 

After immobilized CNF-EcoMscL liposomes were stored dry at 4°C for 4 months , 

indications of compromised bilayer integrity was observed. SRB was observed diffusing 

in a symmetrical ring extending beyond the artificial bilayers. A field of destabilized 

liposomes is shown in Figure 12B. The insets show representative CNF-EcoMscL 

liposomes at the one and 6-month intervals (Figure 12B inset above and below, 

respectively). After 4 months, 1 in 10 liposomes had lost its initial ability to encapsulate 

probe. After 5 months, 5 in 10 artificial bilayers had destabilized and finally at 6 months, 

8 in 10 liposomes were destabilized. This rate of destabilization was similar to that 

determined for CNF-LN liposomes as described in Chapter II. 
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PCR, Cloning, and Sequencing of EcoMscL. PCR with an annealing 

temperature of 52°C generated a specific PCR product at the expected 481 base pair 

product size. The PCR product was cloned into the TOPO vector and two positive clones 

were identified, MscL2 and MscL6. Although MscL6 contained a PCR insert, 

sequencing confirmed the presence of multiple errors in the base-pair sequence. MscL2 

contained one base-pair error, which changed amino acid 65 in the target MscL protein 

sequence from valine to alanine. We assumed this change would not affect EcoMscL 

protein functionality , as these two amino acids share similar chemical properties. 

E. coli Cell Growth and EcoMscL Induction. The pBAD/TOPO vector was 

selected because the TOPO vector is advantageously easier and faster than traditional 

PCR cloning vectors and this vector contains the araBAD promoter, which is tightly 

controlled by the arabinose concentration in medium. Use of the tightly controlled 

arabinose promoter ensured that a potential lethal effect of the expressed protein would 

not occur during the cell growth phase. In addition, the fusion protein containing a 

thioredoxin tag has the advantage of increased solubility in cell plasma when compared 

to other affinity tags. This theoretically improves the nickel column affinity purification. 

The thioredoxin tag is linked to the N-terminal of target protein via an enterokinase (EK) 

site, which can be used for cleavage to remove the thioredoxin tag. The molecular 

weight of the EcoMscL fusion protein was calculated to be 28 kDa based on amino acid 

sequence. 

Protein Fraction Purification. The expression of the EcoMscL fusion protein 

was maximum at 0.2% arabinose in the medium as determined by SDS-PAGE analysis 

(Figure 13). Higher arabinose concentrations resulted in less protein expressed which 
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may be due to the lethality of this protein to the host at the high expression rate. The 

initial effort to lyse the induced cells with B-PER failed to release recombinant EcoMscL 

protein into the soluble lysate. Since EcoMscL is a membrane protein , we added an 

additional lysozyme treatment after treating with B-PER to degrade the cell wall. As 

expected, recombinant EcoMscL was released into supernatant. Use of the ThioBond 

resin for affinity purification did not result in purified recombinant fusion protein. The 

recombinant protein did bind to the resin, but could not be released with any of the 

concentrations of ~-ME tested . To confirm the fusion protein had bound to the affinity 

resin, the resin was boiled in SDS-PAGE loading buffer. The released protein was 

analyzed by SOS-PAGE and showed a protein band at 28 kDa, but this purified protein 

could not be used in the liposome experiments . We concluded that the almost 

irreversible binding of the recombinant protein to the resin was due to the specific 

binding properties of EcoMscL, not the thioredoxin . 

Since the recombinant fusion protein could not be purified using the nickel resin, 

the protein fraction released after lysozyme treatment was used in further experiments. 

SOS-PAGE analysis of this protein fraction followed by scanning densitometry showed 

that 40% of the total protein resulted in a 28 kDa band (Figure 14). We assumed this 

band to be the EcoMscL-thioredoxin fusion protein. This sample was labeled with CNF 

using a concentration ratio of 1.8 moles CNF: 1 mole recombinant protein. 

Fluorescent Labeling and Liposome Formulations of EcoMscL. The cloning 

of recombinant EcoMscL into an E. coli expression system yielded an EcoMscL­

thioredoxin fusion protein that was subsequently labeled with a blue fluorescent probe, 

CNF, and incorporated into the membrane of liposomes. These EcoMscL enriched 
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membrane proteins as well as CNF-BSA were directly observed using the blue channel 

of the confocal system. 

The protein fraction was predictably labeled with the amine reactive probe, CNF. 

The labeling procedure resulted in the formation of an amide bond between the carboxyl 

group of the probe molecules and the reactive amine groups of the protein. This CNF 

probe allowed visualization of liposomes containing CNF-EcoMscL which appeared 

blue. Liposomes formed in the absence of this probe holding all other variables constant 

could be easily distinguished because they appeared red due to the encapsulation of the 

SRB probe found in the liposomal lumen. Magenta liposomes resulted when CNF­

labeled protein containing liposomes encapsulated SRB (Figure 12A and inset). Again, 

magenta coloration in the image represents co-localization of both red and blue channels. 

Immobilized liposomes containing CNF conjugated proteins were visualized with 

confocal microscopy. The composition of the solution subjected to microemulsification 

consisted of lipids , CNF labeled proteins, and SRB labeled buffer. These CNF-EcoMscL 

liposomes were observed to be in all respects similar to CNF-BSA liposomes and 

liposomes produced in the absence of protein using identical methodologies and lipid 

profiles (Figure 12A and inset). 

Confocal Laser Scanning Microscopy. Modulations in fluorescent intensity of 

SRB was used to indicate biological activity in protein containing liposomes. This probe 

is impermeable to cells and consistently and predictably labeled the internal aqueous 

phase of the liposomes used in the study. The diameter of this probe is estimated at 1.5 

nm [3]. The probes CNF and SRB showed consistent, minimal photo-bleaching under 

experimental conditions. This allowed for their use as qualitative indicators and in the 
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case of SRB, allowed us to monitor its diffusion through the large mechanosensitive 

membrane channel and/or quenching due to exposure to the immersing solution using the 

available confocal system. 

The functionality of the CNF-EcoMscL incorporated into artificial bilayers was 

tested by increasing the osmolyte concentration of the buffered immersing solution. 

Native and reconstituted EcoMscL form a large open channel in response to membrane 

pressure. The immobilized CNF-EcoMscL liposomes contained internalized, water 

soluble SRB which could be released to the immersing solution upon the opening of the 

pore or quenched due to exposure to the osmolytes in solution. Although the orientation 

of the membrane protein can not be determined using microscopy, we found that upon 

the addition of osmolytes, namely Na+ and ci-, to the immersing solution, the internalized 

SRB was released (or quenched internally), yet the liposome integrity of CNF-EcoMscL 

liposomes remained unchanged. Figures lSA-D show a time series of CNF-EcoMscL 

liposomes with encapsulated SRB (magenta due to co-localization of blue and red 

channels) along with liposomes containing only SRB (red) during osmotic shock. 

These images were captured after initial prolonged exposure from progressive 

scanning as control for and to reduce photo-bleaching. The field was located in the 

absence of any solution. Buffer, 50 mM Tris-Cl (pH 7.2), was used to immerse the 

surface of the cover slip followed by 10 progressive scans of the field at the normal speed 

setting (constant for all treatments). Finally, after the photo-bleaching effect of the initial 

scans was accounted for, images were collected before, during, and after the addition of 4 

M NaCl in 50 mM Tris-Cl (pH 7.2). These images exhibit an observable decrease in the 

intensity of the red channel, labeling the externai aqueous phase during the course of the 



treatment while the red channel intensity of the liposomes not containing protein was 

apparently unaffected. 
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The insets of Figures lSA-D show a representative immobilized CNF-EcoMscL 

liposome containing fluorescently labeled phospholipids and encapsulated SRB observed 

in a time series during an osmotic treatment identical to those in the greater fields 

(Figures lSA-D). The individual liposome reacted similarly to the liposome population 

observed in Figures lSA-D. Again, these images represent a time series after the 

addition of 4 M NaCl. 

Controls included liposomes which did not contain CNF-EcoMscL and liposomes 

formulated with CNF-BSA. A time series identical to those used in the CNF-EcoMscL 

liposomes studies was used for the control treatments. The encapsulated SRB in control 

liposomes was observed to be relatively unaffected regardless of the osmolyte 

concentration. The polar tracer remained encapsulated in the interior of the liposomes 

under the conditions tested. Low salt concentration gradient treatments (0-300 mM NaCl 

and 0-200 mM EDTA) applied to the immersing solution of CNF-EcoMscL, CNF-BSA, 

and non-protein control liposomes resulted in little observable effects in the fields tested. 

Quantitative data was generated from time series images tabulating total pixels in 

individual channels using Adobe® Photoshop®'s posterize function and histogram tool. 

This technique offers a quantitative measure of what is observed subjectively at the 

microscope. Average pixel count reductions for each treatment quantitatively expressed 

what was empirically observed. During a time series, images were collected of a field of 

CNF-MscL liposomes while a NaCl gradient of 0-4 M was applied. The red channel 

intensity was reduced on average by 50.4% where as the blue channel intensity was 



97 
reduced on average by 15.5% (Table 3). Identically imaged fields of CNF-BSA 

liposomes had average channel intensity reductions of 2.76% and 7.61 % for red and blue 

channels respectively when the same gradient was applied. The reductions of red pixels 

for treatment groups were found similar in magnitude when comparisons were made 

between the different liposome compositions exposed to 0-200 EDTA and 0-300 NaCl 

treatments. The blue channel intensity, as measured by pixel reductions during the 

course of time series, was similar for all tested treatments except the EcoMscL liposomes 

where the reduction was larger than CNF-BSA liposome fields (15.49% for EcoMscL vs. 

7.61 % for CNF-BSA liposomes). The orientation of MscL in the membrane and the 

presence of the thioredoxin tag did not appear to interfere with the release of SRB under 

high salt conditions. 

DISCUSSION AND CONCLUSIONS 

The aim of this study was to investigate the influence of osmotic stress on 

immobilized unilamellar liposomes containing a membrane bound mechanosensitive 

channel protein (EcoMscL). Liposomes were designed to mimic analogous larger cells 

known to rely on mechanosensitive channels for survival during osmotic shock. It was 

hypothesized that if the protein retained its biological activity when labeled and 

incorporated into liposomes, it would open during an osmotic treatment and this opening 

would be observable as a change in fluorescence. The methods described allowed active 

monitoring of liposomes during osmotic events in vitro using CLSM as a new approach 

to compliment and confirm reports of functional reconstitution of mechanosensitive 

proteins in liposomes. The results show the mechanosensitive channel protein pentamer 
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to be biologically active as evidenced by the reduction in pixels of the red channel 

when liposomes containing MscL were exposed to 0-4 M NaCl at pH 7.2 as compared to 

identically treated CNF-BSA liposomes and control liposomes absent of protein. 

As noted in previous reports using CLSM, quantitative comparison of 

fluorescence intensities is not trivial for a variety of reasons, such as photo-bleaching and 

quenching [24]. Scanning the time zero field to reduce the photo-bleaching effect of 

image collection during a time series was an effective method of reducing variation 

among individual fields subjected to the same treatment. The rate of pixel loss over the 

course of a time series in a given treatment was highly variable before time point 180 s 

but did not exhibit comparable variability after 180 s up to 540 s. Thus, preliminary 

scanning of the hydrated time zero liposome field before the onset of treatments 

minimized the photo-bleaching effect that would have confounded the data . 

Quenching can reflect variations in the rnicroenvironment of the fluorescent 

probe; changes in the local salt or oxygen concentration ; pH differences, to which the 

particular probe is sensitive, etc. [24]. In our experimental design, we used the quenching 

of probes as our indicating outcome. As this fixed condition is inherent to CLSM studies, 

we decided to exploit it as our indicator of channel activity. The indicator probe, SRB 

was encapsulated in artificial immobilized liposome bilayers at time zero for all osmotic 

treatments. 

In order to determine SRB 's independent ability to permeate lipid bilayers, SRB 

was encapsulated in control liposomes of identical lipid compositions. These purely red 

liposomes were incubated in solutions composed of 50 mM Tris-Cl (pH 7.2) and 

increasing NaCl concentrations and monitored over time. The fluorescent intensity of 
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SRB did not vary appreciably because the microenvironment of the probe was 

unaltered at time zero for all treatments and 10 xy scans were performed to preempt any 

photo-bleaching effect before the application of the salt treatment. This was also 

confirmed by imaging representative fields of liposomes during a time series in the 

absence of a Na Cl or EDT A gradient. As before, immersing solution, in this case, 25 ml 

of 50 mM Tris-Cl (pH 7 .2), was applied to the petri dish during imaging of the time 

series but a treatment gradient was absent. Images were generated and pixel reductions 

were calculated. Channel intensities reductions, or pixel reductions expressed as a 

percent, were similar to those tabulated in the EDTA gradient (ranging from 0.6 to 1. 7% ). 

The effect of the altered microenvironment on the encapsulated SRB was observed only 

in EcoMscL liposomes. 

Significant quenching of the probe was only observed when the probe was 

subjected to the 0-4 M NaCl gradient due to the opening of the EcoMscL channel 

allowed the release of internalized SRB. Controls consisting of fields of CNF-BSA 

liposomes or liposomes without proteins experienced a dramatically smaller decrease of 

red channel intensity in the same gradient (0-4 M NaCl). Other gradient treatments 

(0-300 mM NaCl and 0-200 mM EDTA) resulted in no difference in red channel 

reduction for each of the three immobilized liposome variations. 

The percent blue pixel reduction calculated individually for the CNF-EcoMscL 

and CNF-BSA liposomes for all three treatments was largest during the 0-4 M NaCl 

treatment of CNF-EcoMscL liposome fields. All other percent blue pixel reductions 

calculated for the treatments and controls tested were similar in magnitude with respect to 

one another. The increased average loss of blue pixels calculated with respect to CNF-
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EcoMscL liposomes as compared to CNF-BSA liposomes indicates the treatment 

resulted in a physical modification and release of SRB. This observed difference 

confirms previous work regarding EcoMscL which has estimated that approximately 66% 

of the protein is exposed to the microenvironment of the immersing solution [15, 16] and 

is able to respond to an osmotic change in the environment. Although the orientation of 

EcoMscL in the lipid bilayer was not determined and the protein contained a thioredoxin 

tag, it appeared to function with a change in osmotic conditions. 

The stability of liposomes containing membrane proteins and recombinant 

EcoMscL from E.coli was estimated with respect to the liposomes' relative ability to 

encapsulate SRB in a dry-state. The immobilized liposome system was stable for 

approximately four months stored dry at refrigeration temperatures. The liposomes' 

composition and dimensions are suitable for monitoring and imaging using CLSM. 

EcoMscL has physical dimensions large enough that when opened allows encapsulated 

water soluble SRB to be released from the liposomal lumen to the immersing solution. 

The modulation in fluorescence resulting from the change of the microenvironment was 

monitored using CLSM and channel intensities were tabulated using Adobe® 

Photoshop®. 

Immobilized liposomes of various compositions were monitored using CLSM and 

maintained their integrity while the osmotics of the immersing solution were modified to 

simulate hypo- and hyperosmotic shock. The quenching or diffusion of the red 

encapsulated probe indicated the biological activity of EcoMscL was maintained when 

reconstituted in immobilized liposomes using CLSM. To our knowledge we are the first 
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group to successfully immobilize unilamellar liposomes on glass and study 

reconstituted EcoMscL liposome bioactivity and bilayer encapsulation and integrity using 

CLSM. 
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Table 3. Percent pixel reduction of probes labeling three types of immobilized 
microemulsified liposome populations during gradients over time. Reduction of pixels 
indicates release or quenching of internalized SRB (red pixels) and CNF (blue pixels). 

Immobilized Microemulsified Liposome Type 

Embedded Embedded Encapsulated 
CNF-EcoMscL and CNF-BSA and SRB 
Encapsulated SRB Encapsulated SRB (Control) 

Red Pixels Blue Pixels Red Pixels Blue Pixels Red Pixels 
Gradient 

0- 200 mM EDTA 0.84% 6.36% 0.68% 5.34% 2.12% 

0-300 mM NaCl 3.99% 7.85% 3.50% 6.46% 5.15% 

0--4 M NaCl 50.45% 15.49% 2.76% 7.61 % 7.53% 
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Figure 11. Two xy images collected in series of four unilamellar immobilized 
microemulsified liposomes scanned 0.8 µm apart along the z plane (A and B). 
Liposomes immobilized via biotinylated phospholipids on slides containing covalently 
bound avidin. Artificial lipid bilayer contained NBD-phosphatidylethanolamine (green) 
and carboxyfluorescein-phosphatidylethanolamine (green) and sulforhodamine B (red) 
was encapsulated in the liposomal lumen. Co-localized green and red probes appear 
yellow. Scale values represent µm. (A) Dorsal scan. (B) Central scan. 
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Figure 12. Immobilized unilamellar immobilized microemulsified EcoMscL liposomes. 
Liposomes immobilized via biotinylated phospholipids on slides containing covalently 
bound avidin. Artificial lipid bilayers contained CNF-labeled proteins including 
EcoMscL (blue). Sulforhodamine B (red) was encapsulated in the liposomal lumen. Co­
localized blue and red probes appear magenta. Scale values represent µm. (A) Field of 
immobilized EcoMscL liposomes ranging in color from blue to magenta. A liposome 
absent of CNF labeled protein is centrally located (red). (Inset A) Increased 
magnification of immobilized EcoMscL liposomes in A. (B) Field of destabilized 
immobilized unilamellar EcoMscL liposomes after six months dry storage at 4°C. (Inset 
B above) EcoMscL liposome encapsulating SRB imaged at one month. (Inset B below) 
EcoMscL liposome imaged at six months. SRB was no longer encapsulated in the 
liposomal lumen but has diffused along the surface of the glass. 
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Figure 13. SOS-PAGE gel of EcoMscL protein fraction purificiation. Lanes: 1) 
molecular weight marker, 2) 0.00002 % arabinose treatment, 3) 0.0002 % arabinose 
treatment, 4) 0.002 % arabinose treatment, 5) 0.02 % arabinose treatment, 6) 0.2 % 
arabinose treatment, 7) 0.2 % arabinose treatment, 8) molecular weight marker. 
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Figure 14. SDS-PAGE gel of EcoMscL protein fraction purification released after 
lysozyme treatment. Lanes: 1) molecular weight marker, 2) protein released after 
lysozyme treatment. 
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Figure 15. Four xy images collected of a field of unilamellar immobilized 
microemulsified liposomes representing a time series during the application of a 0--4 M 
NaCl gradient over the course of 270 s (A-D). Liposomes immobilized via biotinylated 
phospholipids on slides containing covalently bound avidin. Artificial lipid bilayers 
contained CNF-labeled proteins including EcoMscL (blue). Sulforhodamine B (red) was 
encapsulated in the liposomal lumen. Co-localized blue and red probes appear magenta. 
Red liposomes are absent of EcoMscL. Inset images show a single EcoMscL liposome 
during gradient. Scale values represent µm. (A and A' ) Time= 0. (Band Inset B) 
Time= 120 s. (C and Inset C) Time= 180 s (D and Inset D) Time= 270 s. 



CHAPTER IV 

BIOMIMETIC BINDING OF ESCHERICHIA COLI 0157:H7, 

SALMONELLA ENTERITIDIS, LISTERIA MONOCYTOGENES, AND 

LISTERIA INNOCUA WITH EUKARYOTIC UNILAMELLAR 

IMMOBILIZED MICROEMULSIFIED LIPOSOMES 

ABSTRACT 

110 

Microemulsified liposomes are effective biomembrane models for studying 

cellular interactions. Eukaryotic receptor biomolecules gangliosides (GMl and GM3) 

and laminin (LN), a glycoprotein, were incorporated into unilamellar immobilized 

microfluidized liposomes. Liposomes were immobilized to an avidin containing solid 

support. In vitro capture of Escherichia coli 0157:H7, Salmonella enteritidis, Listeria 

monocytogenes, and Listeria innocua with liposomes containing GM 1, GM3, or LN was 

investigated using ELISAs and confirmed by PCR analysis. Capture of individual 

bacterial species with GM 1, GM3, and LN liposomes was determined in the absence and 

presence of other species at the same inoculation level. Simultaneous capture of E. coli 

0157:H7 and S. enteritidis was determined with GMl , GM3 , and LN liposomes at six 

combinations of cell concentrations 2 x 103
, 2 x 105

, and 2 x 107 CFU/ml. Adhesion and 

capture of E.coli 0157:H7 and the Listeria species was evidenced on GMI and LN 

Jiposomes, respectively. 
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INTRODUCTION 

Biomembranes and Model Membranes. Biomembranes contain a large number 

of different lipids and proteins. Experiments on lipid (or glycolipid)-protein interactions 

with biomembranes are very complex to analyze, due to the multiple variables. As an 

alternative, well-defined model systems can be utilized to elucidate basic, specific 

interactions between biomolecules and host receptors masked in the complexity of a 

biological membrane. For example, the dependence of phospholipase A2 (PLA2) 

activity on membrane lateral heterogeneity is well established in model membranes [1-3]. 

The same membrane properties were shown to determine the PLA2 activity also in 

biological membranes (erythrocytes), indicating that mechanisms obtained from simple 

model membranes also apply to complex biological systems [4]. 

Biomimetic Liposomes. Glycosphingolipids are assumed to serve as recognition 

markers at the cell surface and can be involved in the various forms of cell response. 

Increasing evidence implies that gangliosides serve as binding sites in the membrane­

mediated transfer of information. Their highly differentiated oligiosaccharide chains 

provide a variety of sites for specific binding that is translated through intramembrane 

events, and results in the activation of adenylyl cyclase and other systems controlling 

protein phosphorylation and dephosphorylation in cellular recognition mechanisms. 

Liposomes are spherical lipid vesicles formed by a single (unilamellar) or 

multiple (multilamellar) bilayers, enclosing small volumes of aqueous solution inside the 

vesicle [5]. The diameter of liposomes ranges from ~30 nm to several µm and depends 

on the preparation technique. The curvature of liposomes and the lipid composition of a 



single liposome cannot be precisely controlled. Liposomes can be visualized directly 

by phase contrast, fluorescence , and confocal microscopy [6]. 

Bilayer curvature depends on the liposome diameter, with small unilamellar 

vesicles (diameters< 50 nm) having the highest curvature. For large unilamellar 

liposomes (diameters> 1 µm) the average bilayer curvature is similar to planar 

membranes when considering curvature at the molecular level. These liposomes are 

excellent candidates for in vitro model systems. 
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Gangliosides. Gangliosides are normal components of the plasma membrane of 

vertebrate cells and are particularly abundant in the nervous system. Gangliosides are 

asymmetrically located in the outer lipid layer of the membrane and exhibit strong 

amphiphilic properties. Gangliosides are glycosphingolipids constituted by a hydrophilic 

sialic acid-containing oligosaccharide and a hydrophobic ceramide portion, connected by 

a glycosidic linkage. The concentration of sialic acid containing gangliosides of the 

cortex gray matter is approximately one-tenth that of total phospholipids [7]. The gastric 

mucosa also contains a similar proportion of GM3 with respect to total phospholipid 

content [8]. The oligosaccharide portion protrudes from the outer membrane surface, and 

the ceramide moiety is inserted into the lipid core of the membrane. 

Cellular Recognition and Interactions. Bacterial pathogenesis in vivo is often 

initiated by the attachment of the pathogen to the surface of the host cell [9, 10] . 

Attachment, or adhesion to host cells, occurs by a variety of mechanisms that depend on 

the host cell surface, type, and the specific pathogen or toxin. Attachment can result in 

subsequent internalization of the pathogen or toxin by phagocytosis or by endocytosis. In 

most cases of internalization, host and pathogen cells participate in this adhesion process, 
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and activation or modification of host cell signaling pathways is common [ 11-13]. 

Stimulation of these signaling pathways leads to enhancement of pathogen attachment or 

invasion, and signaling is activated through a variety of cell surface receptors [14]. 

Modulations in signaling pathways ultimately are manifest in common foodbome illness 

symptoms such as cramping and diarrhea. 

Adhesion involves components of both the pathogen and host cell, and can lead to 

internalization of the pathogen. Bacterial pathogens produce molecules or 

macromolecular structures that are generally referred to as adhesins [ 15-17]. The adhesin 

molecules or structures specifically interact with host cell receptors to facilitate 

attachment and subsequently invasion. Examples of bacterial adhesins include invasin 

(Yersinia ssp.) , internalin (Listeria ssp.), MarkD ( K. pneumoniae), and FimH (Salmonella 

ssp.) [IO, 17, 18]. A variety of mammalian cell surface receptors that interact with 

bacterial adhesions including proteins such as integrins, cadherins, laminin, fibronectin, 

type V collagen, glycolipids such as gangliosides, or carbohydrates such as sialic acid 

[19-22]. 

Two general mechanisms by which pathogenic bacteria invade non-phagocytic 

host cells have been identified. Both involve significant alterations in host cell signal 

transduction and rearrangement of the actin filaments. Some Salmonella species utilize a 

"trigger" mechanism characterized by the induction of host cell protrusions that "reach up 

and around" the pathogen and ultimately leads to invasion into the host cell [23]. Listeria 

monocytogenes utilizes a "zipper" mechanism where the pathogen presumably slides or 

zips into the cell surface to accomplish invasion [12, 21]. Both the "trigger" and "zipper" 

mechanisms are initiated with modifications of host signal transduction pathways that 
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lead to major local rearrangements of the actin cytoskeleton [12, 24, 25]. Salmonella 

typhimurium, a close relative of Escherichia coli, is an enteric pathogen that is easily 

cultivated and genetically manipulated. As an extremely valuable tool for studying 

invasion and intracellular survival, this Salmonella species, which produces a number of 

adhesins, has enabled researchers to identify and characterize many of the factors 

involved in these processes [24, 25]. 

Confocal Microscopy. Molecular interactions between liposome-embedded 

receptors indicated by presence and proximity of fluorescent probes labeling specific 

molecules or structures can be observed with confocal laser scanning microscopy 

(CLSM). CLSM is a powerful microanalytical tool that provides a means for direct 

observation and characterization of dynamic processes in living structures or mimetics of 

these structures. The ability of CLSM to precisely image fully hydrated systems sets it 

apart from other forms of microscopy (26, 27]. Sample preparation is non-invasive and 

permits the examination of physiologically active structures. Systems, living and 

artificial can be selectively labeled and monitored during analytical processes including 

microbial detection [6]. 

In this study, unilamellar microemulsified liposomes were produced, and 

immobilized to avidin-containing glass coverslips. Immobilized microemulsified 

liposomes were formulated to contain the membrane glycolipid receptors (GMl or GM3) 

or an embedded membrane glycoprotein laminin (LN). The capture of E.coli 0157:H7, 

S. enteritidis, L. monocytogenes, and L. innocua after incubation and wash was assessed 

using ELISAs and PCR techniques. E. coli 0157:H7 cells were captured on GMl and 

imaged using CLSM. 
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MATERIALS AND METHODS 

Immobilized Microemulsified Liposomes. Unilamellar immobilized 

microemulsified liposomes were prepared encapsulating the polar tracer, sulforhodamine 

B (SRB), and embedding ganglioside GMI, GM3 , or laminin as described in Chapter II. 

In brief, the lipid composition for the formulation of liposomes consisted of 

phosphatidylcholine, cholesterol, phosphotidylglycerol, phosphatidylethanolamine, and 

biotinyl-phosphatidylethanolamine. Lipids, purchased dry and suspended in chloroform 

to facilitate formulation , were added to 50 mM Tris-Cl (pH 7.2) at lipid molar ratios of 

73: 15: JO: 2: 0.15, respectively. Human laminin (LN), or bovine ganglioside (GMl) 

was added to solutions processed in the Microfluidizer ™ l IOS (Microfluidics 

International Corp. Newton, MA, USA). The lipids were suspended in 10 mL 50 mM 

Tris-Cl (pH 7.2) and microemulsified in the presence of LN (lipid: protein molar ratios 

of 5844 : 1.0) or ganglioside (ganglioside : lipid molar ratios of 0.089 : 1.0). A SRB : 

total lipid molar ratio of I . I : I .O was constant in all formulations. LN was purchased 

from Sigma Chemical Co. (St. Louis , MO, USA), GMl and GM3 from Alexis 

Corporation (Lausen, Switzerland), and fluorophores from Molecular Probes Inc. 

(Eugene, OR, USA). 

Control liposomes containing no gangliosides or Iaminin consisted of the identical 

lipid composition . The lipid solution was microemulsified for 270 s at maximum 

pressure (10,000 psi). Immediately following microemulsification, the liposome 

solutions were immobilized onto glass coverslips via biotin-avidin interactions. 



116 
For GM 1 liposomes used in the initial ELISA capture study, the GM 1 

concentration was serially diluted resulting in molar percent concentrations of 0.0, 

0.0089, 0.089, 0.89, and 8.9. All other ELISA and PCR capture studies compared GMl 

molar percent concentrations of 0.0 and 8.9. 

A vidin Immobilization. A vidin was immobilized on salinized glass coverslips 

as described in Chapter II. A vi din concentrations used for immobilization were increased 

logarithmically in a series from the concentration used in previous liposome studies (6.0 

ng, or 1.0 x 10-13 moles per 968 mm2
) to determine the maximum amount of avidin that 

could be immobilized. Coverslips were prepared by increasing the amount of avidin in 

the immobilization reaction step-wise by a power of 10 in a range from 1.0 x 10-14 to 1.0 

x 10-9 moles (or 0.9 ng to 90 µg) per 968 mm2
• 

Bacterial Strains and Growth Conditions. E.coli 0157:H7 (American Type 

Culture Collection, ATCC 35150), S. enteritidis (A TCC 8326), L. innocua (A TCC 

33090), and L. monocytogenes (ATCC 43251 ), were obtained from the Department of 

Nutrition and Food Sciences at Utah State University. Stock cultures of each bacterium 

were prepared from single colony isolates after growth as described by the ATCC 

instruction sheet. Each culture was inoculated (1 %) into 10% non-fat dry milk powder 

containing 33 % sterile glycerol and stored frozen in liquid nitrogen (-l 96°C). All strains 

were kept overnight at -20°C prior to a rapid thaw and inoculation into 10 ml sterile 

broth. E.coli 0157:H7 was grown in tryptic soy broth containing 0.05 % agar (Difeo, 

Detroit, MI , USA). S. enteritidis were grown in nutrient broth (Difeo). The Listeria 

species were grown in brain , heart, infusion broth (Difeo). Cells were incubated 

overnight (12-14 h) in a 37°C in an Environ-Shaker incubator (Lab-Line, Melrose Park, 



II) shaking at 160 rpm to allow for confluent growth (population densities of~ 109 

CFU/ml) . 
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Before adding cells to a sample, the pure culture was washed twice (1 ml cell 

pellet resuspended twice in 1 ml of SO mM Tris-Cl, pH 7 .2). Cells were harvested by 

centrifugation (model CR3i-Vl, Jouan S.A., Saint-Herblain, France) at 4,000 rpm for S 

min and the cell pellet resuspended into 1 ml volumes for use as working stocks. 

Liposome Capture and Sample Preparation for ELISAs and PCR Detection. 

E.coli 01S7:H7, L. innocua, L. monocytogenes, and S. enteritidis were grown as stated 

previously and a stock solution was prepared in SO mM Tris-Cl (pH 7.2). An ELISA for 

each organism was performed to evaluate binding of microorganisms on GMl liposomes. 

Liposomes Jacking GM I were used as the control and established a baseline. The capture 

protocol for ELISAs was identical for the samples evaluated by PCR as described below. 

The samples evaluated by PCR used coverslips containing GMI, GM3, LN or 

control liposomes, washed with 2SO ml of SO mM Tris-Cl (pH 7.2). Three coverslips of 

each type were placed in SO ml SO mM Tris-Cl (pH 7.2) and inoculated at 2 x 103
, 2 x 

105
, or 2 x 107 CFU/ml with resuspended prepared cells. The coverslips were incubated 

for 30 min at room temperature on an orbital shaker (I SO rpm). Coverslips were 

transferred into individual sterile SO ml tubes and washed. A wash step included the 

addition of 30 ml of SO mM Tris-Cl (pH 7.2) while shaking at lSO rpm for 30 min. 

Antibodies. All antibodies (Abs) used were IgG. The polyclonal Abs, rabbit 

anti-£. coli and rabbit anti-Salmonella , with concentrations of 4.S mg protein/ml were 

obtained from OEM Concepts (Toms River, NJ, USA, products R4-Vl02 and R4-V61 , 

respectively). The rabbit polyclonal Anti-Listeria Ab , also 4.S mg protein/mi, was from 
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Biodesign International Inc. (Saco, ME, USA, product DB65420R) . The enzyme­

linked Ab, anti-rabbit lgG conjugated to alkaline phosphatase (AP) with a concentration 

of 1.2 mg protein/ml, was obtained from Sigma (St. Louis, MO, USA, product A3687). 

All Abs were stored at 4°C. 

The optimum Ab concentration of each Ab solution was determined by 

performing an ELISA based on the method published previously (28]. Each Abs was 

tested against cells at concentrations ranging from 3.0 x 10-6 to 3.0 x 10·15 M for each 

respective Ab as described by [29] and [30]. 

ELISAs. For the E. coli ELISA, I. I µl of the purchased stock ( 4.5 mg/ml) anti-£. 

coli lgG Abs, used at a 1 :20,000 dilution, was incubated with the coverslip capture 

surface for 20 min with samples after a wash step. All antibody incubations were 

preceded with a wash step, which consisted of a sterile transfer coverslips to a tube 

containing 30 ml of 50 mM Tris-Cl (pH 7.2) and shaking at 150 rpm for 30 min. Anti­

rabbit lgG alkaline phosphatase conjugate, 1 µl of a 1.0 mg/ml stock, resulting in a 

1 :33,000 dilution, was incubated 20 min with samples followed by another wash step. 

Individual coverslips were placed in individual wells of six-well ELISA plates (Costar, 

VWR, Brisbane, CA) and submerged in 3 ml glycine buffer (pH 10.4). 

ELISAs for detection of other organisms followed the same protocol described for 

E.coli 0157:H7, but the primary Abs used in a given assay were specific for the Listeria 

species or S. enteritidis. For the Listeria species ELISA, anti-Listeria IgG Abs, 4 µl of 

the purchased stock (4.5 mg/ml) used at a 1 :5,000 dilution , was incubated with a 

coverslip for 20 min with samples. For the S. enteritidis species ELISA, anti-Salmonella 



IgG Abs, 1.1 µ1 of the purchased stock (4.5 mg/ml) resulting in a I :30,000 dilution, 

was incubated 20 min to label captured bacteria after a wash step. 
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The substrate p-nitrophenyl phosphate (pNPP), at a concentration of 0.25 mg per 

ml in 0.1 M glycine buffer (pH 10.4) containing I mM MgC12 and I mM ZnC12, was the 

substrate for the AP conjugated Ab. Color development of the product was followed 

using a HTS 7000 Bio Assay Reader (Perkin Elmer, Wellesley, MA, USA) with a 

detection wavelength fixed at 405 nm. Aluminum foil was used to minimize the 

substrate 's exposure to light during the 30 min incubation and evaluation. The ELISAs 

were each performed at room temperature. 

Cells were diluted in series and controls void of cells were treated identically to 

the treatment groups. Each treatment was compared to identically treated controls on the 

same six-well plate prepared in the absence of E.coli 0157:H7, L. innocua, L. 

monocytogenes, and S. enteritidis. 

Liposome Capture and PCR Analysis. PCR was used to identify the presence 

of E.coli 0157:H7, L. innocua, L. monocytogenes, and S. enteritidis after incubation at 

the same inoculation levels used in the ELISAs. Individual species liposome capture was 

performed with a single species at three cell concentrations (2 x 103
, 2 x 105

, or 2 x 107 

CFU/ml) for four liposome types (GMI, GM3 , LN, or control liposomes) and replicated a 

total of four times. Simultaneous species liposome capture was perfo1med with all four 

species at cell concentrations of 2 x 103
, 2 x 105

, or 2 x 107 CFU/ml for the four liposome 

types and replicated a total of three times with new samples. Finally, a simultaneous 

capture of E.coli 0157:H7 and S. enteritidis was performed with all possible 



permutations of the three concentrations tested and each of the four types of 

immobilized biomimetic liposomes. 
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For PCR analysis in all formats, the cells were incubated 30 min with three 

coverslips per 50 ml volume for each treatment. Coverslips were washed in a new 50 ml 

tube by adding 30 ml of 50 mM Tris-Cl (pH 7.2) and shaking at 150 rpm for 30 min. The 

coverslips were then fractured with sterile forceps and transferred to a 15 ml tube. Sterile 

ddH20 , 1 ml, was added and the fractured coverslips were submerged. The samples were 

vortexed for 2 s. 

Pure cultures of E.coli 0157:H7, L. innocua, L. monocytogenes, or S. enteritidis 

were used as a positive control along with the liposome capture samples . For PCR, both 

pure culture and fractured coverslips were boiled at 96°C for 10 min to lyse the cells. 

After, lysis, the solutions were kept on ice and the DNA precipitated with ethanol. The 

precipitated DNA was resuspended in 100 µI sterile ddH20. Amplification was carried 

out in 0.5 ml microcentrifuge tubes containing one puReTaq™ Ready-To-Go Polymerase 

Chain Reaction Beads obtained from Amersham Biosciences (Buckinghamshire, 

England). Each tube contained 0.018 ml of sterile ddH20 , 0.001 ml each primer, 0.005 

ml of the ethanol precipitated DNA cell lysis solution as template DNA for a final 

reaction volume of 0.025 ml. The primer concentration in the final reaction volume was 

20 pmol. 

Each organism was specifically detected using a published primer set. The primer 

sets were purchased from Qiagen Operon (Alameda, CA, USA). For E.coli 0157:H7, 

the rfb 0 I 57 gene fragment was targeted and produced a replicon of 420 base pairs (bp) 

as described by [31]. The PCR procedure was adapted from [32]. For the Listeria 
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species, the iap gene fragment was targeted and produced replicons of 870 and 660 

bp for L. innocua and L. monocytogenes respectively, as described by [33]. The PCR 

procedure was adapted from [33] and used by [29]. For S. enteritidis, the invA gene was 

targeted and produced a replicon of 284 bp as described in [34, 35]. The PCR procedure 

was used by [30, 36]. Primer sets used in the study are included as Appendix B. 

The PCR took place in an automated temperature control PTC-200 Peltier 

Thermal Cycler (MJ Research, Watertown, MA, USA). For E.coli 0157:H7, initial 

denaturation was set at 94°C for 5 min, followed by 30 amplification cycles each 

consisting of denaturation at 94°C for I min, annealing of the primers to the target DNA 

at 53°C for I min, and extension at 72°C for 1 min. The final extension was at 72°C for 5 

min. For L. innocua and L. monocytogenes, initial denaturation was set at 95°C for 1 

min , followed by 40 amplification cycles each consisting of denaturation at 94°C for 15 s, 

annealing of the primers to the target DNA at 58°C for 30 s, and extension at 72°C for 45 

s. The final extension was at 72°C for 4 min. For S. enteritidis, initial denaturation was 

set at 95°C for 5 min, followed by 35 amplification cycles each consisting of denaturation 

at 95°C for 30 s, annealing of the primers to the target DNA at 64°C for 30 s, and 

extension at 72°C for 30 s. The final extension was at 72°C for 7 min. After completion 

of PCR, the samples were held at 4 °C until proceeding to the next step (or -20°C if held 

overnight). 

PCR products were separated and analyzed on 1.8% agarose gels. The PCR 

product solution, IO µI, was combined with 1.5 µl gel-loading dye (BlueJuice, Gibco 

BRL, CA), mixed , and loaded into 1.8% agarose gels (FMC Bioproducts, Rockland, ME, 

USA). Electrophoresis was performed for 90-110 min at 4°C using a voltage of 80 V/cm 
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in lx TAE buffer (40 mM Tris base, 40 mM acetic acid, and 1 mM EDTA). The gel 

was stained with ethidium bromide (1 µg/l) for 20 min and the bands were detected on a 

transeluminator (UVP, Upland, CA). Photographs of the gel were obtained using a 

Polaroid Land Camera MP4. A 100 bp DNA ladder (Pierce, Madison, WI, USA) was 

included in each gel. 

Confocal Laser Scanning Microscopy. Confocal laser scanning microscopy 

images were generated using a Keller type MRC 1024 krypton/argon laser scanning 

confocal system (Bio-Rad, Hercules , CA, USA) interfaced with an inverted microscope 

(Diaphot TE300, Nikon, Tokyo, Japan). The pinhole diameters were 2.5, 2.5 and 3.0 

mm, respectively, for the 488, 598, and 668 nm laser lines and the objective lens was a 

Nikon 1 OOX, plan apo, oil immersion with a numerical aperture of 1.40. The 488 and 

598 nm lines excited the SYTOX® Orange (Molecular Probes , Eugene, OR, USA), which 

labeled bacterial cells. The 647 nm laser line was used to excite 1, l '-dioctadecyl-

3,3,3',3'- tetramethylindodicarbocyanine perchlorate (DiD oil) (Molecular Probes) , which 

labeled liposomes. This line also was used to excite wheat germ agglutinin (WGA) 

conjugated Alexa Fluor® 660 used to label GMl and GM3 liposomes embedded in the 

artificial bilayers. The 568 nm laser line was used to excite the encapsulated SRB. Dual 

and triple labeling of microemulsified Jiposomes afforded flexibility and specificity in 

monitoring the artificial structures and viable cells. 

After incubation and wash, coverslips were fixed on plastic petri dishes using 

epoxy resin and hardener (Loctite®, Henkel Loctite, Auburn Hills, MI, USA) in 

preparation for microscopy. The product was used as directed by the manufacturer. 

Before fixation of coversiips, a 20 x 20 mm2 section was removed in the petri dishes 
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using a flamed knife. Individual coverslips, epoxied to a petri dish over the cut holes, 

formed a watertight seal and allowed buffer and probes in solution to be applied to the 

samples during active scanning at the inverted microscope. 

At the microscope, lipophillic tracing probe DiD oil , was suspended in ethanol 

and applied to coverslips immersed in 2 ml 50 mM Tris-Cl (pH 7 .2). The final 

concentration of DiD oil in the immersing solution was 0.51 mM for each concentration 

of a vi din tested. A vi din immobilization was indirectly determined using CLSM to 

monitor increases in population densities of immobilized microemulsified liposomes 

containing N-biotinyl phosphatidylethanolamine. 

GM 1, GM3, and control liposome containing coverslips were incubated for 30 

min with WGA conjugated Alexa Fluor® 660 (10 µg/ml) in 50 mM Tris-Cl, (pH 7.2). 

The coverslips were subsequently washed with 500 ml 50 mM Tris-Cl, (pH 7.2). WGA 

conjugate labeling of GM 1, GM3, and control liposome containing coverslips was 

determined directly using CLSM. 

Images (512 x 512 pixels and 226.50, 1415.64, or 22650.25 µm 2
) were taken 

consecutively with the dichroic beam splitters and filters to minimize cross talk between 

channels. The photomultiplier gain/sensitivity/contrast was adjusted to give a slightly 

over-modulated signaling in the normal scan mode. The resulting RGB images were 

overlaid using LaserSharp® version 3.2 (Bio-Rad). 

Statistical Analysis. The Descriptive Statistics and t-Test for Correlated Samples 

procedures of Statistica (Statsoft, Tulsa, OK, USA) were used to analyze triplicate 

absorbance measurements from ELISAs. The mean absorbance of three coverslips for 

each biomimetic liposome type and inoculation leveJ was compared by difference to the 



mean absorbance of three identically treated , uninoculated coverslips containing 

liposomes of the same type. The t-test used the raw absorbance values and statistical 

significance was determined at p < 0.05. Values approaching significance were also 

noted. 
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Exact analysis was used to fit a logistical regression model to statistically analyze 

the PCR data from each of the three captures (individual and simultaneous multiple 

species for all four species; and simultaneous capture of E.coli 0157:H7 and S. 

enteritidis). The individual species capture was repeated four times. The simultaneous 

multiple species capture was performed in triplicate. The simultaneous capture of E. coli 

0157:H7 and S. enteritidis was also performed in triplicate. For each analysis, the 

outcome variable was the presence or absence of the species-specific PCR product. An 

overall test for significance was performed treating ordinally the two covariates 

inoculation level and biomimetic liposome type. Finally, a test for individual effects was 

performed treating the covariates categorically. Statistical Analysis Software 9.0® (SAS 

Institute Inc. , Cary, NC, USA) was used to perform the required algorithms. Again, 

significance was determined at p < 0.05 and values approaching significance were noted. 

RESULTS AND DISCUSSION 

A vidin Immobilization Optimization and Liposome Characterization. DiD 

oil molecules consist of fatty hydrocarbon tails, 18 carbons in length, which intercalate 

into the artificial membranes , thus specifically labeling the liposomes and differentiating 

them from the unlabeled solid support. This lipid tracing probe is used to identify lipid 
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bilayers and fatty surfaces of cells. Glass slides coated with avidin at 6 µg or 1.0 x 

10·10 moles avidin I 968 mm2 (Figure 16), promoted uniform binding of liposomes 

without problematic background. The inset shows an image of cross-sectioned 

immobilized liposomes. Clearly the liposomes were located in closer proximity to one 

another and the population density is greater on the immobilized surface than at lower 

levels of immobilized a vi din as compared to Figure 5 (Chapter II). DiD oil's 

background labeling was not problematic at this, or increased DiD concentrations as was 

noted with increased levels of the polar-tracing probe, SRB (see Chapter II, Figure 5). 

DiD oil predictably labeled each of the individual liposome types (GM 1, GM3, 

LN, and control liposomes). Distributions and characteristics of GMl, GM3, LN, and 

control liposomes illuminated using DiD oil were observed to be similar in uniformity 

and dimension when compared to previously characterized liposomes identified using 

encapsulated probes and head-group labeled phospholipids (see Chapter II, Insets of 

Figures 4-8). This increase in avidin concentration was effective in increasing the 

number of immobilized liposomes and therefore potential bacterial binding sites reducing 

the probability of liposomes limiting microbial capture and detection. 

WGA conjugated Alexa-Flour® 660 (blue), labeled liposomes formulated and 

processed in the presence of GM3 (Figure 17). LN and control liposomes were not 

labeled under the same conditions as this probe specifically labels N-acetylneuraminic 

acid (sialic acid) residues (37]. The binding of WGA conjugated Alexa-Flour® 660 to 

GM 1 and GM3 liposomes indicating these molecules were embedded in the artificial 

bilayers of GMI and GM3 liposomes, respectively. Previously, an ELISA utilizing an 

anti-GM I Ab was used to confirm the presence of embedded GMl molecules as 
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described in Chapter II. An Anti-GM3 Ab was not available, and thus the sialic acid 

specific probe was used to indicate the presence or absence of GM3 in GM3 and control 

liposomes, respectively. A representative GM3 liposome labeled using the sialic acid 

specific WGA conjugated probe is clearly shown (inset Figure 17). 

Individual Species Capture ELISAs. Absorbance values were compared 

between GM 1 Jiposomes incubated with cells at inoculation levels of 2 x 103
, 2 x 105

, and 

2 x 107 CFU/ml (treatments) and samples treated identically without ceJJs (controls). A 

Student's t-test for each inoculation and GMl level was performed comparing the 

absorbance values for each treatment and GMI level compared to the appropriate control 

on the same six-well plate. The normalized difference in mean absorbance values is 

plotted for£. coli 0 l 57:H7 and S. enteritidis, respectively shown in Figures 18 and 19, 

indicates that cells were captured on the 8.9% GM I (molar percent of total lipid) 

liposomes when compared to the control liposomes lacking GM I for each of the lower 

molar percent GMI concentrations and inoculation levels. Subtracting the mean of the 

liposomes Jacking GM 1 from the treatment mean normalized the differences in 

absorbance values. 

For E.coli 0157:H7 , at the 2 x 103 CFU/ml inoculation level and 8.9% GMI 

liposomes, the normalized mean absorbance difference was 0.037 (p = 0.0099). At the 2 

x 105 and 2 x 107 CFU/ml levels, the normalized differences between means was 0.042 

(p = 0.0323) and 0.036 (p = 0.0085) , respectively . Nonspecific binding caused some 

variability of the assay resulting in false positives but after normalization, no significant 

differences were indicated at GMI levels less than 8.9%. 
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Similarly, for S. enteritidis, the normalized differences in the absorbance 

means was again found significant at each of the inoculation levels tested for the 8.9% 

GMl liposomes. The normalized difference in mean absorbance for 8.9% GMl 

liposomes inoculated at 2 x 103 CFU/ml was 0.033 (p = 0.0168). At the 2 x 105 and 2 x 

107 CFU/ml inoculation levels , the difference in mean absorbance for inoculated 8.9% 

GM 1 liposomes and uninoculated control was 0.040 (p = 0.0388) and 0.031 (p = 0.0491 ), 

respectively. Again, false positives were observed. This illustrates the susceptibility of 

the ELISA to result in false positives when attempting to differentiate between the lowest 

molar percent concentrations of GM 1 in GM 1 liposomes and lowest inoculation level. 

The normalization of the data accounted for this variability and set nonsensical negative 

values equal to zero. The ELISAs did however indicate that both enterobacteriaceae (E. 

coli 0157:H7 and S. enteritidis) biologically recognize and bind 8.9 molar percent GMI 

liposomes. Therefore, the GM 1 concentration of 8.9 molar percent of total lipid was 

constant for further capture studies. 

ELISAs were again performed to determine the capture of E.coli 0157:H7 and S. 

enteritidis on GMl liposomes (GMI at 8.9 molar percent) and control liposomes, lacking 

GM 1, with comparable results (Figure 20). Normalized differences in absorbance means 

for each inoculation level were significant and comparable to those reported in Figures 

18 and 19, indicating adhesion and capture of E.coli 0157:H7 and S. enteritidis with 

GMl liposomes. This allowed us to conclude presumptively that GMI, embedded in the 

artificial bilayers of liposomes, is recognized by S. enteritidis and E. coli 0157 :H7. L. 

monocytogenes and L. innocua did not bind with GMI liposomes or control liposomes 

lacking GMI (Figure 20). The ELISA absorbance values are attached as Appendix C. 
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The ELISAs were developed using Abs screened for detection of the 

particular microorganisms tested in similar capture formats using Abs immobilized on 

glass beads [29, 30]. The same Abs were able to detect captured cells at concentrations 

as low as 4 x 10 1 CFU/ml [29, 30]. The ELISAs described in this study were modified to 

suit biomimetic liposome capture. Specifically, liposomes were incubated with viable 

cells in solution on a platform orbital shaker rather than in a flow system or fluidized bed. 

E. coli 0 l 57:H7 and S. enteritidis recognize and specifically bind to biomimetic GM 1 

liposomes. For this and other reasons, including the need to differentiate between 

Listeria species in future evaluations, it was decided that this preliminary method of 

determining microbial capture on liposomes could be improved by using PCR methods 

which can also determine binding and capture of multiple microorganisms after 

incubation. The samples evaluated by PCR were treated identically to those subjected to 

the ELISAs. 

Liposome Capture with PCR Identification. Capture and detection using an 

ELISA assay depends on the specificity of the Abs used . PCR identification after 

liposome capture was performed to definitively establish the presence of the 

microorganism of interest using primers specific for that species (Appendix B). This 

approach allowed specific identification of microorganisms, even distinguishing between 

the Listeria species [38]. In an ELISA format, cross-reactivity of Abs would have made 

this impossible unless species specific Abs were available. 

The detection limit of the PCR protocols using the species-specific primers was 

determined by diluting cell concentrations in solution and lysing by boiling. After the 

prescribed PCR protocol was followed, the presence of the species-specific PCR products 
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indicated the ability to detect the particular microorganism at a given inoculation 

level. £.coli 0157:H7, L. innocua , and S. enteritidis were detectable at 2 x 102 CFU/ml. 

L. monocytogenes was detectable at 2 x 10 1 CFU/ml. 

Individual species at inoculation levels of 2 x 103
, 2 x 105

, and 2 x 107 CFU/ml 

were separately incubated with GM 1, GM3, and LN liposomes. Liposomes lacking 

GM I, GM3 and LN were treated identically and acted as controls. Cell capture with 

liposome types was evidenced by the presence of the specific PCR product. The results 

of the individual species capture and simultaneous multiple species capture are found in 

Table 4. The results of the simultaneous capture of E.coli 0157:H7 and S. enteritidis 

are listed in Table 5. An example gel containing PCR products after capture of S. 

enteritidis with LN, GM I , or GM3 liposomes is shown in Figure 21. 

General trends are observed in the individual species capture data presented in 

Table 4A. Capture was more likely at inoculation levels of 2 x 105 and 2 x I 07 CFU/ml 

when compared to 2 x 103 CFU/ml. E.coli 0157:H7 and S. enteritidis were more likely 

to be captured on GM I and GM3 liposomes when compared to control and LN 

liposomes. Both of the listeria species were more likely to be captured on LN than 

control, GMI, or GM3 liposomes. 

In the simultaneous multiple species capture, presented in Table 4B, general 

trends are similar but less apparent. The Listeria species were captured on GM 1 

liposomes at 2 x 105 and at 2 x 107 CFU/ml whereas no capture was reported in the 

individual species capture at the same inoculation levels. 

In the simultaneous capture of E.coli 0157:H7 and S. enteritidis presented in 

Table 5, the species inoculated at the highest cell concentration in a given treatment was 



130 
found .captured for each of the four combinations of 2 x 107 and 2 x 10s CFU/ml 

inoculations regardless of the liposome type. Such a trend was not evident in the two 2 x 

1 as and 2 x 1 a3 CFU/ml inoculation treatments. 

Logistic regression was used to analyze the data presented in Tables 4 and 5. 

This form of regression is a powerful statistical analysis for categorical data. As in other 

forms of statistical analysis, logistic regression requires that sample size must be 

sufficiently large for parameter estimates to be normally distributed. Given the size of 

the data set, mathematical assumptions that suit large samples are clearly not justified. 

However, recent improvements in computational methods afford logistic regression 

models to be fit when sample sizes are small. This new field of logistic regression is 

known as the exact method [39]. 

The central theory of exact methods for logistic regression is to construct a 

statistical distribution than can, with efficient algorithms, be completely enumerated. 

This distribution can be constructed from extremely small data sets. Exact methods are 

recommended for fitting models to small sample size data, such as those presented in this 

study, or unbalanced data that result in zero frequency calls [39]. Exact analysis was 

performed using an overall test for significance for the inoculation level and biomimetic 

liposome type, similar to analysis of variance. A test for individual effects used a pair­

wise comparison to differentiate the inoculation levels (2 x 103
, 2 x 10s, and 2 x 107 

CFU/ml) and four biomimetic liposome types (GMl, GM3, LN, or control liposomes). 

For the inoculation levels, the capture of the bacteria at the 2 x 107 CFU/ml level 

was independently compared to capture of bacteria at the 2 x 1 a3 CFU/ml or 2 x I as 

CFU/ml levels. For the liposomes types, the capture of the bacteria on control liposomes 
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lacking GMl, GM3, and LN was independently compared to capture of bacteria on 

GMI, GM3, or LN liposomes. The exact analysis overall test for significance probability 

values of the individual and simultaneous multiple species capture are given in Table 6. 

The exact analysis probability values of the individual and simultaneous multiple species 

capture analyzed to determine individual effects are given in Table 7. The exact analysis 

overall test probability values of the simultaneous E.coli 0157:H7 and S. enteritidis 

capture are given in Table 8 and the probabilities from the individual effects given in 

Table 9. 

Exact Analysis of E. coli 0157:H7 Capture. In the individual species capture 

format, the overall test found E.coli 0157:H7 inoculation level to be highly significant (p 

< 0.0001) (Table 6A). A pair-wise comparison was used to determine that treatments of 

2.0 x 103 CFU/ml were significantly different than treatments of 2.0 x 107 CFU/ml (p = 

0.0009) (Table 7 A). Capture of the bacterium was significantly more likely to occur at 

the higher inoculation level. Binding to GMI liposomes was more frequent than control 

liposomes (p = 0.0209) (Table 7 A), though liposome type was not found to be significant 

in the overall test (Table 6A). Capture on other liposome types, GM3 and LN liposomes, 

respectively, was not found statistically different when compared to capture on control 

liposomes. CLSM confirmed the specific adhesion of E. coli 0157 :H7 cells to GM I 

liposomes. A bacterium (orange/red) adhering to a GM I liposome (blue/magenta) is 

shown in Figure 22. No evidence of specific capture on control, GM3, or LN liposomes 

was found using CLSM. 

In the simultaneous multiple species format, statistical analysis was similar to the 

individual species format. The overall test found E.coli 0157:H7 inoculation level to be 
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highly significant (p < 0.0001) (Table 6B) . Again, capture of E.coli 0157:H7 was 

significantly more likely to occur at both the 2.0 x 107 and 2.0 x 105 inoculation levels (p 

= 0.0031) (Table 7B) . In this format however, binding or capture was not statistically 

different for each of the GM 1, GM3, and LN liposomes when compared to the control 

(Tables 6B and 7B). 

Exact Analysis of S. enteritidis Capture. In the individual species capture 

format, the overall test found S. enteritidis inoculation level to be highly significant (p < 

0.0001) (Table 6A) . A pair-wise comparison was used to determine that inoculation 

levels of 2.0 x 103 CFU/ml were significantly different from of 2.0 x 107 CFU/ml 

concentrations (p < 0.0001) (Table 7 A). Capture of the bacterium was significantly more 

likely to occur at the higher concentration. Binding or capture was frequent and 

statistically similar for all liposome types when compared independently to the control 

liposomes in both the overall and individual effects tests (Tables 6A and 7 A) . 

In the simultaneous multiple species format, stati stical analysis was similar to the 

individual species format. Again, capture of S. enteritidis was significantly more likely 

to occur at the highest cell concentration (p = 0.0002) and capture was frequent and 

similar for all the liposome types including the control (Tables 6B and 7B). 

Exact Analysis of L. monocytogenes Capture. In the individual species capture 

format, the three inoculation levels were not statistically different in the overall test or 

test for individual effects for L. monocytogenes (Tables 6A and 7 A). Liposome type was 

significantly different in the overall test (p = 0.0001) (Table 6A) and the individual 

effects test showed that capture of L. monocytogenes was more likely to occur on LN 

liposomes than the control liposomes for all three inoculation levels (p < 0.0001) (Table 



7A). There was only one capture on GM3 liposomes and zero on GMl liposomes 

(Table 4A). Therefore, the probability of capture on these liposomes compared to the 

control was not able to be determined statistically. 
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In the simultaneous multiple species format, inoculation level and liposome type 

were statistically different for L. monocytogenes (p = 0.0022 and p = 0.0196, respectively 

in the overall test) (Table 68). The inoculation level of 2 x l 07 CFU/ml was statistically 

more likely to result in capture when compared to the lowest cell concentration tested (p 

= 0.0096) (Table 78). The test for individual effects found that capture of L. 

monocytogenes was more likely to occur on LN liposomes compared to control 

liposomes (p = 0.0073) (Table 78). Capture of L. monocytogenes on GMI and GM3 

liposomes was nearly identical to the control liposomes (Table 48) . 

Exact Analysis of L. innocua Capture. In the individual species capture format, 

the three inoculation levels were not statistically different in the overall test or the 

individual effects test for L. innocua (Tables 6A and 7 A). Liposome type was 

significantly different in the overall test (p = 0.0019) (Table 6A) and the individual 

effects test showed that capture of L. innocua was more likely to occur on LN liposomes 

than the control liposomes for all three inoculation levels (p < 0.0001) (Table 7 A) . 

Capture was infrequent on GM 1 and GM3 liposomes (Table 4A) and statistically 

insignificant when compared to control liposomes (Table 7 A). 

In the simultaneous multiple species format , inoculation level and liposome type 

were statistically different in the overall test for L. innocua (p = 0.0107 and p = 0.0283, 

respectively) (Table 68). The test for individual effects determined that capture was 

more likely to occur at the 2 x I 07 CFU/ml than the 2 x 103 CFU/ml inoculation level (p = 



0.0031) (Table 7B). Capture of L. innocua was more likely to occur on LN 

liposomes compared to control liposomes but the probability could not be statistically 

determined because the PCR product was present for each replicate (Table 4B). All 

other liposome types were statistically similar to the control. 
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Simultaneous Capture of E.coli 0157:H7 and S. enteritidis. In the 

simultaneous capture format of E.coli 0157:H7 and S. enteritidis, as in the above 

analyses, presence of a specific PCR product indicated the capture of cells on a given 

capture surface containing a biomolecule embedded in artificial membranes of 

immobilized liposomes (Table 5). Exact analysis was preformed using the presence of 

the E.coli 0157:H7 PCR product as the outcome variable (Tables SA and 9A). Then, 

the same data set was subjected to exact analysis with the S. enteritidis PCR product as 

the outcome variable (Tables SB and 9B). 

Exact analysis of E.coli 0157:H7 capture was performed for each of the 

inoculation levels and liposome types . The overall test found the inoculation level of E. 

coli Ol 57:H7 highly significant (p < 0.0001) (Table SA). E.coli 0157:H7 was captured 

more frequently at inoculation levels of 2 x I 07 than 2 x I 03 CFU/ml (p = 0.0446) (Table 

9A). The affect of S. enteritidis inoculation level on capture of E.coli 0157:H7 appeared 

to be directly related to cell concentration (the species inoculated at the higher 

concentration was more frequently captured on biomimetic liposomes in most treatments) 

but was not statistically evident. 

Liposome type was not found significant in the overall test (Table SA) but the test 

for individual effects determined that E. coli 0157 :H7 capture was more likely to occur 

on GM I liposomes when compared to liposomes lacking biomoleclues (p = 0.0508, 
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approaches significance) (Table 9A). The other biomimetic liposome types (GM3 

and LN liposomes) were not similar to control liposomes with respect to E. coli 0157 :H7 

capture (Tables 5, SA, and 9A). 

Exact analysis of S. enteritidis capture was performed for each of the inoculation 

levels and liposome types. The overall test found the concentration of S. enteritidis 

highly significant (p < 0.0001) (Table SB). The individual effects test found that S. 

enteritidis was captured more frequently at inoculation levels of 2 x 107 than 2 x 105 and 2 

xl03 CFU/ml (p = 0.0792 and 0.0801 , respectively) (Table 9B). These values approach 

statistical significance (p > 0.05) . Again , the competitive affect of E.coli 0157:H7 

inoculation level on capture of S. enteritidis appeared to be directly related to cell 

concentration but was not statistically evident (Table SB). 

Liposome type was found significant in the overall test for S. enteritidis (p = 

0.0175) (Table 9A), but the test for individual effects was unable to identify the specific 

type of liposome that differed compared to the control with respect to S. enteritidis 

capture (Table 9B) because the data set was simply too small. 

CONCLUSIONS 

Unilamellar immobilized microemulsified GM 1, GM3, and LN biomimetic 

liposomes were used to capture E.coli 0157:H7, S. enteritidis, L. monocytogenes, and L. 

innocua. Biological binding and capture of E.coli 0157:H7, S. enteritidis, L. 

monocytogenes, and L. innocua on immobilized unilamellar lipsosomes containing GM I, 

GM3, or LN was confirmed using ELISAs and PCR techniques. 
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Individual species GMI capture of E.coli 0157:H7 and S. enteritidis was 

confirmed by ELISA at inoculation levels of 2 x 103
, 2 x 105

, or 2 x 107 
CFU/ml only 

when GMl was included at 8.9 molar percent in liposomes. ELISAs indicated the 

Listeria species were not captured on 8.9 molar percent GM 1 liposomes. The ELISAs 

indicated a species-specific adhesion and binding to liposomes containing different 

biomolecules. PCR detection of captured bacteria was used to differentiate between 

species in individual and simultaneous multiple species inoculations and incubations with 

biomimetic liposomes. 

Considering the ELISAs and PCR capture detections, E. coli Ol 57:H7 was 

captured with GMl liposomes more frequently than any of the other liposome types 

tested, indicating in vitro that GM 1 is a receptor in specific adhesion for this pathogen in 

vivo. S. enteritidis capture was evident but not as discri minatory with respect to GM 1, 

GM3, LN, or control liposomes. L. monocytogenes and L. innocua were captured more 

frequently on LN liposomes when compared to control liposomes, indicating in vitro, that 

the LN biomolecule is recognized and results in capture of both a pathogenic and non­

pathogenic species. Capture of the Listeria species was Jess frequent on GMl and GM3 

liposomes than the control liposomes. 

With respect to the simultaneous E.coli 0157:H7 and S. enteritidis capture, 

compelling evidence of one bacterial species out competing another for receptors and 

ultimately adhesion was evident at 2 x 107 CFU/ml, the highest inoculation level tested. 

By inspection, a hundred fold excess of a competing species prevented capture of another 

species with the biomimetic liposomes whereas, in the absence of the competing species 

in the individual capture format, capture was evident. 
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Table 4. Individual species and simultaneous multiple species capture verified by PCR 

A 

E.coli 0157:H7 

S. enteritidis 

Control Liposomes 
Inoculation Level 

(CFU/ml) 
2 x 103 2 x l 05 2 x l 0 7 

Individual Species Capture1 

GMl Liposomes GM3 Liposomes 
Inoculation Level Inoculation Level 

(CFU/ml) (CFU/ml) 
2 x l 03 2 x l 05 2 x I 0 7 2 x 103 2 x I 05 2 x I 0 7 

-+-- ++-+ ++++ 
++-+ ++++ 

-+++ ++++ 
+ --+ ++++ 

Laminin Liposomes 
Inoculation Level 

(CFU/ml) 
2 x I 03 2 x 105 2 x 10 7 

- + + -
+-+- ++++ 

L. monocytogenes 

L. innocua 

+--- ++-­
·-+- -+++ 
-+-+ -++-
-+-- +--+ 

+--- I+++- -+++ ++++ 
--+- +-++ ++++ ++++ 

B 
Control Liposomes 

Inoculation Level 
(CFU/ml) 

Simultaneous Multiple Species Capture2 

GMl Liposomes GM3 Liposomes 
Inoculation Level Inoculation Level 

(CFU/ml) (CFU/ml) 

Laminin Liposomes 
Inoculation Level 

(CFU/ml) 
2xl03 2xl05 2xl07 2xl03 2xl05 2xl07 2xl03 2xl05 2xl07 2xl03 2xl05 2xl07 

E.coli 0157:H7 

S. enteritidis 

L. monocytogenes 

L. innocua 

---
---
---
---

---
+ - -
- - + 
- + -

+ +- --- + + -
+-+ --- +++ 
+ +- --- - + -
+ + - --- + - -

+++ --- + - - +++ ---
+++ + - - + + - +++ ---
- + + --- + - - + + - + - -
+ + - --- --- +-+ +++ 

1 Each species individually inoculated at each concentration and incubated with each biomimetic liposome type 

- + - + + -
+-+ +-+ 
+++ +++ 
+++ +++ 

2 Each species simultaneously inoculated at equal concentration for each inoculation level and incubated with each biomimetic 
iiposome type 

(-) indicates the absence of species specific PCR product 
( +) indicates the presence of species specific PCR product -.i::. -



Table 5. Simultaneous capture of E.coli 0157:H7 and S. enteritidis verified by PCR 

Simultaneous Capture of E.coli 0157:H7 and S. enteritidis1 

Inoculation Levels Inoculation Levels Inoculation Levels Inoculation Levels Inoculation Levels Inoculation Levels 
(CFU/ml) (CFU/ml) (CFU/ml) (CFU/ml) (CFU/ml) (CFU/ml) 

E.coli S. enteritidis £.coli S. enteritidis E.coli S. enteritidis E.coli S. enteritidis E.coli S. enteritidis E.coli S. enteritidis 

2xl07 2xl03 2xl03 2xl07 2xl07 2xl05 2xl05 2x l07 2xl05 2xl03 2xl03 2xl05 

Control 
Liposomes +-+ --- - - - + + - +++ - - - - - - + + - - - - - - - + - - - - -

GMl 
Liposomes +++ - - - --- +++ +++ - - - - - - +++ +-+ - -- - + - + - -

GM3 
Liposomes +++ --- --- +++ +++ - - - - - - +++ - + - - -- + - - - + -

Laminin 
Liposomes - + + --- --- +++ +++ - - - -- - +-+ - - - - - + --- ---

1 Both species simultaneously inoculated at six combinations of each inoculation level (2 x 103
, 2 x 105

, and 2 x 107 CFU/ml) and 
incubated with each biomimetic liposome type 

(-) indicates the absence of species specific PCR product 
( +) indicates the presence of species specific PCR product 

...... 
~ 



Table 6. Exact analysis probability values for inoculation level and biomimetic liposome type in both the individual and simultaneous 
multiple species incubation format for the capture of E. coli 0157:H7, S. enteritidis , L. monocytogenes, and L. innocua in an overall 
test for significance (p < 0.05) . . 

A Individual Species Capture1 

B Simultaneous Multiple Species Capture2 

Inoculation level Biomimetic Inoculation level Biomimetic 
(CFU/ml) li[!osome t~(!e (CFU/ml) li[!osome t~ee 

E.coli 0157:H7 < 0.0001 0.4366 < 0.0001 1.000 
S. enteritidis < 0.0001 0.5105 < 0.0001 0.7028 
L monocytogenes 0.1445 0.0001 0.0022 0.0196 
L. innocua 0.0818 0.0019 0.0107 0.0283 

1 Each species individually inoculated at each concentration and incubated with each biomimetic liposome type 
2 Each species simultaneously inoculated at equal concentration for each inoculation level and incubated with each biomimetic 

liposome type 

..... 
& 



Table 7. Exact analysis probability values for inoculation level and biomimetic liposomes in both the individual and simultaneous 
multiple species incubation format for the capture of E.coli 0157:H7, S. enteritidis , L. monocytogenes, and L. innocua in testing for 
significance of individual effects (p < 0.05). 

A Individual Species Capture1 

Inoculation level Biomimetic liposomes 
(CFU/ml) 

2x10 3 2x10 5 GMl GM3 LN 
E.coli 0157:H7 0.0009 1.000 0.0209 0.2669 0.5305 
S. enteritidis < 0.0001 0.7534 1.000 1.000 1.000 
L. monocytogenes 0.4317 1.000 ND3 ND < 0.0001 
L. innocua 0.3451 1.000 0.1805 ND < 0.0001 

B Simultaneous Multiple Species Capture2 

Inoculation level Biomimetic liposomes 
(CFU/ml) 

2x10 3 2x10 5 GMl GM3 LN 
E.coli 0157:H7 0.0031 1.000 1.000 1.000 ND 
S. enteritidis 0.0002 0.5665 1.000 1.000 1.000 
L. monocytogenes 0.0096 0.9455 ND ND 0.0073 
L. innocua 0.0031 1.000 1.000 1.000 ND 

1 Each species individually inoculated at each level and incubated with each biomimetic liposome type 
2 Each species simultaneously inoculated at equal concentration for each level and incubated with each biomimetic liposome type 
3 ND= Not able to be determined because the conditional distribution was degenerate 
Note: Inoculation level statistical probabilities independently compared 2 x 103 CFU/ml and 2 x 105 CFU/ml to 2 x 107 CFU/ml. 
Biomimetic liposome statistical probabilities independently compared control liposomes to GM 1, GM3, and LN liposomes 

..... 
t 



Table 8. Exact analysis probability values for inoculation level of E. coli 0157:H7, biomimetic liposome type, and inoculation level 
of S. enteritidis in the simultaneous species incubation format for the capture of E. coli 0157:H7 or S. enteritidis in an overall test of 
significance (p < 0.05). 

Factorial Simultaneous Capture of E. coli 0157:H7 and S. enteritidis1 

A 
E.coli 0157:H7 Capture B 

S. enteritidis Capture 

Inoculation level Bio mimetic Inoculation level Inoculation level Biomimetic Inoculation level 
E.coli 0157:87 liposome S. enteritidis S. enteritidis liposome E. coli 0157:87 

type type 

< 0.0001 0.2813 0.3558 < 0.0001 0.0175 0.7214 

1 Both species simultaneously inoculated at six combinations of each inoculation level (2 x 103
, 2 x 105

, and 2 x 107 CFU/ml) and 
incubated with each biomimetic liposome type 

....... 

~ 



Table 9. Exact analysis probability values for inoculation level of E.coli 0157:H7, biomimetic liposome type , and inoculation level 
of S. enteritidis in the simultaneous species incubation format for the capture of E.coli 0157:H7 and S. enteritidis in testing for 
significance of individual effects (p < 0.05). 

Factorial Simultaneous Capture of E. coli 0157:H7 and S. enteritidis1 

A 
E.coli 0157:H7 Capture 

Inoculation level 
E.coli 0157:07 

2xl03 2xl05 

0.0446 1.000 

Biomimetic liposomes 

GMl GM3 LN 

0.0508 0.5992 ND2 

Inoculation level 
S. enteritidis 

2xl03 2xl05 

ND 0.0372 

B 

Inoculation level 
S. enteritidis 

2xl03 2xl05 

0.0792 0.0801 

S. enteritidis Capture 

Biomimetic liposomes 

GMI GM3 LN 

1.000 1.000 1.000 

Inoculation level 
E.coli 0157:07 

2xl03 2xl05 

1.000 1.000 

1 Both species simultaneously inoculated at six combinations of each inoculation level (2 x 103
, 2 x 105

, and 2 x 107 CFU/ml) and 
incubated with each biomimetic liposome type 
2 ND = Not able to be determined because the conditional distribution was degenerate 

Note: Inoculation level statistical probabilities independently compared 2 x 103 CFU/ml and 2 x 105 CFU/ml to 2 x 107 CFU/ml. 
Biornimetic liposome statistical probabilities independently compared control liposomes to GM 1, GM3, and LN liposomes 

..... 
~ 
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Figure 16. Field of DiD oil labeled immobilized unilamellar microemulsified GM3 
liposomes immobilized directly after microemulsification. Liposomes immobilized via 
biotinylated phospholipids on coverslips containing covalently bound avidin. DiD oil 
(blue) labeled the artificial bilayers and encapsulated sulforhodamine B (red) was 
localized in the liposomal lumen. Co-localization of blue and red probes resulted in 
magenta coloration. Scale values represent µm. Inset: cross-section of GM3 liposomes 
at increased magnification. Bar = 10 µm . 
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Figure 17. Field of immobilized GM3 unilamellar microemulsified liposomes 
immobilized directly after microemulsification labeled with WGA conjugated Alexa 
Fluor® 660 (blue). Liposomes immobilized via biotinylated phospholipids on coverslips 
containing covalently bound avidin. Inset: one representative GM3 liposome. Wheat 
germ agglutinin conjugated Alexa Fluor® 660 specifically labeled sialic acid residues of 
ganglioside molecules. Scale values represent µm. 
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Figure 18. Individual species capture of E. coli 0157:H7 with GMI Iiposomes verified by ELISA. X-axis represents molar percent 
of GMI compared to total lipid in formulation. Y-axis represents normalized signal (mean absorbance) at 405 nm. Z-axis represents 
inoculation levels as colony forming units per ml (CFU/ml). Treatments of significance (p :5 0.05) using paired-comparison of GMI ,_. 
liposomes and control liposomes are indicated by*. ~ 
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Figure 19. Individual species capture of S. enteritidis with GMI liposomes verified by ELISA. X-axis represents molar percent of 
GMl compared to total lipid in formulation. Y-axis represents normalized signal (mean absorbance) at 405 nm. Z-axis represents 
inoculation levels as colony forming units per ml (CFU/ml). T reatments of significance (p ~ 0.05) using paired-comparison of GMl -
liposomes and control liposomes are indicated by*. ~ 
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Figure 20. Individual species capture of f.§l E.coli 0157:H7, D S. enteritidis, IIIIl L. monocytogenes, and!Sa L. innocua with GMl 
Iiposomes verified by ELISA. X-axis represents inoculation levels as colony forming units per ml (CFU/ml). Y-axis represents 
normalized signal (mean absorbance) at 405 nm. Treatments of significance (p :s 0.05) using paired-comparison of GMl liposomes 
and control liposomes are indicated by*. -lJI -
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1 2 345 6 7 8 9 10 11 12 

284 bp_. 

Figure 21. Capture of S. enteritidis with laminin, GMl or GM3 liposomes. Lane 1) 
DNA ladder (from top to bottom: 1,500 1,000, 900, 800, 700, 600, 500, 400, and 300), 
Lanes 2-4) Laminin liposomes inoculated with 2.0 x 107

, 2.0 x 105
, or 2.0 x 103 CFU/ml, 

respectively, Lanes 5-7) GMI liposomes 2.0 x 107
, 2.0 x 105

, or 2.0 x 103 CFU/ml, 
respectively, Lanes 8-10) GM3 liposomes 2.0 x 107

, 2.0 x 105
, or 2.0 x 103 CFU/ml, 

respectively, Lane 11) negative, ddH20, Lane 12) positive control, 2.0 x 109 CFU/ml 
lysed via 10 min boil. 



153 

Figure 22. Captured E. coli 0157:H7 bacterium (orange/red) on GMI liposomes 
(blue/magenta). The bacterium and artificial membrane were probed by SYTOX® 
Orange and DiD oil, respectively. SRB was encapsulated in the liposomal lumen. Scale 
values represent µm. Bar= 1 µm. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

NULL HYPOTHESIS 

The reported molecular activity of biomolecules is not maintained in vitro when 

incorporated into immobilized liposomes. 

154 

Liposomes were produced to mimic cell surfaces by incorporating or embedding a 

variety of biomolecules including glycosphingolipids, a protein receptor and a channel 

protein. These biomimetic unilamellar liposomes were immobilized to solid surfaces in a 

manner that maintained the physical and chemical properties of the liposomes. 

Therefore, the molecular activi ty of biomolecules is maintained after incorporation into 

immobilized microemulsified biomimetic liposomes. Biomimetic liposomes may 

provide a system to study environmental influences and interactions between membrane 

bound biomolecules with soluble microorganisms and proteins. 

Methodologies to produce and characterize immobilized liposomes were 

developed to examine the hypothesis by completing a series of objectives investigating 

liposomes formulated with biomolecules of well-characterized activity using two 

different approaches. A large transmembrane channel protein, EcoMscL, was 

incorporated into immobilized liposomes and activity was demonstrated under 

modulations corresponding to an osmotic event. Small membrane embedded surface 

receptors were incorporated into immobilized liposomes and retained their biological 

activity of binding proteins , toxins, or bacteria. 
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OBJECTIVES 

Objective 1. To verify biological activity of liposomes containing a 

mechanosensitive channel from Escherichia coli (EcoMscL). The artificial membrane 

bilayers (liposomes) were immobilized onto a glass surface and observed for channel 

opening with confocal microscopy. This information is of interest to biological scientists 

and microscopists . 

The aim of this study was to investigate the influence of osmotic stress on 

liposomes containing membrane bound mechanosensitive channel protein (EcoMscL) 

pentamers. Liposomes composed of phospholipids , cholesterol, proteins and N-biotinyl 

phosphatidylethanolamine were formulated, microemulsified and immobilized on glass 

coverslips containing covalently immobilized avidin. EcoMscL was cloned, expressed, 

labeled with 5-(and-6) carboxynaphthofluorescein (CNF), and incorporated as a 

membrane protein in the bilayer during the production of liposomes. Liposomes 

mimicked analogous larger cells (i.e., bacteria) known to rely on mechanosensitive 

channels for survival during osmotic shock. 

Immobilized liposomes of various compositions were monitored using CLSM and 

maintained their integrity while the osmotics of the immersing solution were modified to 

simulate hypo-, and hyperosmotic shock. It was hypothesized that if the recombinantly 

expressed and partially purified EcoMscL protein retained its biological activity when 

labeled and incorporated into liposomes, it would open during an osmotic treatment and 

this opening would be observable as a change in fluorescence. The described methods 

allowed active monitoring of liposomes during osmotic events in vitro using CLSM as a 



new approach to compliment and confirm reports of functional reconstitution of 

mechanosensitive proteins in liposomes. 

156 

Monitoring the diffusion and release of an encapsulated polar-tracing probe, 

sulforhodamine B (SRB), during osmotic modulation found significant probe quenching 

during the 0-4 M NaCl gradient compared to the control liposomes. We were unable to 

determine if this was due to cell puckering or the opening of the EcoMscL channel 

allowing the release of internalized SRB but the dramatic change in pixel intensity 

indicates that there was a biological response in EcoMscL liposomes when compared to 

the control liposomes. Other gradient treatments (0-300 mM NaCl and 0-200 mM 

EDTA) resulted in no difference in red channel reduction for any of the immobilized 

liposome types tested. 

The stabili ty of liposomes containing membrane proteins and recombinant 

EcoMscL from E.coli was estimated with respect to the liposomes ' relative ability to 

encapsulate SRB in a dry-state. The immobilized liposome system was stable for a long 

period of time (approximately four months stored dry at refrigeration temperatures). The 

liposomes ' composition and dimensions were suitable for monitoring and imaging using 

CLSM. EcoMscL has physical dimensions large enough that when opened allows 

encapsulated water soluble SRB to be released from the liposomal lumen to the 

immersing solution but we were unable to determine the source of release or quenching 

of the probe using CLSM alone. We are the first group to immobilize unilamellar 

liposomes on glass and study reconstituted EcoMscL, liposome functionality and bilayer 

encapsulation and integrity using CLSM. This study showed the stability and flexibility 
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of immobilized liposomes embedding a large membrane protein under various osmotic 

conditions. 

Objective 2. To verify biological activity of liposomes containing 

glycosphingolipids (GMl or GM3). The liposomes were immobilized onto a glass 

surface and challenged with bacteria and proteins (including cholera toxin). The in vitro 

assay used confocal microscopy, ELISA, or genetic-based detection systems to determine 

bacterial and toxin interactions. 

A stable biomimetic system consisting of immobilized microemulsified liposomes 

containing embedded GM 1 or GM3 on a solid glass support was developed. Our 

immobilization procedure did not alter the composition or dimensions of the liposomes 

but presented several advantages to alternative strategies. Immobilization affords an 

important element of spatial control. Immobilized liposomes were located in relatively 

the same xy plane equidistant from the glass surface and increasing the amount of avidin 

resulted in a greater immobilized Iiposome population on the solid support. Therefore 

using our methods , multiple immobilized liposomes can be observed in a single field 

under a host of treatments and potential binding sites were not limiting. A vidin-biotin 

immobilization is advantageous because nonspecifically bound molecules can be 

removed by washing the immobilized liposomes with buffer. 

The stability of immobilized microemulsified liposomes containing membrane­

embedded or encapsulated biomolecules was monitored over time using SRB. Our 

liposomes, labeled with appropriate fluorophores, have the advantage of direct 

monitoring over a long period of time. Stabilities of GMl and control liposomes were 

compared over weeks and months rather than a period of minutes or hours as previously 
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reported with soluble liposomes. CNF-BSA liposomes that encapsulated SRB were 

stable for approximately two months while GM 1 and control liposomes that encapsulated 

SRB were stable for at least four and a half months . 

An application investigating the interactions between CNF labeled soluble 

proteins (cholera toxin, bovine lactoferrin, bovine serum albumin, and ovalbumin) and 

GM 1 liposomes were characterized by the presence of the amine reactive probe, CNF. 

After incubation with the labeled proteins in solution, specific interactions between GMl 

Iiposomes were observed with confocal microscopy. Cholera toxin (beta-subunit) (CTB) 

and bovine lactoferrin (BLF) were co-localized proximate to GMl liposomes. CTB, BLF 

and ovalbumin were not associated with control liposomes lacking GMl. 

In another application, in vitro capture of Escherichia coli 0157:H7, Salmonella 

enteritidis , Listeria monocytogenes, and Listeria innocua with GMl or GM3 liposomes 

was investigated using ELISAs and confirmed by PCR analysis. Individual and 

simultaneous species inoculations and incubations with GM 1 and GM3 liposomes 

resulted in adhesion and capture of E.coli 0157:H7 and S. enteritidis. This capture was 

investigated using ELISAs, with the capture evident with GM 1 molar percent levels of 

8.9. L. monocytogenes and L. innocua were not captured on GMl liposomes. S. 

enteritidis was captured with GMl and GM3 liposomes but also with the control 

liposomes lacking receptor molecules. E.coli 0157:H7 capture with GMl liposomes 

was more frequent and significantly different when compared to control liposomes. 

Biological capture of E.coli 0157:H7 was investigated using CLSM showing that the 

organisms specifically co-localized with GM 1 liposomes. Considering the results of the 

ELISAs and PCR capture detections, E.coli OJ 57:H7 was captured with GMl liposomes 
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more frequently than the other biomimetic liposomes tested, indicating in vitro that GMI 

is a specific biological adhesion receptor for this pathogen in vivo. L. monocytogenes, 

and L. innocua were not frequently captured on GMI or GM3 liposomes or the control 

liposomes indicating that GM 1 is not a specific receptor for these organisms. 

Objective 3. To verify biological activity of liposomes containing laminin, a 

eukaryotic protein receptor for bacteria. The liposomes were immobilized onto a glass 

surface and challenged with bacteria and proteins (including cholera toxin). The in vitro 

assay used confocal microscopy, ELISA, or genetic-based detection systems to determine 

bacterial and toxin interactions. 

Microemulsified liposomes were effective biomembrane models for studying 

cellular interactions. The eukaryotic receptor biomolecule laminin (LN), a glycoprotein, 

was incorporated into unilamellar biotinylated liposomes. LN liposomes were stable for 

approximately four months. After incubation with the labeled proteins in solution, 

specific interactions between LN liposomes were observed with CLSM. CNF-CTB was 

co-localized proximate to LN liposomes while co-localization was absent with CNF­

BLF, CNF-BSA, and CNF-OVA samples. 

Again, in vitro capture of E.coli 0157:H7 , S. enteritidis, L. monocytogenes, and 

L. innocua with LN liposomes was investigated using ELISAs and confirmed by PCR 

analysis, as was described with GMI and GM3 liposomes. Capture of individual species 

with LN liposomes was determined in the absence and presence of other species at the 

same inoculation level. Specific adhesion and capture of both of the Listeria species was 

evidenced on LN liposomes when compared to control liposomes lacking the 

glycoprotein. 
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Considering the ELISAs and PCR capture detections, L. monocytogenes and L. 

innocua were captured more frequently on LN liposomes when compared to liposomes, 

indicating in vitro that these organisms interact with this glycoprotein in vivo. E. coli 

0157:H7 and S. enteritidis were not discriminately captured with LN liposomes 

compared to the control Iiposomes. 

For all species, inoculation levels were correlated to capture when the organism 

exhibited an interaction to biomimetic liposomes (GM 1, GM3, or LN liposomes). Also, 

with respect to the simultaneous multiple species capture, evidence of a bacterial 

competition for receptors and ultimately adhesion was evident. A hundred fold excess of 

a competing species prevented capture of another species with the biomimetic liposomes 

whereas, in the absence of the competing species, capture was evident. In mixed 

populations inoculated at equal concentrations, biomimetic liposome binding and capture 

was nearly identical to that found in the absence of competing organisms. 

CONCLUSIONS 

It was hypothesized that known receptor biomolecules could be embedded or 

associated with the artificial bilayers of immobilized microemulsified liposomes to 

determine bioactivity in vitro. Methods were developed, resulting in the immobilization 

of stable, unilamellar liposomes on glass, to observe bilayer encapsulation or probes and 

specific interactions of proteins and bacteria with receptor molecules embedded in 

artificial bilayers using CLSM, ELISA, and PCR detection. The liposomes interacted 

with and captured proteins and bacteria from solution. CTB , BLF and E.coli 0157:H7 
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specifically bound GMI liposomes. L. monocytogenes and L. innocua bound LN 

liposomes. S. enteritidis nonspecifically bound to all liposome types . Simultaneous 

assays with multiple species found that the receptor associated captures were relatively 

independent of competitive microorganisms, when inoculated at equal concentration. 

Bacterial capture of all species with GMl liposomes was initially detected using ELISAs. 

This was confirmed with extensive statistical analysis of PCR products , and for E. coli 

0157:H7, with microscopy. PCR and exact analysis clearly identified differences in 

capture among the various inoculation levels (2 x 103
, 2 x 105

, or 2 x 107 CFU/ml) and 

biomimetic liposomes. These results prove that the receptor molecules investigated 

retained their in vivo biological activity embedded in the artificial membranes of 

liposomes, and illustrates the potential of using immobilized liposomes as biomimetics to 

study molecular interactions using a variety of research techniques. 

FUTURE RESEARCH 

To extend the presented work, technologies such as a fluidized bed or flow system 

should be incorporated into the capture of organisms with liposomes containing 

gangliosides or LN. A variety of surfaces could be investigated for improving the 

efficiency of immobilization of liposomes and sensitivity of bacterial or protein capture. 

In substitution for endpoint PCR detection, real-time PCR would present an entirely new 

prospective on surface adhesion and capture of organisms especially at lower inoculation 

levels than those used in this study. Receptors could be enzymatically modified for 

capture inhibition studies to investigate adhesion specificity. 
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Molecular probes are constantly being developed and marketed for specific 

applications and techniques. There is no doubt that superior probes with greater 

sensitivity and specificity for either the aqueous lumen or lipid bilayer of liposomes will 

be available in the future. Probes were selected specific for these applications and the 

microscopy system using what was available at the onset of the study. Future probes will 

likely be sensitive to adhesion events and should be investigated for possible signal 

generation after a binding or capture event. 

Additionally, each of the organisms in the study should be monitored before and 

after capture events. Adhesion resulting in possible rupture of liposomes would be of 

particular interest for a biosensor platform. Also, the biomolecule containing liposomes 

constituted an effective, discriminatory capture platform but more work needs to be 

performed to determine how capture is effected in simultaneous inoculations of multiple 

species. The number of samples presented in this study is simply too small to accurately 

describe a competitive effect. 

This exploratory work represents only a small cross-section of proteins, toxins, 

and bacteria that could be similarly investigated using the developed techniques . 

Bacterial capture with liposomes should be further investigated by incorporating known 

and theorized receptor biomolecules into artificial membranes. The possibilities for 

receptor biomolecules and interactants are only limited by the imagination. 



163 

APPENDICES 



APPENDIX A 

LIPOSOME IDENDIFICATION LEGEND 

Table A. Guide to identification of microemulsified liposomes listed by liposome type, probed component, 
fluorescent probe, and monitor channel (red, green, blue). Co-localization of probes indicated by channel mixing (yellow, 
magenta). 

Liposome Type 
Probed 

Component 

Control Liposomes Lipid Bilayer 

Ganglioside GMl Liposomes Lipid Bilayer 

Liposomes Encapsulated SRB Aqueous Lumen 

Fluorescent Probes 

Fluorescein-PE & NBD-PE 

Fluorescein-PE & NBD-PE 

Sulforhodamine B 

CNF-LN or CNF-EcoMscL Liposomes Membrane Protein in Bilayer 5-(and-6) Carboxynaphthofluorescein 

CNF-BSA Liposomes Soluble Protein in Lumen 5-(and-6)_Carb()xy~~phthofluorescein 

Control & GMl Liposomes 
Head-Group Labeled Lipid Bilayer Lipid Bilayer 

Encapsulated SRB Lumen Aqueous Lumen 

CNF-LN or CNF-EcoMscL Liposomes Membrane Protein in Bilayer 
Encapsulated SRB Lumen Aqueous Lumen 

CNF-BSA Liposomes 
Encaosulated SRB Lumen 

Soluble Protein in Lumen 
Aaueous Lumen 

Fluorescein-PE & NBD-PE 
Sulforhodamine B 

5-(and-6) Carboxynaphthofluorescein 
Sulforhodamine B 

5-(and-6) Carboxynaphthofluorescein 
Sulforhodamine B 

Coloration 

Green 

Green 

Red 

Blue 

Blue 

Yellow 
(Co-localization) 

Magenta 
(Co-localization) 

Magenta 
(Co-localization) 

-~ 



APPENDIX B 

PRIMERS FOR PCR IDENTIFICATION IN CHAPTER IV 

Table B. Selected primers used in PCR identification 

Sequence Sequence 5' to 3' 

PF8 CGTGATGATGTTGAGTTG 
PR8 AGATTGGTTGGCATTACTG 
ino2 ACTAGCACTCCAGTTGTTAAAC 

Lis lb TTATACGCGACCGAAGCCAAC 
Lis lb TTATACGCGACCGAAGCCAAC 

Mono A CAAACTGCTAACACAGCTACT 
139 GTGAAATTATCGCCACGTTCGGGCAA 
141 TCATCGCACCGTCAAAGGAACC 

PCR product 
(hp) 

420 

870 

660 

284 

Organisim 

E.coli 0157:H7 

L. innocua 

L. monocytogenes 

S. enteritidis 

References 

1-2 

3-4 

3-4 

5-8 

1. Maurer J, Schmidt D , Petrosko P, Sanchez S, Bolton L, Lee M. Development of primers to 0-antigen biosynthesis genes for specific 
detection of Escherichia coli 0157 by PCR. Appl Environ Microbial 1999; 65(7):2954-2960. 

2. Osek J. Rapid and specific identification of Shiga toxin-producing Escherichia coli in faeces by multiplex PCR. Lett Appl Microbial 
2002; 34:304-310. 

3. Lippens W. Thesis: Rapid detection of Listeria monocytogenes, Nutrition and Food Science. Utah State University: Logan, UT 2003. 
4. Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, Wagner M. Detection and differentiation of Listeria spp. by a single reaction 

based on multiplex PCR. Appl Environ Microbial 1999; 65:4688-4692. 
5. Harrington E. Thesis: Rapid detection of Salmonella enteritidis, Nutrition and Food Science. Utah State University: Logan, UT 2004. 
6. Malorny B, Hoorfar J, Bunge C, Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an 

International standard. Appl Environ Microbial 2003; 69(1):290-296. 
7. Rahn K, Grandis SD, Clarke R, McEwen S, Galan J, Ginocchio C, III RC, Gyles C. Amplification of an invA gene sequence of 

Salmonella typhimurium by polymersase chain reaction as a specific method of detection of Salmonella. Mo! Cell Probes 1992; 6:271-
279. 

8. Scholz H, Arnold T, Marg H, Rosier U, Hensel A. Improvement of an invA-based PCR for the specific detection of Salmonella 
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ELISA ABSORBANCE VALUES FOR 
CHAPTER IV STATISTICAL ANALYSIS (T-TESTS) 
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Table C-1. Individual species capture of E.coli 0157:H7 with GMl liposomes verified 
by ELISA 

Molar percent E. coli 0157:H7 Mean absorbance 
GMl inoculation level Absorbance at 405 nm ±SD _e_-value 1 

0.0% 0.0 x 10° 0.053 0.062 0.052 0.056 ± 0.006 

0 .0% 2.0 x 103 0.062 0.071 0.060 0.064 ± 0.006 0.0015 

0 .0% 0.0 X JOO 0.041 0.050 0.056 0.049 ± 0.008 

0 .0% 2.0 x J05 0.046 0 .043 0.046 0.045 ± 0.002 0.4748 

0 .0% 0.0 X JOO 0.048 0.043 0.049 0.047 ± 0.003 

0.0% 2.0 x J07 0.046 0.035 0.054 0.045 ± 0.0 I 0 0.7007 

0.0089% 0.0 X JOO 0.061 0 .052 0.066 0.060 ± 0.007 

0.0089% 2.0 x J03 0.048 0.042 0.050 0.047 ± 0.004 0.0173 

0.0089% 0.0 x 10° 0.043 0 .050 0.047 0.047 ± 0.004 

0 .0089% 2.0 x J05 0.042 0.041 0.039 0.041 ± 0.002 0.1399 

0.0089% 0.0 X JOO 0.052 0.048 0.050 0.050 ± 0.002 

0 .0089% 2.0 x J07 0.042 0.039 0.041 0.041 ± 0.002 0.001 3 

0.089% 0.0 X JOO 0.045 0 .041 0.044 0.043 ± 0.002 

0.089% 2.0 x J03 0.052 0.048 0.059 0.053 ± 0.006 0.0684 

0.089% 0.0 X JOO 0.051 0.055 0.049 0.052 ± 0.003 

0.089% 2.0 x 105 0.052 0.057 0.049 0.053 ± 0.004 0.2254 

0.089% 0.0 X JOO 0.049 0.048 0.049 0.049 ± 0.001 

0.089% 2.0 x 107 0.052 0 .049 0.053 0.051 ± 0.002 0.0942 

0.89% 0.Q X JOO 0.047 0.048 0.052 0.049 ± 0.003 

0.89% 2.0 x J03 0.049 0.044 0.064 0.052 ± 0.010 0.5492 

0.89% O.Ox 10° 0.060 0.058 0.061 0.060 ± 0.002 

0.89% 2.0 x 105 0.045 0.061 0.058 0.055 ± 0.009 0.4444 

0.89% 0.0 X JOO 0.053 0.061 0.055 0.056 ± 0.004 

0.89% 2.0 x J07 0.045 0.045 0.051 0.047 ± 0.003 0.1181 

8.9% 0.Q X JOO 0.066 0.065 0.070 0.067 ± 0.003 

8.9% 2.0x 103 O.J07 0.119 0.1 IO 0.112 ± 0.006 0.0099 

8.9% 0.0 x 10° 0.073 0.062 0.077 O.Q7 I ± 0.008 

8.9% 2.0 x 105 0.104 0.114 0.108 0. J09 ± 0.005 0.0323 

8.9% 0.0 x 10° 0.076 0.082 0.072 0.077 ± 0.005 

8.9% 2.0 x 107 0.105 0.116 0.112 0.111±0.006 0.0085 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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Table C-2. Individual species capture of S. enteritidis with GMl liposomes verified by 
ELISA 

Molar percent S. enteritidis Mean absorbance 
GMl inoculation level Absorbance at 405 nm ±SD p-value1 

0.0% 0.0 x 10° 0.055 0.072 0.058 0.062 ± 0.009 

0.0% 2.0x 103 0.065 0.087 0.060 0.071 ± 0.014 0.1406 

0.0% 0.0 x 10° 0.065 0.062 0.073 0.067 ± 0.006 

0.0% 2.0x 105 0.058 0.057 0.059 0.058 ± 0.001 0.0865 

0.0% 0.0 x 10° 0.048 0.051 0.052 0.050 ± 0.002 

0.0% 2.0x 107 0.047 0.047 0.057 0.050 ± 0.006 1.0000 

0.0089% 0.0 x 10° 0.065 0.064 0.065 0.065 ± 0.001 

0.0089% 2.0x l03 0.052 0.065 0.057 0.058 ± 0.007 0.2451 

0.0089% 0.0 x 10° 0.049 0.071 0.046 0.055 ± 0.014 

0.0089% 2.0 x 105 0.041 0.062 0.042 0.048 ± 0.012 0.0445 

0.0089% 0.0 x 10° 0.052 0.054 0.067 0.058 ± 0.008 

0.0089% 2.0 x 107 0.043 0.053 0.051 0.049 ± 0.005 0.1835 

0.089% 0.0 x 10° 0.052 0.061 0.052 0.055 ± 0.005 

0.089% 2.0x 103 0.060 0.067 0.061 0.063 ± 0.004 0.0130 

0.089% O.Ox 10° 0.049 0.071 0.046 0.055 ± 0.014 

0.089% 2.0 x 105 0.041 0.062 0.042 0.048 ± 0.012 0.0445 

0.089% 0.0 x 10° 0.052 0.054 0.067 0.058 ± 0.008 

0.089% 2.0x 107 0.043 0.053 0.051 0.049 ± 0.005 0.1835 

0.89% 0.0 x 10° 0.049 0.042 0.058 0.050 ± 0.008 

0.89% 2.0 x 103 0.029 0.027 0.037 O.D31 ± 0.005 0.0097 

0.89% O.Ox 10° 0.051 0.061 0.064 0.059 ± 0.007 

0.89% 2.0 x 105 0.048 0.056 0.061 0.055 ± 0.007 0.0315 

0.89% O.Ox 10° 0.053 0.076 0.049 0.059 ± 0.015 

0.89% 2.0x 107 0.046 0.073 0.045 0.055 ± 0.016 0.0604 

8.9% 0.0 x 10° 0.053 0.063 0.062 0.059 ± 0.006 

8.9% 2.0 x 103 0.086 0.115 0.103 0.101±0.015 0.0168 

8.9% 0.0 x 10° 0.068 0.058 0.075 0.067 ± 0.009 

8.9% 2.0 x 105 0.111 0.081 0.101 0.098 ± 0.0 I 5 0.0388 

8.9% O.Ox 10° 0.076 0.074 0.067 0.072 ± 0.005 

8.9% 2.0 x 107 0.104 0.094 0.11 1 0.103 ± 0.009 0.0491 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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Table C-3. Individual species capture of E.coli 0157:H7 with GMI liposomes verified 
by ELISA 

Molar percent E.coli 0157:H7 Mean absorbance 
GMl inoculation level Absorbance at 405 nm ±SD ~value1 

0.0% 0.0 x 10° 0.058 0.046 0.055 0.062 ± 0.007 

0.0% 2.0x 103 0.055 0.062 0.068 0.061 ± 0.006 0.2794 

0.0% 0.0 x 10° 0.043 0.052 0.055 0.050 ± 0.006 

0.0% 2.0 x 105 0.041 0.059 0.053 0.051 ± 0.009 0.7706 

0.0% 0.0 x 10° 0.066 0.048 0.053 0.056 ± 0.009 

0.0% 2.0x 107 0.060 0.051 0.047 0.053 ± 0.007 0.4223 

8.9% O.Ox 10° 0.077 0.070 0.063 0.070 ± 0.004 

8.9% 2.0 x 103 0.108 0.115 0.11 I 0. I 11 ± 0 .007 0.0169 

8.9% 0.0 x 10° 0.064 0.066 0.071 0.067 ± 0.004 

8.9% 2.0 x 105 0.110 0.118 0.112 0.113 ± 0.004 0.0047 

8.9% a.ox 10° 0.068 0.071 0.074 0.071 ± 0.003 

8.9% 2.0x 107 0.102 0.114 0.114 0.1 JO± 0.007 0.0045 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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Table C-4. Individual species capture of S. enteritidis with GM 1 liposomes verified by 
ELISA 

Molar percent S. enteritidis Mean absorbance 
GMI inoculation level Absorbance at 405 nm ±SD .£_-value1 

0.0% 0.0 x 10° 0.055 0.041 0.059 0.052 ± 0.009 

0.0% 2.0 x 103 0.061 0.069 0.053 0.061 ± 0.008 0.4475 

0.0% 0.0 x 10° 0.056 0.048 0.052 0.052 ± 0.004 

0.0% 2.0 x 105 0.051 0.053 0.046 0.050 ± 0.004 0.6265 

0.0% 0.0 x 10° 0.051 0.055 0.060 0.055 ± 0.005 

0.0% 2.0x 107 0.046 0.045 0.056 0.049 ± 0.006 0.0762 

8.9% 0.0 x 10° 0.058 0.061 0.057 0.059 ± 0.002 

8.9% 2.0 x 103 0.093 0.096 0.084 0.091 ± 0.006 0.0067 

8.9% 0.Q X JOO 0.063 0.061 0.058 0.061 ±0.003 

8.9% 2.0x 105 0.101 0.090 0.092 0.094 ± 0.006 0.0059 

8.9% 0.0 X 10° 0.064 0.059 0.065 0.063 ± 0.003 

8.9% 2.0 x 107 0.109 0.094 0.113 0.105 ± 0.010 0.0084 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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Table C-5. Individual species capture of L. monocytogenes with GMl liposomes 
verified by ELISA 

Molar percent L. monocytogenes Mean absorbance 
GMI inoculation level Absorbance at 405 nm ±SD _1>_-value 1 

0.0% 0.0 x 10° 0.068 0.067 0.051 0.062 ± 0 .010 

0.0% 2.0x 103 0.068 0.051 0.062 0.060 ± 0.009 0.8513 

0.0% 0.0 x 10° 0.046 0.059 0.061 0.055 ± 0.008 

0.0% 2.0 x 105 0.041 0.053 0.061 0.052 ± 0.010 0.1869 

0.0% 0.0 x 10° O.D71 0.048 0.061 0.060 ± 0.012 

0.0% 2.0 x 107 0.039 0.047 0.051 0.046 ± 0.006 0.2598 

8.9% 0.0 x 10° 0.068 0.074 0.068 0.070 ± 0.003 

8.9% 2.0 x 103 0.072 0.064 0.082 0.073 ± 0.009 0.7385 

8.9% 0.0 x 10° 0.072 0.066 0.065 0.068 ± 0.004 

8.9% 2.0 x 105 0.065 0.081 0.062 0.069 ± 0.010 0.8284 

8.9% 0.0 x 10° 0.073 0.055 0.081 0.070 ± 0.013 

8.9% 2.0x 107 0.066 0 .071 0.063 0.037 ± 0.004 0.7928 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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Table C-6. Individual species capture of L. innocua with GMI liposomes verified by 
ELISA 

Molar percent L . innocua Mean absorbance 
GMI inoculation level Absorbance at 405 nm ±SD _£_-value1 

0.0% 0.0 x 10° 0.088 0.067 0.058 0.071 ± O.Ql 5 

0.0% 2.0 x 103 0.065 0.051 0.069 0.062 ± 0.009 0.4629 

0.0% 0.0 x 10° 0.038 0.041 0.051 0.043 ± 0.007 

0.0% 2.0 x 105 0.041 0.053 0.083 0.059 ± 0.022 0.2091 

0.0% 0.0 x 10° 0.063 0.045 0.072 0.060 ± 0.014 

0 .0% 2.0 x 107 0.063 0.048 0.061 0.057 ± 0.008 0.5949 

8.9% 0.0 x 10° 0.071 0.074 0.081 0.075 ± 0.005 

8.9% 2.0 x 103 0.088 0.090 0.082 0 .087 ± 0.004 0.1599 

8.9% 0.0 x 10° 0.092 0 .041 0.044 0.059 ± 0.029 .. 
8.9% 2.0x 105 0.071 0.068 0.056 0.065 ± 0.008 0.7133 

8.9% 0.0 x 10° 0.051 0.066 0.071 0.063 ± 0.010 

8.9% 2.0x 107 0.091 0.062 0.051 0.068 ± 0.021 0.7943 
1 Pairwise comparison of absorbance values of inoculated and uninoculated control on 
same plate 
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