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ABSTRACT 
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Manxiang Chen, Master of Science 

Utah State University, 1998 

Major Professor: Dr. Joseph :MK Irudayaraj 
Department: Nutrition and Food Sciences 

lll 

A suitable microtome sampling technique was used to sample cheese for analysis 

using FTIR spectroscopy. Well-separated fat- and protein-related bands were obtained in 

the spectra of Cheddar and Mozzarella cheese samples using this method. The absorbance 

intensity of the spectra was proportional to the thickness of the sample. The intensity of 

absorbance at fat- and protein-related bands increased with an increase in the fat and 

protein content in the sample. Strong and well-separated bands at 1744, 1450, 1240, 

1170, and 1115 cm-1 arising mainly from fat content were observed using this method. 

Bands observed at 1650 and 1540 cm- 1 were attributed to the protein present in the 

cheese. Bands at 1615-1639, 1640-1648, 1650-1658, and 1660-1688 cm-1 corresponding 

to ~-sheet, random coil, helix, and the turns/sheet portion of the secondary structure were 

observed in the range of the amide I band. 

--- --- - -------- - ------ ----
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Characteristics of spectra for full-fat (FFCC) and reduced-fat Cheddar cheese 

(RFCC) during ripening were investigated. The absorbance of bands at 1116-1240 from 

C-C, C-0, C-N stretch, 1461 cm-1 from C-N bend (scissoring), 1744 cm-1 from ester 

carbonyl groups (fat A), 2850-2930 cm- 1 from C-H stretch (fat B), 1650 and 1540 cm- 1 

from protein amide I and II varied during cheese aging. Bands at 1116 and 1240 cm-1 

arising from C-0, C-N, and C-C stretch changed slightly during cheese aging. A 

correlation coefficient of 0.97 for bands between 1744 and 1167 cm-1 arising from fat, 

and that of0.93 at 1650 and 1540 cm-1 arising from protein, respectively, showed that one 

of these fat or protein groups was highly related to the other. A correlation coefficient of 

greater than 0.80 among the bands of fat and protein groups indicated a strong interaction 

in those bands. Correlation of ripening time and absorbance at bands corresponding to 

each function group was analyzed. A ripening index model was obtained by correlating 

ripening time with predominant reactive group absorbance peaks. An R2 of 0.83 and 0.59 

was obtained for full-fat and reduced-fat Cheddar cheese, respectively. 

Texture development and its correlation with FTIR spectra data for FFCC and 

RFCC during aging were also studied. RFCC had a higher value of hardness, gumminess, 

and chewiness than its full-fat counterpart. The values decreased during the early stages 

of ripening and then increased with time. The change in hardness, adhesiveness, and 

springiness was expressed as a function of the change in absorbance of the FTIR spectra 

using multiple regression analysis. An R2 value of 0.67, 0.54, and 0.75 was obtained for 

full-fat Cheddar cheese, and a value of 0.51, 0.59, and 0.54 was obtained for reduced-fat 

Cheddar cheese for the respective texture parameters. (131 pages) 
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CHAPTERl 

INTRODUCTION 

PROBLEM STATEMENTS 

Consumer concerns about the levels of fat and cholesterol in diets have brought 

about the development of a large array of low-fat and nonfat dairy foods. However, the 

manufacture of acceptable high quality low-fat or nonfat cheese is probably the most 

technologically challenging of all dairy food processes. 

Cheese is made up of a network of interconnected strands of protein that surround 

globules of fat. Water, either bound or absorbed, is a major component of all cheeses 

(Johnson and Chen, 1995). Levels of fat in cheese have a direct impact on acceptability. 

When the fat was reduced by 25% in Cheddar cheese, it compared well with its full-fat 

counterpart (Olson and Johnson, 1990). Researchers noted that reduction of fat content by 

33% yielded Cheddar-type cheese that was acceptable, but reduction by 50% or greater 

resulted in cheese of lower flavor and physical properties. 

Reduction in the fat levels of Cheddar cheese results in a firm, more elastic, dry, 

and crumbly cheese with less flavor (Emmons et al., 1980; Lawrence and Gilles, 1987). 

Johnson and Chen (1995) pointed out that the firmness of cheese is not controlled solely 

by its composition. The ionic interactions between protein strands influenced by the pH 

and bound calcium played a major role in the firmness of cheese. However, the most 

important contributing factor to the firmness of cheese is the level of proteolysis that 

occurs during ripening. Products of proteolysis, i.e., amino acids and peptides and 
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especially compounds derived from them, are known to contribute to the flavor of cheese 

(both desirable and undesirable) as it matures. 

The ripening process is catalyzed by enzymes such as proteinase, peptidase, 

phosphatase, lipase, decarboxylase, transaminase, redoxase, those that decompose amino 

acids, and enzymes that facilitate respiration and fermentation. The proteolysis of casein 

was found to be of particular importance in cheese ripening because of the presence of 

protein in large quantities in cheese (Schormuller, 1968). Casein, particular the as­

moiety, is hydrolyzed first, whereas 13- and p-K-casein are not greatly proteolysed in most 

bacteria-ripened cheeses (Nauth and Ruffie, 1995). Texture development during aging 

occurs in two phases (Lawrence and Gilles, 1987). Phase one constitutes the first 7-14 

days when the rubbery texture of young cheese is rapidly converted to a smoother, more 

homogenized product as a result of a breakdown of as1-casein. Phase two involves a more 

gradual change in texture over the months as a result of a continuing breakdown of as1-

casein and other casein. 

Proteolysis during ripening affects not only flavor but also texture. Texture or 

body of cheese is one of the most important functional properties because it is by this 

property that the consumer determines the identity and quality of a specific variety of 

cheese (Lawrence and Gilles, 1987). The difference in the texture of different cheese 

varieties is related to the difference in proportion of the components of cheese, rennet, 

milk, casein, moisture, lactic acid, sodium chloride, fat, and calcium (Lawrence and 

Gilles, 1987). But as in most solid materials, the structure of cheese influences texture the 

most. The solid structure of the cheese is due primarily to the cross linked casein-calcium 
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phosphate network, entrapped within which is fat and water (Lawrence and Gilles, 1987). 

The three major components contributing toward the structure of the cheese are casein 

(protein), moisture, and fat. The distribution and the manner in which they are held in the 

cheese system determine texture. 

Work has been done in the past to relate texture development (Lawrence and 

Gilles, 1987) and proteolysis (Fox et al. , 1994) in cheese during aging. However, very 

limited work has been done to study the effect of biochemical changes on texture in 

cheese, and more so in low-fat cheese, during ripening. 

Near-infrared (NIR) spectroscopy has been shown to be useful for direct, rapid, 

and nondestructive quantitative analysis of major components in solid and semisolid 

foods , and has been applied to analyze fat and moisture in Cheddar cheese. However, this 

method requires large calibration data sets and correlation methods (Pierce and Wehling, 

1994). Fourier transform infrared (FTIR) spectroscopy has been used to analyze food 

products, such as cheese (McQueen et al. , 1995), meat (Dion et al., 1992), fats and oils 

(van de Voort et al. , 1994), butter/margarine (van de Voort et al., 1992a), sweetened 

condensed milk (van de Voort et al., 1992b), and sugar/juice (Hopkins and Newberry, 

1986). Most of the past applications dealt with quantitative analysis, and none dealt with 

relating biochemical reaction to functional properties. FTIR spectroscopy has also been 

used to determine the secondary structure of proteins (Surewicz and Mantsch, 1988; 

Sarver and Krueger, 1991). 

The structure of cheese is altered with age as a result of a series of biochemical 

and microbiological changes that affect the casein network. To manufacture an acceptable 
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high quality low-fat or nonfat cheese, it is very important to know the biochemical 

changes and their corresponding effects on functional properties such as texture and 

flavor. Proper understanding of the mechanism will help in the development of a suitable 

process that will result in a product that is of appeal to consumers. However, this is 

difficult since most analytical procedures for measuring biochemical groups and changes 

in cheese during aging are complex and time consuming. Not much work has been done 

on studying biochemical changes of functional groups that occur during aging, and their 

relation to texture development in reduced-fat cheese systems. 

OBJECTIVES 

The aim of this work was to study the absorbance changes of typical functional 

groups related to fat and protein in cheese during ripening by using Fourier transform 

infrared spectroscopy and obtain an index for ripening and a correlation for different 

textural properties. The specific objectives were to: 

1) examine the characteristics of spectra of different fat levels of Cheddar 

cheeses during ripening; 

2) establish a correlation of cheese ripening as a function of absorbance of 

selective functional groups and develop a ripening index; 

3) correlate changes in absorbance intensity of functional groups related to fat 

and protein in cheese during ripening with changes in texture properties 

(hardness, adhesiveness, and springiness). 
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LITERATURE REVIEW 

Studies on biochemistry of cheese ripening 

Cheese ripening involves numerous reactions in cheese due to the micro flora and 

constituents. The main causes of cheese ripening are microbiological- and enzyme­

induced changes. Among the ripening reactions are the decomposition and re-synthesis of 

all substances involved in the reaction, such as proteins, peptides, amino acids, 

carbohydrates, lipids, nucleic acids, organic acids, various carbonyl compounds, growth 

factors from the groups of vitamins, prosthetic groups of enzymes, and fmally, simple 

decomposition products, such as carbon dioxide and ammonia (Schormuller, 1968). 

Schormu ller (1968) indicated that the ripening process is affected by the 

mechanism, the microorganisms used, the reaction products formed, and pH of the cheese 

block. Substances that change during cheese ripening include nitrogen substances, the 

carbohydrate components, fat components, acids, cheese flavor compounds, vitamins, 

carbon dioxide fixation, and acetate utilization compounds. 

Nauth and Ruffie (1995) compared the microbiological and biochemical profile of 

stored samples of 50% reduced, one-third reduced, and no-fat cheese with that of full-fat 

Cheddar cheese during 30 to 60 days of ripening. They concluded that, for a full-fat 

Cheddar cheese, a 5-casein, p-K-casein, and, to some extent, 0-casein were proteolyzed 

yielding greater concentration of 11-20 K and 9-11 K molecular weight fractions in 

cheese; free fatty acids, C2 through C12, showed a gradual increase in concentration in 60 

days of ripening; a flavor volatile, such as ethanol, diacetyl, and pentanone, decreased in 

concentration at 60 days compared to 30 days; added starter bacterial populations 
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declined, but adventitious organisms/adjuncts might grow during ripening; and the total 

calcium retained in reduced-fat cheese was higher by 30% compared to its full-fat 

counterpart. 

From the above-mentioned work, obviously the chemical groups and their 

changes are different for different cheese and maturation. The various reactions occurring 

during ripening will affect the concentration of main substances in cheese, which in turn 

will influence the spectra-elements and the FTIR absorption spectrum of cheese. 

The absorption at 1744 cm- 1 (fat A), characteristic of ester carbonyl groups 

(R(CO)OR/OH) could be used as an indicator of fat in the system. A decrease in the 

number of ester groups caused by enzymatic hydrolysis is accompanied by a decrease in 

absorbance of this band, but an increase in bands was observed around 2850-2930 cm- 1 

(fat B) and 1563 cm-1 (protein) for milk samples (van de Voort et al., 1987). Suggested 

reasons for the increase in signal at fat B were hydrogen bonding between water and 

released fatty acids, dimerization of free fatty acids, and absorption by the CH2 groups on 

the glycerol part of the molecule, all of which absorb at this wavelength (Biggs et al. , 

1987). The increase in the protein signal is attributed to an absorption of the carboxylate 

anion of soluble free fatty acids at 1563 cm-1 (Sjaunja, 1984). Fat A wavelength measures 

the number of ester linkages present, which effectively measures the molecular 

concentration of fat. Changes in the mean molecular weight of fat caused by changes in 

fatty acid composition will cause a variation between the chemical and infrared methods 

(van de Voort, 1980). On the other hand, decarboxylation and oxidative deamination of 
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amino acids can produce short chain fatty acids (Reiter et al., 1966). This increase in 

fatty acids will in tum influence the fat A or B absorbance. 

Applications of infrared spectroscopy in 
food analysis 

Goulden (1961) first used infrared radiation to measure fat, protein, and lactose in 

milk. The measurement of fat was based on absorbance at 1724 cm-1 (fat A wavelength) 

by ester carbonyl groups of fat molecules. Protein measurement was based on absorbance 

at 1538 cm- 1 by peptide bonds of protein molecules, and lactose measurement was based 

on absorbance at 1042 cm- 1 by hydroxyl groups oflactose molecules. 

Near-infrared spectroscopy can be used to analyze moisture, fat, protein, and total 

solids in cheese (Pierce and Wehling, 1994; Rodriguez-Otero et al., 1995). Rodriguez-

Otero et al. (1995) used near-infrared reflectance spectroscopy to analyze fat, protein, and 

total solids in cheese without any sample treatment. A set of 92 samples of cows' milk 

cheese was used for an instrument calibration by principal components analysis and 

modified partial least-square regression. The following statistical values were obtained: 

standard error of calibration (SEC) of 0.388 and squared correlation coefficient (R2
) of 

0.99 for fat; SEC of0.397 and R2 of0.98 for protein, and SEC of0.412 and R2 of0.99 for 

total solids. To validate the calibration, an independent set of 25 cheese samples of the 

same type was used. Standard errors of calibration were 0.47, 0.50, and 0.61 for fat, 

protein, and total solids, respectively, and R2 for the regression model obtained was 0.98 

for the three components. 



8 

By combining attenuated total reflectance (A TR) and mid-infrared spectroscopy 

(MIRS) with the statistical multidimensional technique, Safar et al. (1994) obtained 

relevant information from mid-infrared spectra of lipid-rich food products. Wavelength 

assignments for typical fi.mctional groups in fatty acids were made for standard fatty 

acids. Absorption band around 1745 cm·1
, due to carbonyl group, 2853 and 2954 cm-1 

due to C-H stretch, 3005 and 960 cm-1 due to C=C bonds, 1160 cm-1 due to C-0 bonds, 

3450 and 1640 cm-1 due to 0-H bonds were observed. Water strongly absorbs in the 

region of 3600-3000 cm-1 and at 1650 cm-1 in butter and margarine, allowing one to 

rapidly differentiate the foods as a fi.mction of their water content. Principal component 

analysis was used to emphasize the difference between spectra and to rapidly classify 27 

commercial samples of oils, butter, and margarine. 

In contrast to NIR, Fourier transform infrared spectroscopy (FTlR) has much to 

offer the analyst because specific bands may be assigned to specific chemical entities. 

Statistical correlation methods are not always necessary, but they are not excluded and 

may be required in very complicated mixtures (Belton et al., 1987). This technique has 

been widely used to determine fat, moisture, and protein in butter (van de Voort et al., 

1992a), meat (Dion et al., 1992), sweetened condensed milk (van de Voort et al., 1992b), 

and other high-fat products (van de Voort et al., 1993). It has also been used to monitor 

the oxidation of edible oil (van de Voort et al., 1994) and to determine the level of trans-

unsaturation in fat (Ulberth and Haider, 1992). 
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The use of FTIR for qualitative measurements in cheese is very limited (McQueen 

et al. , 1995) primarily due to the difficulty in sampling procedure or due to the 

nonavailability of a standard procedure (Perkins, 1993). 

FTIR related study and analysis 

Sarver and Krueger ( 1991) devised an infrared (IR) method to determine the 

secondary structure of proteins in solution using the amide I region of the spectrum. The 

infrared data matrix was constructed from the normalized Fourier transform infrared 

spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary 

structure matrix was constructed from the X-ray data of the seventeen proteins with 

secondary structure elements of helix, 13-sheet, 13-turn, and other (random) elements. By 

analyzing the proteins of the CD and IR databases, they concluded that the peak positions 

of 1660, 1653, 1650, and 1634 cm-1 are frequencies assigned for 13-tum, helix, other, and 

13-sheet confom1ations, respectively, which are consistent with reported literature values 

of 1666-1688, 1655-1657, 1650, and 1627-1642 cm-1
, respectively (Surewicz and 

Mantsch, 1988). 

Belton et al. (1988) studied the components of fat, protein, and sugar in 

confectionery products by using Fourier transform infrared spectroscopy coupled with 

photo acoustic and attenuated total reflectance detection methods. They concluded that 

peaks at 1744, 1477-1400, 1240 and 1195-1129 cm-1
, could be from an ester carbonyl 

group, C-H bend, and C-0 stretching of fat, respectively; peaks at 1650 and 1540 cm-1 are 

from protein, and that at 1128-952 cm-1 is from sugars. 
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Water is strongly absorbed between 3600 and 3000 cm-1 and at 1650 cm-1 in fat-

rich foods (Belton et al., 1988; van de Voort et al. , 1992a). Principal component analysis 

was used to emphasize the differences between spectra and to rapidly classify each 

sample (van de Voort et al. , 1992a). 

Usually, wavelength assignments for typical functional groups in fatty acids are 

absorption bands around 1745 cm- 1 (fat A) for ester carbonyl groups (R(CO)OR/OH), 

2930 and 2853 em·' (fat B) for C-H stretch in methylene groups, and 1160 em·' for C-0 

bonds of lipid (Silverstein et al. , 1991). 

The wavelengths of protein-related functional groups are asymmetric and 

symmetric N-H stretch, and hydrogen-bonded primary amide around 3350 and 3170 cm-1
; 

the wavelength of C=O stretch in amide band which overlaps with that of N-H bend in 

1640 em·' (amide I); and the C-N stretch assigned to a wavelength of 1425 em·' 

(Silverstein et al. , 1991 ). 

Instrumental analysis of texture 

By studying the textural properties of 11 different varieties of cheese, Chen et al. 

(1979) reported that fat did not contribute significantly to the variations in the textural 

attributes of cheese. Hence, fat was considered to play a minor role in the classification of 

cheese (Fox, 1987). However, other studies (Emmons et al., 1980) showed that reduced 

fat cheese was harder and more elastic, described as rubbery, than the full-fat cheese. This 

is considered a major impediment in the manufacture oflow-fat cheese and was discussed 

in the review of low-fat cheese (Jameson, 1990). The rubbery texture of low-fat cheese is 

attributed to the increase in a structural matrix per unit cross-sectional area. 
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Instrumental analyses of textural properties of cheese are important for quality 

control and its use as a tool for researchers, to study cheese structure (Tunick et al., 1990). 

All instrumental tests can be divided into three classes (Konstance and Holsinger, 1992), 

fundamental tests, empirical tests, and imitative tests. Fundamental tests measure the 

basic rheological properties, force-compression, creep, stress relaxation, and shear. 

Empirical tests are food specific and are developed to give good correlation with sensory 

evaluations. Puncture, shear, and extrusion are a few examples in this category. Imitative 

tests imitate the action of the mouth on the food. Texture profile analysis is an example. 

Fundamental tests have been found to correlate poorly with the sensory evaluation 

of the textural properties of foods. This can be attributed to the fact that in foods the 

structure does not break under normal conditions of use as in the case of engineering 

applications but is smashed into thousands of little pieces under the influence of limited 

forces available in the mouth (Bourne, 1978). In the case of imitative tests the textural 

properties are assessed by a device which imitates the action of the mouth and thus is 

more reflective of the way in which humans perceive the sensory property. 

Imitative tests gained importance with the major breakthrough of the development 

of a device to perform a texture profile analysis (TPA), the General Food Texturometer 

(Szczesniak et al. , 1963). Analysis of a force-time curve led to the extraction of seven 

texture parameters. The texture parameters (Szczesniak et al., 1975) are as follows: 

F racturability (originally called brittleness) is the force at the first significant break at the 

curve; hardness is defined as the peak force at the first compression cycle ("first bite"); 

cohesiveness is the ratio of the positive force area during the second compression to that 
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during the first compression; adhesiveness constitutes the negative force area from the 

first bite, representing the work required to pull the compressing plunger away from the 

sample; springiness (originally called elasticity) is the height that the food recovers during 

the time that elapses between the end of the first bite, and the start of the second bite; 

gumminess is the products of hardness and cohesiveness; chewiness is the product of 

hardness, cohesiveness, and springiness. 

TP A has been widely used by the researchers to study the textural properties of 

food including cheese (Trepanier et al., 1991 ). Most consumers do not completely 

understand the meaning of textural properties defmed by hard..'l.ess, fracturability, 

cohesiveness, gummmess, chewiness, adhesiveness, and springiness to describe the 

mechanical characteristics. Hence, popular nomenclature, better appreciated by the 

consumer, is used for sensory evaluations. The relationship between the textural 

parameters and popular nomenclature is outlined in Table 1.1 (Szczesniak et al., 1963). 

Table 1.1--Relationship between texture parameters and popular nomenclature 

Primary parameter Secondary parameter 

hardness 

cohesiveness fracturability 

chewiness 

gummmess 

elasticity 

adhesiveness 

Popular term 

soft, firm, hard 

crumby, crunchy, brittle 

tender, chewy, tough 

short, meaty, pasty, gummy 

plastic, elastic 

sticky, tacky, gooey 
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Although considerable work has been published to support the rubbery nature of 

low-fat cheese, not much work has been done to study and compare the difference in 

texture properties of reduced-fat cheese and full-fat cheese. Also, there is no work to 

elucidate the relationship between textural properties with the functional groups in cheese 

during aging. 
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CHAPTER2 

A SAMPLING METHOD FOR CHEESE ANALYSIS USING FTIR 

SPECTROSCOPY 

ABSTRACT 
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A microtome sampling technique was used to sample cheese for analysis using 

FTIR spectroscopy. Well-separated fat- and protein-related bands, such as fat A at 1744 

cm- 1
, fat B from 2850 to 2930 cm-1

, amide I at 1620-1690 cm- 1
, and amide IT at 1500-

1580 cm- 1
, were obtained in the spectra of Cheddar and Mozzarella cheese samples using 

this method. The absorbance of spectra was proportional to the thickness of sample. 

Moisture affected the spectra of cheese samples, but this was eliminated by equilibrating 

sample in a sample holder for at least 10 min. The absorbancy intensity of fat and protein 

related bands increased with an increase in fat and protein contents. Bands at 1615-1639, 

1640-1648, 1650-1658, and 1660-1688 cm-1 corresponding to ~-sheet, random coil, helix, 

and the turns/sheet portion of secondary structure were observed in the range of the amide 

I band. This technique could be used to study the chemical groups and to rapidly 

determine fat and protein in cheese samples. 

INTRODUCTION 

Fourier transform infrared (FTIR) spectroscopy is now a widely used technique in 

analytical and research laboratories (Belton et al., 1987). Most analytical procedures for 

measuring moisture, fat, and protein in cheese are time-consuming and destructive to the 
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sample (Pierce and Wehling, 1994 ). Rapid analysis techniques for fat, protein, and total 

solids content determination in milk by infrared absorption spectroscopy investigated in 

the past have been widely adopted in the dairy industry (McGann, 1978). Infrared milk 

analysis is an approved AOAC method (Biggs, 1972). 

However, infrared absorption spectroscopy is only suitable for liquid samples; 

consequently, cheese and other solid products must be blended and homogenized before 

analysis (Biggs, 1979). Cheese is difficult to analyze spectroscopically using traditional 

methods because of its textural characteristics (McQueen et al. , 1995). The authors 

studied the use of optothezmal near-infrared (OPT-NIR) spectroscopy and Fourier 

transform mid-infrared attenuated total reflection (FTIR-ATR)- spectroscopy to obtain 

protein, fat, and moisture contents from 24 cheese samples. For OPT-NIR, the sapphire 

surface containing the sample is mounted on the top of a small self-contained optothermal 

instrument in which the heat generated when light is absorbed by a sample is measured as 

a function of temperature change. In that experiment, the sample of cheese was applied to 

the A TR element of the FTIR spectrometer and spread across the entire surface using a 

soft spatula. The authors concluded that the optothermal method is superior to the FTIR­

A TR method for determining the fat, protein, and moisture contents of cheeses because of 

the fact that the FTIR-A TR method was affected by sample nonhomogeneity and fat 

adsorption to the ZnSe A TR crystal. 

Most of the past work required an extensive sample preparation process or was 

applied to general food products. The work presented describes a new simple sampling 

technique for analyzing cheese using FTIR spectroscopy with the aid of a microtome unit. 
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Sample spectra for cheese with different fat levels will be provided. A simple technique 

to study the change in protein structure and other bands related to fat and protein is also 

provided. 

MATERIALS & METHODS 

Samples 

Different levels of reduced-fat Mozzarella (8.9% and 20.0% fat content) and 

Cheddar (8.6%, 16.9%, 24.4%, and 32.3% fat content) cheeses were used in the analysis. 

The cheese samples were made in the Utah State University Dairy Plant (Department of 

Nutrition and Food Sciences) through the Western Dairy Center. 

Sample preparation 

Cheese samples for FTIR analysis were prepared using the following procedure: 

Small pieces of sample (15 mm in height and 15 mm in diameter) were cut from the 

center of a cheese block and frozen at -80 °C for at least 2 hr. Each frozen sample was 

then sliced to a thickness of 4, 8, or 16 J.lm using a IM236 microtome (International 

Equipment Co., Needham Heights, MA) and then attached to the surface of a silver 

chloride crystal and placed in the light path of the FTIR spectrometer light beam. 

FTIR analysis 

Spectra of the sliced frozen film were collected by the Mattson Polaris TM FTIR 

spectrometer (Mattson Instruments, INC., Madison, WI) equipped with a triglycine 

sulphate (TGS) detector. The collected spectroscopic data were processed using Mattson 
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Polaris Icon Software and Bio-Rad Win-IR software. Spectra of samples in the region 

between 4000 cm-1 and 400 cm-1 were obtained with a resolution of 1, 4, and 8 cm-1 using 

a scanning frequency of 16, 32, and 64 scans/sample, at 1, 5, 10, and 15 min after they 

were placed in the light path. The collected spectroscopic data were processed to obtain 

the area of peak using the peak report option of Bio-Rad Win-IR software (Bio-Rad, 

Cambridge, MA). 

Proximate analysis 

The percentage compositions of fat, protein, and moisture were determined using 

the standard methods outlined in the standard methods for the examination of dairy 

products (Marshall, 1993). Fat content was determined using the Babcock method 

(method 15.8d), moisture content by vacuum oven method (method 15.10A), and protein 

content using the Kjeldahl method (method 15.12A). All samples were tested in triplicate. 

RESULTS & DISCUSSION 

Optimization of FTIR analysis 

The spectra (400- 4000 cm-1 range) of samples collected at resolutions of 1, 4, 

and 8 cm-1 (denoted by symbols a, b, and c, respectively, in Fig. 2.1) indicate that 

acquisition at a high resolution provides a smoother spectrum, but the signal-to-noise 

ratio decreases with an increase in resolution. Hence, an intermediate resolution of 4 cm-1 

was chosen. The effect of scans per sample on spectra at the same resolution (Fig. 2.2) 

was not significant. Symbols a, b, and c in Fig. 2.2 correspond to the spectra obtained at 

16, 32, and 64 scans/sample, respectively. The sampling time per sample increased with 
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and 10 min after their exposure in the sample holder. 
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10 min after their exposure in the sample holder. 
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the number of scans for the same resolution and mirror velocity. Thirty-two scans/sample 

were chosen as it provided a flatter baseline than 16 scans/sample but the same as 64 

scans/sample. Spectra of samples with different thicknesses are shown in Fig. 2.3. 

Thickness of the sample slice can be controlled to be in the range between 2 and 16 !!ill in 

2-!!m increments using a microtome. The intensity of spectral absorbance, which is 

proportional to the sample thickness, is consistent to Beer' s Law. Thickness of the sample 

was kept to a maximum value of 16 !!ill to accommodate samples from various sample 

slicing units and to accommodate the nonhomogeneities in the sample. 

Moisture effects 

Fig. 2.4 shows the spectra acquired 1 mrn, 10 min, and 20 min after placing 

Mozzarella cheese sample in the film holder. Liquid water has a very strong, broad band, 

which is highly absorbing in the 3100 to 3700 cm-1 range and a weaker band around 2000 

cm- 1
; another strong band at 1640 cm-1 was also observed (Silverstein et al., 1991). At 

about 800 cm- 1
, water stops transmitting altogether. The moisture in cheese affected the 

spectra of microtome-frozen cheese samples by masking or modification of the strong 

broad bands at 3000 to 3600 cm-1 and the amide I band in the range between 1600 and 

1700 cm-1
• This is consistent with the observation by Safar et al. (1994) whose work 

indicated that water strongly absorbs in the region of 3000-3600 cm-1 and at 1650 cm-1
• 

The moisture bands also affected the multiple N-H bonds (Silverstein et al., 1991) in the 

3330-3060 cm-1 region. The masking of the spectra was especially predominant during 

the initial stages, due to the presence of free water. However, this can be eliminated by 

collecting the spectra 10 min after placing them in the light path; this will minimize the 
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0.008, and 0.016 mm at a resolution of 4/cm, 32 scans/sample, and 10 min after their 

exposure in the sample holder. 
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distortion due to moisture variation in the sample. distortion due to moisture variation in 

the sample. 

Sample application 

Variations in contact between the sample and silver chloride crystal affect signal 

strength. For a given sample, a slight gap between the sample and the surface crystal 

should cause a reduction of signal strength, which may offset the total spectrum if the 

sample were not attached properly. The effect is more evident with the reduced-fat (hard) 

cheese than with the full-fat (soft) samples tested. This variation can be minimized by 

pressing the sample piece with cold wax paper after its placement on the crystal. Sample 

thickness also affects sample application since it is difficult to place a very thin sample 

slice on the surface of the crystal. The thinner the sample, the weaker its strength. Hence, 

in our measurement, a maximum thickness of 16 !-LID was used to improve sample 

application. 

Sample inhomogeneity 

Cheese samples used in experiments are hardly ever perfectly homogeneous using 

this sampling technique. For wet chemistry quantitative analysis, at least 1 g of sample is 

required (about 5 g for moisture, 9 g for fat, and 1 g for protein content determination). In 

our FTIR analysis the sample weight is only about 0.1 mg (at maximum thickness of 16 

!-LID). To obtain appropriate averages for quantitative analysis using this method, several 

pieces from each cheese sample should be analyzed and the results averaged. From our 

experience, it is recommended that a minimum of five replications should be used, and 
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the sampling locations should be smooth and free of void spaces. A hole or a dent in the 

16-f.lm thick sample will affect the absorbance and, hence, the spectra. The total time 

taken for sampling and spectra acquisition is about 15 min per experiment. 

Characteristics of spectra for cheeses 

The spectrum of a representative full-fat Cheddar cheese sample is shown in Fig. 

2.5. Well-separated bands were observed in the spectrum. Strong bands at 1745, 2950-

2800, 1477-1400, 1240, and 1160-1106 cm·1 from ester carbonyl groups, C-H stretching, 

C-H bend, and C-0 stretching of fat (Belton et al. , 1988; Mendenhall, 1991), respectively, 

can be observed. Peaks at 1650 and 1536 cm-1 corresponding to protein (Belton et al. , 

1988; Wilson et al. , 1988) are also apparent. Strong bands of water in the range between 

3600-3100 cm-1 and 1640-1650 cm-1
, which overlap with protein amide I band at 1620-

1690 cm-1 (Garland, 1994), are present. Similar fmdings were observed by Wilson et al. 

(1988) in bread, van de Voort et al. (1992) in butter, and Safar et al. (1994) in their work 

on edible oils, butters, and margarine. 

Spectra of different levels of Cheddar samples, 75% RFCC (8.6% fat), 50% 

RFCC (16.9% fat) , and FFCC (32.3% fat) , and Mozzarella, 9% RFMC and 20% RFMC 

(8.9% and 20.0% fat) , were collected at the same conditions. The absorbance area of fat­

related and protein-related peaks for different cheese samples was compared with the fat 

and protein contents measured by proximate analysis (Table 2.1). Absorbance of fat-

related bands decreased with reduction of fat level in cheese as expected. The trend of 

protein-related bands was opposite to that of fat bands. This was in agreement with the 

proximate analysis because a reduction in fat constituted a slight increase in protein 
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Fig. 2.5--Typical spectrum of FFCC with key bands identified, which was collected 

at a resolution of 4/cm, 32 scans/sample, and 10 min after its exposure in the sample 

holder. 



Sample 

75%RFCC 

50%RFCC 

FFCC 

9%MC 

20%MC 

Table 2.1--Comparison of data obtained from FTIR analysis and proximate analysis 

Fat content (%) Area of peak from FTIR Protein content (%) Area of peak from FTIR 

(proximate analysis) 1744 cm· 1 1168 em·' (proximate analysis) 1650 cm· 1 1540 em·' 

8.6 7.8 2.9 30.7 41.8 19.75 

16.9 10.8 4.7 26.1 34.5 15.48 

32.3 15.5 6.8 20.4 22.1 8.15 

8.9 8.0 3.1 32.7 46.7 24.55 

20.0 11.3 5.4 27.1 29.9 13.97 

N 
\0 
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content. Mendenhall ( 1991) reported similar trends for the increase in intensity of protein-

related bands at 3030 to 2500 cm-1
, 1698 to 1656 cm-1

, 1621 to 1038 em-\ 1017 to 990 

cm-1
, and 850 to 841 cm-1 with the protein contents of milk; all correlation coefficients 

were greater than 0.90. The fat-related bands at 2994 to 2825 cm-1
, 1799 to 1724 cm-1

, 

1471 to 1451 cm- 1
, 1284 to 1103 cm-1

, and 860 to 859 cm-1 also increased with the fat 

content of milk, with correlation coefficients greater than 0.90. 

Frequencies of secondary structure-related 
bands in Cheddar cheeses 

The secondary structure of protein is reflected in the JR. spectrum by the 

absorbance in the amide I region, which is between 1620 and 1690 cm-1 and is primarily 

due to the stretching vibrations ofthe carbonyl groups (Garland, 1994). The absorbance 

bands around 1635 cm-1 can be associated with the beta-structure, while the bands close 

to 1653 or 1646 cm-1 are associated with the helical portions and random portions of the 

protein, respectively (Susi and Byler, 1988). Frequencies of peaks in the amide I region, 

which are related to the secondary structure of casein in all Cheddar cheese samples 

tested, 75% RFCC (8.6% fat) , 50 %RFCC (16.9% fat) , 25% RFCC (24.4% fat) , and 

FFCC (32 .3% fat) , are tabulated (Table 2.2). Frequencies of 1615-1639, 1644-1648, 

1650-1655, and 1660-1688 cm-1 corresponding to ~-sheet, random coil, a-helix, and~-

turns/sheet, respectively, are observed for all Cheddar cheese samples. 

FTIR spectroscopy coupled with a microtome sampling technique could provide 

new insights into the secondary structure of casein in a cheese system. Similar techniques 

have been adopted by Boye et al. (1995) to monitor the change in protein secondary 
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structure of whey proteins using FTIR spectroscopy. Surewicz and Mantsch ( 1988) have 

also discussed the application of infrared spectroscopy for determining the secondary 

structure of membrane and water-soluble proteins. 

The results indicate that there is a tremendous potential to apply this technique to 

study the changes in chemical groups during cheese ripening and to quantitatively 

estimate the fat and protein contents in hard or semihard cheeses. FTIR results could be 

combined with capillary electrophoresis results to study changes in chemical groups and 

their corresponding compounds. 

Table 2.2--Frequencies of secondary structure-related bands and band assignments 

for Cheddar cheeses 

Wavelength (em-) Band assignment 

75% FFCC 50% FFCC 25% FFCC FFCC (tentative a) 

1683 1681 turns 

1672 1672 0-sheet/turns 

1667 1667 1667 1667 0-sheet/turns 

1660 1660 1660 turns 

1655 1650 1651 1651 a-helix 

1648 1645 1644 1644 random coil 

1639 1633 1633 1633 0-sheet 

1626 1621 0-sheet 

1616 1615 1615 0-sheet 

a (Krimm and Bandekar, 1986; Casal et al., 1988; Susi and Byler, 1988). 
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CONCLUSION 

Well-separated spectra of cheeses were obtained by using microtome sampling 

technique at a resolution of 4 cm-1
, using 32 scans/sample, and a sample thickness of 16 

!lffi. Moisture in the sample was critical for a satisfactory performance using this 

measurement technique. Repeatable spectra could be obtained after equilibrating the 

sample for at least 10 min. Sample inhomogeneity and the manner of application are main 

factors that affect the accuracy and reproducibility of spectra. However, this could be 

minimized by taking samples from different locations in the cheese and improving the 

attachment of the sample to the silver chloride crystal. The absorbance intensity of fat-

and protein-related bands was proportional to the fat and protein contents in cheese 

sample. FTIR spectroscopy coupled with the microtome sampling accessory could also be 

used to monitor changes in the secondary structure of casein protein due to proteolysis 

during ripening. 
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CHAPTER3 

EXAMINATION OF SPECTRAL CHARACTERISTICS OF FULL-FAT AND 

REDUCED-FAT CHEDDAR CHEESE DURING RIPENING USING FOURIER 

TRANSFORM INFRARED SPECTROSCOPY 

ABSTRACT 

The Fourier transform infrared (FTIR) spectra of reduced-fat Cheddar cheese 

(RFCC) and full-fat Cheddar cheese (FFCC) during aging were examined. Strong and 

well-separated bands at 1744, 1450, 1240, 1170, and 1115 cm- 1 arising from fat were 

observed by using the frozen-microtome samples. Bands at 1650 and 1540 cm-1 were 

attributed to the protein present in the cheese sample. The absorption intensity of protein 

and fat bands corresponded to the protein and fat content of the samples. Distinct changes 

in the bands of fat and protein for RFCC and FFCC samples were observed during aging. 

Both the proteolysis and lipolysis affected the absorbance of fat A band at 1744 cm-1
, but 

lipolysis was more significant than proteolysis for cheese sample after aging for 14 

weeks. A change in absorption intensity at wavelengths of 1688 to 1660, 1658 to 1650, 

1648 to 1644, and 1633 to 1615 cm-1
, assigned to beta-turns/sheet, a-helix, random coil, 

and 0-sheet, respectively, during ripening, is indicative of the change in secondary 

structural elements due to proteolysis. This technique could be applied for a rapid 

characterization and determination of the age of cheese undergoing ripening. 
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INTRODUCTION 

While the demand for reduced-fat cheese continues to surge in the US 

(Dexheimer, 1992), the production of these products still remains a challenge in many 

respects particularly with regard to flavor, texture, and keeping quality. The significant 

change in cheese composition due to fat reduction modifies the microenvironment, which 

in turn modifies the bacterial growth patterns and enzyme activity (Mistry, 1995; Nauth 

and Ruffie, 1995). The final character of Cheddar cheese depends not only on the initial 

composition of the product but also on the biochemical and chemical changes that occur 

during maturation (Banks et al., 1995). The effects of manufacturing process, 

composition of milk (such as fat level), and the biochemical events that occur during 

ripening play an important role in the production process. One of the important factors 

that will help in the process and product development is an understanding of the 

interaction of different components in the cheese system and how they change during 

npenmg. 

Near-infrared (NIR) spectroscopy has shown tremendous potential in applications 

that involve direct, rapid, and nondestructive quantitification of major components in 

solid and semisolid foods, and has been applied to analyze fat and moisture in Cheddar 

cheese (Pierce and Wehling, 1994). However, this method requires a large calibration 

data and a correlation method. It is difficult to use this method to measure and monitor 

the biochemical events (glycolysis, lipolysis, and proteolysis) and the secondary catabolic 

changes ( deamination, decarboxylation, beta-oxidation, and even ester formation) that 

occur during production and ripening. 
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In contrast to NIR, Fourier transform infrared spectroscopy (FTIR) has much to 

offer the analyst because specific bands can be assigned to specific chemical entities 

(D'Esposito and Koenig, 1978). Statistical correlation methods are not always necessary, 

although they are not excluded and may be required in very complicated mixtures (Belton 

et al. , 1987). This technique has been widely used to determine fat, moisture, and protein 

in butter (van de Voort et al., 1992a), meat (Dion et al., 1992), sweetened condensed milk 

(van de Voort et al. , 1992b), and other high-fat products (van de Voort et al., 1993). It has 

also been used to monitor the oxidation of edible oils (van de Voort et al., 1994), and 

determine the level of trans-unsaturation in fats (Ulberth and Haider, 1992). 

The use of FTIR for qualitative measurements in cheese is very limited due to the 

difficulty in sampling procedure or due to the nonavailability of a standard procedure 

(Pierce and Wehling, 1994). Spectra from wetted systems were obtained using FTIR 

coupled with attenuated total reflectance (A TR) (Belton et al., 1987). However, a useful 

calibration graph could not be constructed because the amide I band was obscured by 

absorption due to water, and in some instances the amide II was superimposed on a 

sloping baseline and was considerably offset. The effect of moisture also affected the 

resolution and reproducibility of spectra. 

The main objective of this chapter was to investigate the application of FTIR 

spectroscopy to examine the characteristics of spectra for different fat-level Cheddar 

cheeses and corresponding changes during their ripening. 
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MATERIALS & METHODS 

Milk and cultures 

Skim milk from the Utah State University Dairy Products Laboratory was 

standardized to 3.6%, 2.7%, 1.8%, and 0.9% with cream using Pearsons equation to 

produce full-fat and reduced-fat Cheddar cheeses. The culture, C.S.S.® bulk set dairy 

cultures (Mesophilic lactic acid producing cocci, CTD) from Waterford Foods Inc. 

(Millville, UT), was used for cheese. The culture was grown in low fat milk (2%) at 30 °C 

for about 5 hr before being used. 

Cheddar cheese manufacturing procedure 

Full-fat Cheddar cheese (FFCC) and reduced-fat Cheddar cheese (RFCC) with 

three levels of fat reduction, 25% RFCC, 50% RFCC, and 75% RFCC, were made in the 

Gary H. Richardson Dairy Products Laboratory at Utah State University (Logan, UT). 

The cheeses were made in three separate vats, and samples from all the vats were used in 

the analysis. The manufacturing procedures of the FFCC and RFCC were slightly 

different and followed the steps listed in Tables Al and A2. 

Proximate analysis 

The percentage compositions of fat, protein, salt, ash, pH, and moisture were 

determined using methods outlined in the standard methods for the examination of dairy 

products (Marshall, 1993). Fat content was determined using the Babcock method 

(method 15.8d), moisture content by vacuum oven method (method 15.10A), and protein 

content using the Kjeldahl method (method 15.12A). Samples were tested in triplicate. 
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To determine the non-protein nitrogen (NPN) content, the sample was solubilized 

in 0:1 M NaOH. Trichloroacetic acid (TCA) (15%) was then added to give a fmal 

concentration of 12%. The precipitated protein was removed using Whatman No. 42 filter 

paper, and the filtrate was analyzed for nitrogen content using the Kjeldahl method. 

The proteolysis of casein for full-fat and 75% reduced-fat Cheddar cheese at day 1 

and 90 was analyzed using described procedure of capillary electrophoresis (Strickland et 

al., 1996). 

FTIR analysis 

Cheese was prepared for FTIR analysis using the same procedure mentioned in 

Chapter II. The frozen film was then placed on the surface of a silver chloride crystal in 

the light path of the Mattson Polaris ™ FTIR spectrometer (Mattson Instruments, Inc., 

Madison, WI) equipped with a triglycine sulphate (TGS) detector. The spectra of cheese 

samples were collected at least 10 min after placing them in the film holder. Spectra of 

samples in the region of 4000 and 400 cm-1 were obtained with a resolution of 4 cm-1 and 

a scanning frequency of 32 scans/sample. The collected spectroscopic data were 

processed to obtain the area of peaks using the integration option of Bio-Rad Win-IR 

software (Bio-Rad, Cambridge, MA). 

RESULTS & DISCUSSION 

Spectra ofFFCC and RFCC 

The spectra of FFCC and all the RFCC (25%, 50%, and 75%) had a good 

resolution and signal-to-noise ratio as shown in Fig. 3 .1. In the spectra, a number of bands 
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arising from fat were observed, with the strongest for fat A between 1730 to 1765 cm·1 

arising from ester carbonyl group of various R(CO)OH/R and at 2930 and 2850 cm·1 

arising from C-H stretch vibration, generally associated with methyl and methylene 

groups (Silverstein et al. , 1991). Similar to the work reported by Belton et al. (1988), fat-

related bands occurring at 1477 to 1400 cm·1 (C-H bending), 1240 em·\ and 1170 to 

1115 cm-1 (C-0, C-N, and C-C stretching) were also noticed. Spectra show a well-

separated strong signal for protein between 1535 and 1570 cm·1 arising from amide II and 

between 1620 and 1690 cm-1 due to amide I vibration (Surewicz and Mantsch, 1988; 

Sarver and Krueger, 1991). The amide I band represents primarily the C=O stretching 

vibrations of the amide groups coupled to the in-plane N-H bending and C-N stretching 

modes (Sarver and Krueger, 1991). Belton et al. (1988) also reported that well-separated 

bands at 1650 and 1540 cm-1 arising from protein in confectionery products were 

obtained using FTIR spectrometer with the aid of a photoacoustic sampling cell. A 

difference in the spectra at 1100-1300 cm·1 arising from C-0 stretch vibrations of fat is 

related to the fat content of cheese samples. The 75% RFCC had the lowest absorption at 

1744 cm·1 and highest at 1650 cm·1 because of its lowest fat and corresponding highest 

protein contents (Table 3.1). Those ofprotein-related bands were opposite, highest in the 

spectrum of75% RFCC. 

Characteristics of spectra of Cheddar cheeses 

The peak area of fat A for different fat -level cheeses during aging in the period 

between 9 to 22 weeks plotted against their fat content measured by proximate analysis is 

shown in Fig. 3.2. As expected, a change in the peak area during aging is observed for all 
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Table 3.1--Results of proximate analysis for FFCC and RFCC samples 

Content(%) FFCC 25%RFCC 50% RFCC 75% RFCC 

Moisture 42.9 ± 0.3 46.3 ± 0.3 50.0 ± 0.6 52.2 ± 0.6 

Protein 20.4 ± 0.5 23 .3 ± 0.6 26.1 ± 0.9 30.3 ± 0.7 

Fat 32.3 ± 0.3 24.4 ± 0.4 16.9 ± 0.5 8.6 ± 0.4 

NaCl 1.3 ± 0.2 1.5±0.4 1.7 ± 0.5 1.7 ± 0.4 

Ash 2.3 ± 0.6 2.7 ± 0.6 3.1 ± 0.4 3.4 ± 0.2 

pH 5.6 ± 0.2 5.9± 0.2 5.9 ± 0.2 6.0 ± 0.3 

the cheeses studied, and the mean value increases in proportion to the fat content of 

cheese. Because the absorption at fat A, obtained by integrating from 1710 to 1820 cm-1
, 

is characteristics of carbonyl groups of various R(CO)OR (1735-1750 cm-1
) and 

R(CO)OH (1760 cm- 1
) (Silverstein et al. , 1991), a decrease in the number of carbonyl 

groups of R(CO)OR caused by enzymatic hydrolysis is accompanied by a decrease in 

absorbance (van de Voort et al. , 1987); an increase in the number of carbonyl groups of 

R(CO)OH caused by enzymatic lipolysis and proteolysis led to an increase in absorbance 

of fat A. For 75% RFCC (8.6% fat) and 50% RFCC (16.9% fat) , the peak area of fat A 

increased during the ripening time between 9 and 22 weeks. This indicates that 

accumulation of carbonyl groups of various R(CO)OH groups formed due to proteolysis 

and lipolysis is more significant than the corresponding decrease caused by lipolysis. 

In the case of FFCC (32.3% fat) and 25% RFCC (24.4% fat) , the peak area of fat 

A increased within 14 weeks of aging, and then decreased in 22 weeks (Fig. 3.2). The 
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trend observed in FFCC indicates that the decrease of carbonyl groups of various 

R(CO)OR (detected in the region 1735-1750 cm-1
) by lipolysis is more significant than 

the increase in R(CO)OH (1760 cm-1
) caused by both proteolysis and lipolysis after 14 

weeks of aging. A regression on the data of peak area at fat A band in the spectra for all 

cheeses shows that the mean value of peak area of fat A band for each cheese is 

proportional to the fat content in cheese (R2 value is 0.77). 

Area value ofthe amide I (Fig. 3.3) and amide II (Fig. 3.4) absorption bands was 

correlated with protein content of cheese samples determined by proximate analysis 

(Table 3.1). The peak area of both amide I and II changed during maturing of cheese. The 

rate and amount of proteolysis occurring in Cheddar cheeses of different fat levels 

resulted in an increase in the absorbance area of amide !-related bands during aging from 

9 to 22 weeks for 50% and 75% RFCC, but increased until 14 weeks and then decreased 

in 22 weeks for full-fat and 25% reduced-fat Cheddar cheese (Fig. 3.3). Proteolysis 

occurring in the cheese samples analyzed is affected by the amount of casein content, 

amount and activity of chymosin entrapped in cheese, strain and amount of starter culture 

used, existing non-starter culture, salt level, temperature of storage, and moisture content. 

The presence of these several constituents has resulted in the different type and amount of 

casein fragments formed during aging, which affected the absorbance of amide I and II 

related bands. However, a simple regression on the data of peak area at amide I and II 

bands in the spectra for all the cheese shows that the mean value of peak for amide bands 

from the spectra for each cheese is linearly to the protein content in the cheese (both R2 

value is 0.86). 



"0 c 
c<:S 

..D 

....... 
<1) 

"0 ·a 
c<:S 
~ 
0 
c<:S 
<1) 
..... 
c<:S 

...:.: 
c<:S 
<1) 

0.. 

60 ~----------------------------------------------~ 

50 

40 

30 

20 

10 

18 

b.S.S] 9 weeks 
~ 13-14 weeks 
~ 22weeks 
-- Regrline 

/ 

20 22 24 26 28 

Protein content (% ) by proximate analysis 

75% RFCC 

30 32 

45 

Fig. 3.3--Plot of peak area of the amide I band from the spectra ofFFCC and 

25%, 50%, and 75% RFCCs during aging. 



"0 c 
~ 

..0 -....... 
t1) 

"0 
"§ 
~ 

........ 
0 
~ 
t1) 
;.... 
~ 

~ 
~ 
t1) 

~ 

30 -r-===~---------------------------------------, 
~ 9weeks 
~ 13-14 weeks 
~ 22weeks 
-- Regrline 

75%RFCC 25 

20 

15 

10 

46 

18 20 22 24 26 28 30 32 

Protein content (%) by proximate analysis 

Fig. 3.4--Plot of peak area of the amide II band from the spectra of FFCC 

and 25%, 50%, and 75% RFCCs during aging. 



47 

Table 3.2 lists the results of non-protein nitrogen (NPN) analysis and proteolysis 

data from capillary electrophoresis (CE) experiments for FFCC (vat 2 only) and RFCC 

(vat 1 only). An increase in the concentration ofNPN content (NPN data from Table 3.2) 

in reduced-fat and full-fat Cheddar cheeses during aging could be attributed to the 

accumulation of amino acids and small peptides formed due to the break down of casein 

during proteolysis. The absorbance at 210 nm (detecting peptide bond) from CE 

experiments due to a 51 -casein (a51 -CN) decreased by 86.0% for FFCC and 84.6% for 

75% RFCC during 90 days aging. Comparison of the 90-days-old with the 1-day-old 

sample indicates that the breakdown of a 51-casein by chymosin present in the coagulant 

resulted in a 3.2-fold increase in a 51-CN fragment (£24-199) and 4.4-fold increase in a 51-

CN fragment ( f1 02-199) during aging. A similar trend was observed by Fox et al. ( 1994) 

in their study on proteolysis in cheese during ripening. 

As the casein in cheese was broken down into fragments (large or small) and 

amino acids, a change in the conformation of secondary structure components such as 

helix, P-sheet, P-turn, and other is possible. The changes in the respective peaks around 

1651 , 1621 to 1633, 1660 to 1687, and 1644 cm-1 corresponding to helix, P-sheet, P­

turn/sheet, and other (Surewicz and Mantsch, 1988; Sarver and Krueger, 1991) are 

noticed in the spectra ofthe amide !-related band for FFCC (vat 2) (Fig. 3.5) and RFCC 

(vat I) (Fig. 3.6) during aging. These bands either decreased or disappeared after aging 

for 5 months for full-fat Cheddar cheese (Fig. 3.5). In comparison to FFCC, 50% RFCC 

had a stronger absorption band around 1634, 1650, and 1660 to 1663 cm·1 for 5 months 

than that for 2 months (Fig. 3.6). Further deductions on the secondary structure 
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Table 3.2.--A comparison of the results of CE and NPN analysis for Cheddar cheese 

Time 

(day) 

1 

90 

65 

90 

155 

a 51-CN 

0.017 

0 

Capillary electrophoresis results (Abs 210) 

FFCC 75%RFCC 

as1-CN as1-CN as1-CN as1-CN 
(fl09-199) (£24-199) (fl09-199) 

0.002 0.0022 0.0324 0.005 

0.006 0.0098 0.005 0.007 

NPN analysis results (ml of0.05 N HCL used/g) 

FFCC 75%RFCC 

3.4 ± 0.1 

4.3 ± 0.2 

6.5 ± 0.3 

3.8 ± 0.2 

6.1±0.3 

8.0 ± 0.2 

a 51-CN 
(£24-199) 

0.0058 

0.013 

components in Cheddar cheese during aging could not be made at this time. Future work 

in this direction should focus on determjning the amount of secondary components and 

their effect on biochemical interactions during aging. The secondary structure information 

should also be correlated with other methods, such as the circular dichroism analysis. 

CONCLUSION 

The spectra of FFCC and all the RFCC (25%, 50%, and 75%) were collected 

during their aging. The intensity of absorbance for protein- and fat-related bands was 

compared to the results of proximate analysis. The R2 was 0.77 for fat and 0.86 for 

protein-related bands. The NPN content was determined, and the absorbance at 210 run 

due to a 51 -casein was measured using CE experiments. Comparison of the 90-days-old 
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with the a 1-day-old sample indicated that the breakdown of as1-casein by chymosin 

present in the coagulant resulted in a 3.2-fold increase in as1-casein f24-199 and a 4.4-

fold increase in as1-casein fl02-199 fragments during aging. As a result ofthe increase of 

small fragments, NPN content was increased during aging for both FFCC and RFCC. 

A decrease in carbonyl groups of various R(CO)OR groups due to lipolysis was 

more significant than the increase in R(CO)OH groups caused by both proteolysis and 

lipolysis after 14 weeks of aging. Changes in the respective peaks at 1650, 1634, 1673, 

and 1660 to 1667 cm-1 corresponding to helix, ~-sheet, ~-tum, and other were noticed in 

the spectra of the amide !-related band for full-fat and reduced-fat Cheddar cheese during 

aging. The secondary structure information should be correlated with other methods, such 

as the circular dichroism analysis. Since the rate and products of lipolysis and proteolysis 

are important for flavor and texture development, this information could help us to 

urJderstand the biochemical reactions and to monitor cheese maturation. 
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CHAPTER4 

STUDY ON CHARACTERISTICS OF RIPENED CHEDDAR CHEESE AND ITS 

RIPENING INDEX BY FTIR SPECTROSCOPY 

ABSTRACT 

Fourier transform infrared spectroscopy coupled with microtome sampling 

technique was used to analyze characteristics of ripened Cheddar cheese. Absorbance of 

bands arising from fat- and protein-related ftmctional groups varied during cheese 

ripening. Change in absorbance of bands at 1744 and 2850-2930 cm-1 arising from ester 

and C-H bond, and 1650 and 1540 cm-1 from protein amide I and ll, was greater than 

other ftmctional group-related bands during cheese aging. Bands at 1116 and 1240 cm-1 

arising from C-0, C-N, C-C stretch, which can be used to estimate the fat and protein 

contents in cheese, changed slightly during cheese ripening. A correlation coefficient of 

0.97 was obtained for absorbance at bands arising from fat ester and C-0 bond (fat A and 

C band) and 0.93 for bands arising from protein amide I and ll. Among bands of fat (fat A 

and C) and protein (amide I and II), the correlation coefficients were greater than 0.80. A 

ripening index was obtained by correlating cheese ripening time with key ftmctional 

groups that change during the ripening process. A ripening index model as a ftmction of 

selected bands at respective chemical groups provided an empirical model for full-fat and 

reduced-fat Cheddar cheese (FFCC and RFCC) with an R2 of 0.83 and 0.59, respectively. 
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INTRODUCTION 

Fourier transform infrared (FTIR) spectroscopy is a flexible analytical tool that 

uses interferometric methods for obtaining infrared spectra and applies suitable 

mathematical procedures for processing interferograms via fast Fourier transform 

algorithms to recover the frequency spectrum (Grasselli, 1984). The basic principles of 

FTIR spectroscopy have been well described by Griffiths and de Haseth (1986). It has 

been used to analyze food products, such as cheese (McQueen et al., 1995), meat (Dion et 

al. , 1992), fats and oils (van de Voort et al. , 1994), butter/margarine (van de Voort et al. , 

1992a), sweetened condensed milk (van de Voort et al. , 1992b ), and sugar/juice (Hopkins 

and Newberry, 1986). It has also been used to determine the secondary structure of 

proteins (Surewicz and Mantsch, 1988; Sarver and Krueger, 1991). Mendenhall (1991) 

reported that a Fourier transform infrared spectrometer equipped with an attenuated total 

intemal reflectance cell could be used to determine the milk components, such as fat, 

protein, and lactose as well as to detect the adulteration of milk with whey powder. The 

effects of milk fat variation and lipolysis on the infrared spectrum were also studied using 

this technique. 

FTIR spectroscopy has been used to study secondary structure in protein. Boye et 

al. (1995) demonstrated that changes in the secondary structure of whey proteins resulting 

from heat treatment were monitored by FTIR spectroscopy. The structural properties of a 

protein can be characterized by its primary, secondary, tertiary, and quaternary structures 

(Garland, 1994 ). The secondary structure describes the orientation of the protein 

backbone and can be represented by structural elements such as a-helixes, ~-sheets, 
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turns, and nonordered or irregular structures. FTIR spectroscopy is an established method 

of studying the secondary structure of polypeptides and proteins in both the solution and 

solid phase (Ismail et al., 1992). The secondary structure of a protein is reflected in the IR 

spectrum by the absorbance in the amide I region (Garland, 1994). The amide I band 

absorbs in the 1620-1690 cm-1 region and is primarily due to the stretching vibrations of 

the carbonyl groups. The absorbance bands around 1635 cm-1 are associated with the ~­

structure, whereas the bands closer to 1653 or 1646 cm-1 are associated with the helical 

portions and random portions of the protein, respectively (Byler and Susi, 1986). A 

variation in absorbance in their key groups was observed during ripening due to the 

change and rearrangement of the structural pigments. The proteins in Cheddar cheese 

undergo extensive proteolysis during ripening (O'Keeffe et al. , 1976); about 30% of the 

total protein in Cheddar is soluble at pH 4.6 and 5% of that in 12% TCA, respectively. 

Proteolysis in cheese during ripening was described in detail by Fox et al. (1994a). 

During ripening, the combined action of proteinases and peptidases in hydrolysis of 

casein leads to the formation of products ranging from polypeptides comparable in size to 

the intact caseins, through intermediate-sized and small peptides, to free amino acids and 

their degradation products (Fox et al. , 1994a). Gel-electrophoretic analysis has shown that 

a 51 -casein is completely degraded to the primary degradation product a 51 -I (Fox and 

Guiney, 1973; Creamer and Richardson, 197 4) in mature cheese, but ~-casein undergoes 

very little proteolysis during ripening (Ledford et al., 1966). 

It is important to determine the proteolysis which is significant in the development 

of cheese flavor and texture (Fox et al. , 1994a). Methods for assessing proteolysis were 
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reviewed extensively by Fox et al. (1994b). Most of the methods developed were 

elaborate, time consuming, and destructive to cheese physical and chemical properties, 

such as secondary structure of peptides, polypeptides, and proteins. An approach to 

quantitatively describe the ripening of cheese in terms of the change in biochemical 

reactions will be a valuable tool for determining the age of cheese using accelerated 

ripening methods. Quantifying the change in protein secondary structure elements will 

provide further insight into the chemical changes of protein. 

The aim of this work was to study the biochemical characteristics from the spectra 

of full-fat and reduced-fat Cheddar cheese (FFCC and RFCC) during ripening. 

Absorbance in the amide I band has been studied to provide an insight into the difference 

in the change in secondary structure of casein as it undergoes proteolysis in the FFCC and 

RFCC systems. Change in absorbance at bands corresponding to fat- and protein-related 

functional groups has been examined. Information on the change in absorbance at specific 

bands in the FTIR spectra has been correlated with the ripening time and a ripening index 

is obtained. 

MATERIALS & METHODS 

Milk and cultures 

Skim milk from the Utah State University Dairy Products Laboratory was 

standardized to 3.6% and 1.8% with cream using Pearsons equation to produce full-fat 

and reduced-fat Cheddar cheeses. The culture, C.S.S.® bulk set dairy culture (Mesophilic 

Lactic Acid Producing Cocci) (CT-C, lot No:961131) from Waterford Foods Inc. 
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(Millville, UT), was used for cheese-making. The culture was grown in low fat milk (2%) 

at 30°C for about 5 hr before being used. 

Cheddar cheese manufacturing procedure 

Full-fat Cheddar cheese (FFCC) and reduced-fat Cheddar cheese (50% RFCC 

denotes a 50 % reduction in fat) were made in the Gary H. Richardson Dairy Products 

Laboratory at Utah State University (Logan, UT). Both FFCC and RFCC were made in 

three separate vats and samples from all the vats were used in the analysis. The 

manufacturing procedures of the FFCC and RFCC were slightly different, and were listed 

in Tables A1 and A2. 

Proximate analysis 

The percentage composition of fat, protein, and moisture was determined using 

the methods outlined in the standard methods for the examination of dairy products 

(Marshall, 1993). Fat content was determined using the Babcock method (method 15.8d), 

moisture content by vacuum oven method (method 15.10A), and protein content using the 

Kjeldahl method (method 15.12A). Samples were tested in triplicate. 

FTIR analysis 

Small pieces of samples (15 mm height and 15 mm diameter) were cut from the 

center of a cheese block and frozen for at least 2 hr at -80 °C. The frozen sample was 

sliced to a thickness of 16 J.lm using a IM236 microtome (International Equipment Co., 

Needham Heights, MA). The sliced film was then placed on the surface of a silver 

chloride crystal in the light path of the Bio-Rad FTS-7 FTIR spectrometer (Bio-Rad, 
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Digitlab Division, Cambridge, MA) equipped with a dueterated triglycine sulphate 

(DTGS) detector. Spectra of samples in the region between 4000 and 400 cm-1 were 

obtained with a resolution of 4 cm-1 and a scanning frequency of 32 scans/sample. The 

spectra of cheese samples were collected at different ripening times: every week during 

the first month, every 2 weeks during months two and three, and every 4 weeks after 3 

months. The collected spectroscopic data were processed to obtain the area of peak for 

selected fimctional groups using the peak report option in the Bio-Rad Win-IR software 

either after adjustment of baseline for the peaks assigned to secondary structure or before 

adjustment for the bands related to fat a...'ld protein (Bio-Rad, Cambridge, MA). 

Statistical analysis 

Statistical regression analysis was used to correlate the absorbance of main bands 

of fat A and C, protein amide I and II. Simple regression analysis was used to fmd the 

statistical significance of the correlation between the ripening time and absorbance 

change of bands for fat- and protein-related fimctional groups. An index for ripening was 

obtained by correlating the protein- and fat-related bands with ripening time using 

multiple regression analysis option of the statistical analysis system (SAS Institute Inc., 

Cary, NC). 

RESULTS & DISCUSSION 

Spectra of aging cheese 

The spectra of full-fat Cheddar cheese taken at aging time of 6, 14, and 28 weeks 

are shown in Fig. 4.1. An increase in absorbance intensity of spectra was observed during 
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Fig. 4.1--Spectra of aged FFCCs collected after aging for 6 wk, 14 wk, and 28 wk. 
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cheese maturing. Strong bands at 1744 cm·1 from ester carbonyl groups; 2950-2800 cm-1 

from C-H stretch; 1477-1400 cm-1 from 85CH2 (scissoring) of -CHzCO-, -CH2-0-, -CH2-

N-, and -CH2-0-CO- (Silverstein et al., 1991); 1240 and 1195-1129 cm-1 from C-C 

stretch; C-N stretch, and C-0 stretch of fat and protein (Belton et al., 1988; Mendenhall, 

1991; Silverstein et al. , 1991) were well-separated in all spectra. Peaks at around 1650 

and 1540 cm-1 corresponding to the amide I and amide II of protein, respectively (Susi 

and Byler, 1988; Surewicz and Mantsch, 1988), were also present. A strong band of water 

in the range of 3600-3000 cm- 1 and 1640-1650 cm-1 which overlapped with the protein 

amide I band at 1620-1690 cm-1 was noticed. Similar fmdings were observed in bread 

(Wilson et al. , 1988) and butter (van de Voort et al. , 1992a; Safar et al. , 1994). 

Absorbance characteristics of 
Cheddar cheese 

A change in absorbance peak area at bands around fat and protein groups for all 

FFCC and RFCC was observed during ripening. The area of peaks corresponding to fat-

and protein-related bands for all full-fat and reduced-fat Cheddar cheeses during ripening 

time up to 28 weeks was obtained using the peak report option of Win-JR. software, and 

the average value of area versus ripening time was plotted in Figs. 4.2 and 4.3. Change 

was examined in strong bands at 1744 cm-1 from ester carbonyl groups (fat A band), 

2950-2800 cm-1 from C-H stretch (fat B band), and peaks at 1116-1477 cm-1 from C-C 

stretch, C-N stretch, C-0 stretch, and 85CH2 (scissoring) in groups of -CHzCO-, -CHz-0-, 

-CH2-N-, and -CH2-0-CO- of fat and protein (Belton et al., 1988; Mendenhall, 1991 ; 

Silverstein et al., 1991). Peak area of fat A (around 1744 cm-1
) and fat B (from 2850 to 
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2950 cm-1
) varied more drastically with ripening time than other bands because of their 

sensitivity to fat molecular weight, chain length, saturation, and levels of free fatty acids 

(Grappin and Jeunet, 1981; Sjaunja, 1982, 1984; van de Voort, 1980). Changes in weight, 

chain length, saturation, and levels of free fatty acids could be caused from a combination 

of reactions by catalytic enzymes such as proteinase, peptidase, phosphatase, lipase, 

decarboxylase, transaminase, redoxase, enzymes that decompose amino acids, and those 

that undergo respiration and fermentation (Schonnuller, 1968). 

The absorbance of fat A and B bands for full-fat and reduced-fat Cheddar cheese 

during ripening is different. This is not surprising because the different microbiological-

and enzyme-induced changes occurred in a different composition, pH, moisture, salt 

level, retained amount of rennet, and starter culture in each cheese (Schormuller, 1968). 

Not only esters but also carboxylic acids (dimer), aldehydes (dialkyl and aromatic), and 

ketones ( dialkyl and aromatic) contributed to the absorbance around fat A band from 

1700 to 1800 cm-1 (Silverstein et al., 1991). The increase in absorbance of this band is 

due to an increase in quantities of these compounds. The amount of these compounds 

could vary in cheese due to complex biochemical reactions, such as glycolysis, lipolysis, 

and proteolysis, which occurred during the ripening (Fox et al. , 1994a). The enzymes that 

can catalyze those changes during ripening process are (Scott, 1986) (1) proteases acting 

on proteins to produce peptides, (2) decarboxylases acting on amino acids to produce 

amines, (3) decarboxylases acting on keto acids to produce aldehydes, ( 4) transaminases 

acting on amino acids to produce keto acids, ( 5) transarninases acting on keto acids to 

produce amino acids, ( 6) deaminases acting on amino acids to produce keto acids, (7) 
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aminases acting on fatty acids to produce amino acids, and (8) oxidases acting on fatty 

acids to produce amino acids . Therefore, it is difficult to predict the change of absorbance 

in fat A and B bands from cheese during ripening. 

For the bands from 1110 to 1461 cm-1 corresponding to both fat and protein 

content (Silverstein et al., 1991) in cheese, area of peak at 1461 and 1167 cm-1 arising 

mostly from C-H (scissoring) and C-0 (stretch) groups of fat content (Belton et al., 1988; 

Silverstein et al., 1991) varied to a lesser extent in RFCC compared with FFCC during 

ripening. The lipolysis due to higher fat content in FFCC than RFCC could be the reason 

for this difference . The absorbance of bands at 1116 and 1240 cm-1 arising from C-C and 

C-N stretch (Silverstein et al. , 1991) changed slightly in both RFCC and FFCC, 

indicating that the breakdown of these bonds was slow during cheese ripening. 

Mendenhall (1991) reported that absorption bands from 1110 to 1283 cm-1 correlated with 

fat, protein, and lactose concentrations in milk had a low response to fat variation and 

lipolysis, and, thus, this range was more suitable to estimate the fat and protein contents 

in cheese sample. 

The average absorbance peak area at amide I (1650 cm-1
) and ll (1540 cm-1

) bands 

in the spectra for all FFCC and RFCC also varied during ripening (Fig. 4.4). The 

absorbance trend of these bands during ripening for RFCC is different from that of FFCC 

due to variation in composition, rate of proteolysis, and rate of lipolysis in each cheese. 

Change in absorbance of the amide I band is greater than that of the amide II band for 

both FFCC and RFCC. A probable cause is the effect of varying degrees of protein 

secondary structure changes (Sarver and Krueger, 1991) and bound water states (van de 
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Voort et al. , 1992a) on the absorbance of these bands during cheese ripening. The 

formation of free fatty acids from lipolysis of fat (van de Voort, 1980) on the absorbance 

of the amide IT (around 1563 cm-1
) band and hydrolysis of protein peptide bonds by 

proteolysis could be the reason for the variation in the absorbance of amide IT for FFCC 

and RFCC. Data in regard to proteolysis products, bound water and free fatty acids 

formed from lipolysis in cheese during different ripening stages, are not determined in 

this work. 

The secondary structure of a protein reflected in the IR spectrum by absorbance in 

the amide I region (1620-1690 cm-1
) is primarily due to the stretching vibrations of 

carbonyl groups (Garland, 1994). The absorbance bands around 1635 cm-1 are associated 

with ~-sheet structure, whereas the bands closer to 1653 and 1646 cm-1 are respectively 

associated with the helical and random portions of the protein secondary structure (Susi 

and Byler, 1988). Area of peaks detected in the amide I region, which was related to 

secondary structure of casein for FFCC (vat 2) and RFCC (vat 2) during ripening, was 

obtained using Win-IR software after adjusting the baseline in the spectra (Table 4.1). 

The peaks at bands 1660-1688 cm-1
, corresponding to ~-turns/sheets , were observed more 

often in RFCC than those in FFCC. The total peak area in this range reached the highest 

level after 11 weeks and decreased or disappeared for both RFCC and FFCC thereafter. 

Absorbance at 1650-1658 cm-1
, corresponding to helix structure, varied with time and is 

about 5 to 10 times more than usual during 2, 14, and 19 weeks for FFCC. Absorbance in 

the helix region for RFCC was highest at week 1, decreased till week 4, and could not be 

detected until week 14. For both FFCC and RFCC, absorbance at 1640 to 1648 cm-1 
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Table 4.1--Change in absorbance at bands of 1620-1635, 1640-1648, 1650-1658, and 

1660-1688 em"\ corresponding to P-sheet, random, helix, and the turns/sheet protein 

secondary structure, respectively, for FFCC and RFCC during ripening 

Ripening P-sheet Random Helix Turns/aheet 

time (1620-1635 cm"1
) (1640-1648 cm-1

) (1650-1658 cm-1
) (1660-1688 cm-1

) 

(week) RFCC FFCC RFCC FFCC RFCC FFCC RFCC FFCC 

1 0.29 4.6 2.39 

2 0.1 0.13 0.48 10.8 0.1 

4 0.59 0.61 1.03 0.78 0.21 0.24 1.17 0.8 

6 0.22 0.1 0.41 0.19 2.05 

8 0.19 0.48 1.78 0.33 

11 10.7 12.5 

14 0.3 18.1 0.9 

19 0.1 0.1 0.41 21.9 0.1 

23 0.25 0.51 1.54 1.18 

29 0.24 2.75 2.23 

- represents value not detected. 
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denoting random segment and at 1611 to 1638 denoting ~-sheet (Surewicz and Mantsch, 

1988) was observed in lower levels compared to that ofhelix and turns/sheet but changed 

randomly during ripening for both cheeses. 

The change in secondary structure is due to the breakdown of casein and 

formation of small polypeptides and fragments from proteolysis during cheese aging. The 

extent of proteolysis varied, depending upon cheese-making procedure, starter culture, 

composition of milk and cheese, rennet, salt level, pH, and storage condition (Fox et al., 

1994a). These variations, coupled with lipolysis and amount of bound water in different 

cheese blocks, suggest a greater change of absorbance in the amide I band than was 

expected. Therefore, the amide I band is not suitable for estimation of protein contents in 

cheese. 

Correlation of absorbance between fat and 
protein related bands during ripening 

The correlation in absorbance among fat-related bands at 1744 cm-1 (ester bond-

fat A) and 1167 cm-1 (C-0 stretch-fat C), and protein-related bands at 1650 cm-1 (amide I) 

and 1540 cm-1 (amide II) was analyzed based on the spectra data of all FFCC and RFCC. 

Table 4.2 shows the correlation coefficients for different constituents corresponding to 

their absorbance wavelengths. A coefficient of 0.97 among fat-related bands and 0.93 

among protein-related bands was obtained. The high correlation coefficient between the 

fat A and the fat C band is due to the effect of lipolysis of fat during ripening. A 

correlation coefficient of 0.93 between protein amide I and amide II indicates that one of 

these protein groups is highly correlated to the other due to the effect of proteolysis on 
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Table 4.2.--Degree of correlation among fat and protein bands for Cheddar cheese 

during aging 

Fat A Fat C Amide I Amide IT 

Bands (1744 cm-1
) (1167 cm-1

) (1650 cm-1
) (1540 cm-1

) 

Fat A 1.00 0.97 0.87 0.91 

Fat C 0.97 1.00 0.86 0.88 

Amide I 0.87 0.86 1.00 0.93 

Amidell 0.91 0.88 0.93 1.00 

their absorbance during ripening. The correlation coefficient between fat- and protein-

related bands is 0.87 for fat A and amide I band and 0.91 for fat A with amide ll band, 

and 0.86 and 0.88 for fat C with amide I and amide ll bands, respectively. These data 

provide valuable insight with respect to the intensity of interaction between fat- and 

protein-related bands. 

Correlation of aging time and absorbance 
of functional groups 

The correlation of ripening time with absorbance of each peak area arising from 

different function groups for FFCC and RFCC was analyzed with SAS and the results are 

tabulated (Tables 4.3 and 4.4). The band at 1461 cm·1 arising from o5CH2 (scissoring) of 

-CH2CO-, -CH20-, -CH2N-, and -CH2-0-CO- (Silverstein et al., 1991) is highly 

correlated to aging time for FFCC. But aging time is more correlated to the band at 1116 

cm· 1 arising from C-0, C-N, and C-C stretches for RFCC. High correlation between 

ripening time and absorbance at 1116 cm-1 for RFCC and 1461 cm·1 for FFCC (its R2 is 

also the highest at 0.16 and 0.56, respectively) indicates that a change in these functional 
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Table 4.3--Correlation coefficients for ripening time versus absorbance of peak area 

for key functional groups in FFCC during aging 

Wavelength of peak Related functional Correlation 

(cm-1) groups coefficient 

1116 C-N & C-C stretch -0.183 

1167 C-0 stretch 0.521 

1240 C-C & C-N stretch 0.448 

1461 -CH2X, X=CO, 0, N, OCO 0.746 

1744 R(CO)X, X= o·, OR, H, R 0.549 

2850 R(CH2)R 0.06 

2930 CH3R 0.301 

1530-1540 amide I (peptide bond) 0.144 

1640-1650 random portion 0.022 

1653-1658 helical portion -0.008 

Time (wk) = 3.22- 0.30 * 1116cm·1 
- 5.40 * 1167cm·1 + 7.54 * 1240cm·1 

+ 7.21 * 1461cm·1
- 0.01 * 1744cm·1 + 0.34 * 2930cm·1 

- 2.04 * 1530-1540 cm-1 

Root MSE: 4.88 
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Table 4.4--Correlation coefficients for ripening time versus absorbance of peak area 

for key functional groups in RFCC during aging 

Wavelength of peak Related functional Correlation 

(cm-1
) groups coefficient 

1116 C-N & C-C stretch -0.402 

1167 C-0 stretch 0.06 

1240 C-C & C-N stretch 0.224 

1461 -CH2X, X=CO, 0, N, OCO -0.133 

1744 R(CO)X, X= o·, OR, H, R 0.257 

2850 R(CH2)R -0.329 

2930 CH3R 0.031 

1530-1540 amide I (peptide bond) -0.092 

1640-1650 random portion 0.047 

1653-1658 helical portion -0.138 

Time (wk) = 18.68- 6.98 * 1116cm·1 
- 10.96 * 1167cm·1 + 40.73 * 1240cm·1 

+ 0.78 * 1461cm·1
- 6.38 * 1744cm·1 

- 0.60 * 2930cm·1 

-4.10 * 1530-1540cm·1 + 1.31 * 1653-1658 cm·1 

Root MSE: 8.07 
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groups with time has a greater effect on ripening. For both FFCC and RFCC, a very low 

correlation is obtained for the bands in the range of amide IT and amide I. This shows that 

absorbance change of these bands is not linear with respect to ripening time since their 

absorbance is affected by the combined action of the proteinases and peptidases during 

the hydrolysis of casein (Fox et al., 1994a). Multiple regression analysis was used to 

estimate the ripening index models based on the bands that showed a high correlation. An 

R2 of 0.83 for FFCC and 0.59 for RFCC was obtained for the best fit linear regression 

models. The low value of R2 for RFCC could be due to the reduction in fat content and 

increase in protein content, which affects the correlation of ripening time and absorbance 

in band at 1461 cm·1 from C-H scissoring of -CH20-, -CH2CO-, -CH2N-, and -CH2-0-

CO- groups. The proposed analysis and methodology provide valuable insight with 

respect to absorbance and cheese ripening through simple regression analysis of spectral 

data. This methodology can be adopted to study the ripening of new cheese varieties 

using accelerated ripening methods. 

CONCLUSION 

Variation in absorbance of bands at 1116, 1167, 1240, 1461 , 1744, 2850, 2930, 

1650, and 1540 cm·1 during cheese aging was observed. Absorbance of fat-related bands 

at 1167, 1744, 2850, and 2930 cm-1
, and protein-related bands in the range of 1500-1580 

and 1600-1690 cm-1 changed greatly during ripening predominantly due to proteolysis 

and lipolysis. Relatively, absorbance at bands from 1100-1240 cm-1 changed slightly, 

which could be suitable for quantitative analysis of fat and protein contents in cheese. 
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Variation in the bands at 1620-1635, 1640-1648, 1650-1558, and 1660-1688 cm-1 

assigned to ~-sheet, random, helix, and the turns/sheet portion of secondary structure of 

protein, respectively, was observed for RFCC and FFCC during ripening. The 

predominance of the bands at 1650-1658 and 1660-1688 cm-1 due to the helical and 

turns/sheet portion of secondary structure indicated that these structures were more stable 

than other secondary structures found in protein (Damodaran, 1996). Absorbance change 

of these bands could be due to the formation of various small polypeptides produced 

during the breakdown of casein by rennet and proteinases during ripening of 1 to 29 

weeks. The analysis results indicated that different polypeptides, small peptides and 

segments, and free amino acids were formed during the breakdown of casein by 

proteolysis in each cheese during the cheese-making and ripening stages. 

Correlation coefficients of greater than 0.93 were obtained among fat- or protein-

related bands. A correlation of greater than 0.85 was obtained between fat- and protein-

related bands, indicating that there was a strong interaction between protein and fat. 

Ripening index was obtained using simple regression analysis based on the bands that 

showed a high correlation with ripening time. A maximum R2 of 0.83 for FFCC and 0.59 

for RFCC was obtained for the respective ripening index regression models. This 

methodology could be adopted to study the ripening of new cheese varieties using 

accelerated ripening methods. The models could be improved if more samples could be 

obtained and data collected beyond 28 weeks of ripening. 
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CHAPTERS 

TEXTURE DEVELOPMENT AND ITS RELEVANCE TO BIOCHEMICAL 

CHANGES IN LOW-FAT CHEDDAR CHEESE DURING RIPENING 

ABSTRACT 

78 

Texture development and change in biochemical groups in full-fat and reduced-fat 

Cheddar cheese during ripening were studied. Texture parameters such as hardness, 

gumminess, chewiness, springiness, adhesiveness, and cohesiveness were monitored. 

Change in main chemical groups was determined from the Fourier transform infrared 

spectra. Hardness, gumminess, and chewiness had the same trend during cheese aging, 

which decreased in the early stages then increased with aging time. Cohesiveness and 

springiness changed slightly with the age of cheese. Adhesiveness decreased with aging 

time for both full-fat and reduced-fat Cheddar cheese. A slight increase in cohesiveness 

and adhesiveness was observed as fat content of cheese decreased from 31% to 21%. The 

difference in springiness between FFCC (31.3% fat content) and RFCC (21.4% fat 

content) was not significant using a texture profile test. Multiple regression analysis was 

used to determine functional relationship between hardness, adhesiveness, and 

springiness with respect to changes in main chemical groups from FTIR spectra. An R 2 

value of0.67, 0.54, and 0.75 was obtained for hardness, adhesiveness, and springiness for 

full-fat Cheddar cheese; values of 0.51, 0.59, and 0.54 were obtained for reduced-fat 

Cheddar cheese, respectively. Correlation of cheese texture with biochemical changes has 
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provided valuable insight and understanding of texture development. This could be used 

as a tool for quantifying texture in terms of biochemical changes. 

INTRODUCTION 

Texture is an important characteristic of Cheddar cheese in deciding consumer 

acceptability and quality (McEwan et al., 1989). Much research has been published on 

cheese te:xiure (Chen et al., 1979). It is known that reduction in fat content usually 

resulted in excessively firm and elastic (often described as "rubbery"), or hard, dry, and 

possibly grainy cheese (Czulak and Spieler, 1973). This is because there is more 

structural matrix per unit cross-sectional area in reduced-fat cheeses (Emmons et al., 

1980), which in turn allows the syneresis process to accelerate further during cheese 

manufacture due to the relative deficiency of fat globules. 

The structural matrix of cheese is a cross-linked casein-calcium phosphate 

network in which fat globules are physically entrapped (Lawrence et al., 1983). Scanning 

electron micrographs indicted that the nature of the protein matrix, which was affected by 

fat content ofthe cheese, influenced texture attributes (Bryant et al., 1995). Hardness and 

springiness increased with decreasing fat content. The matrix is elastic when the casein is 

largely intact, but its elasticity is lost as proteolysis proceeded during cheese maturation. 

The entrapped fat globules serve to limit deformation of the elastic cheese matrix, and 

their size distribution is a function of the breed of cow and shear history of the milk, 

which in turn determines the uniformity and degree of cross-linking of the casein matrix 

(Jameson, 1990). 
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Many investigators have studied the effects of cheese composition and protein 

breakdown on instrumental measurements of the rheology of various types of cheese 

(Chen et al., 1979; Fedrick et al., 1986). Lawrence et al. (1983) pointed out that 

differences in texture at any particular stage of ripening depend on the differences in basic 

structure and the extent to which the basic structure has been modified. Johnston et al. 

( 1994) studied the electrophoretic pattern and textural assessment of aging Cheddar 

cheese made with various levels of calf rennet or microbial coagulant. Results indicated 

that cheese texture primarily depends upon cheese pH, chemical composition, and 

subsequent changes in texture determined by a 51 -casein breakdown. Strong correlation 

was obtained (R2 = +0.800, -0.914 and -0.651) between a 51 -casein breakdown and 

changes in curdiness, stickiness, and smoothness with time, but a basis for increase in 

smoothness and decrease in curdiness with increasing set-to-cut time was not provided. 

However, increasing the set-to-cut time from 30 to 50 min significantly increased the 

cheese moisture content, pH, and calcium level and, consequently, cheese texture. 

Subsequent, early changes in texture were determined by a 51 -casein breakdown. 

Johnson and Chen (-1995) pointed out that firmness of cheese is not controlled 

solely by its composition. The ionic interactions between protein strands influenced by 

the pH and bound calcium play a major role in the firmness of cheese. However, the most 

important contributing factor to the firmness of cheese is the level of proteolysis that 

occurs during ripening. The products of proteolysis, i.e., amino acids and peptides and, 

especially, r-ompounds derived from them, are known to contribute to texture and flavor 

of cheese (both desirable and undesirable). 
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Casein, particularly the a 5-moiety, is hydrolyzed first, whereas ~- and p-K-casein 

are not greatly proteolysed in most bacteria-ripened cheeses (Nauth and Ruffie, 1995). 

Also, texture development during aging occurs in two phases (Lawrence and Gilles, 

1987). Phase one constitutes the first 7-14 days when the rubbery texture of young cheese 

is rapidly converted to a smoother, more homogenized product as a result of breakdown 

of a 51 -casein. Phase two involves a more gradual change in texture over the months as a 

result of continuing breakdown of a 51-casein and other caseins. 

Work has been done in the past to relate texture and rheological properties to 

composition, pH, salt level, and rennet used (Lawrence and Gilles, 1987). However, very 

limited work has been done to study and compare texture development in full-fat and 

reduced-fat cheese and its relation to biochemical changes during aging. The work 

presented has specifically ( 1) addressed the difference in texture development between 

full-fat and reduced-fat Cheddar cheese (FFCC and RFCC) by monitoring the texture 

during different stages of ripening; (2) monitored changes in key chemical groups 

observed at respective wavelengths from FTIR spectra; and (3) quantified texture in terms 

of change in key chemical groups. 

MATERIALS & :METHODS 

Milk and cultures 

Skim milk from the Utah State University Dairy Products Laboratory was 

standardized to 3.6% and 1.8% with cream using Pearsons equation to produce full-fat 

and reduced-fat Cheddar cheeses. The cultme, C.S.S.® Bulk Set Dairy cultures 
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(Mesophilic Lactic Acid Producing Cocci) (CT-C, lot No:961131) from Waterford Foods 

Inc. (Millville, UT), was used for cheese. The culture was grown in low fat milk (2%) at 

30°C for about 5 hr before its use. 

Cheddar cheese manufacturing procedure 

Full-fat Cheddar cheese (FFCC) and reduced-fat Cheddar cheese (50% RFCC) 

(fat reduction: 50%) were made in the Gary H. Richardson Dairy Products Laboratory at 

Utah State University (Logan, UT). Both FFCC and RFCC were made in three separate 

vats and the samples from all the vats were used in the analysis. The manufacturing 

procedures for the FFCC and RFCC are listed in Tables AI and A2. 

Proximate analysis 

The percentage compositions of fat, protein, and moisture were determined using 

the methods outlined in the standard methods for the examination of dairy products 

(Marshall, 1993). Fat content was determined using the Babcock method (method 15.8d), 

moisture content by vacuum oven method (method 15.10A), and protein content was 

determined using the Kjeldahl method (method 15.12A). Samples were tested in 

triplicate. 

FTIR analysis 

Small samples (15 mm in height and 15 mm in diameter) were cut from the center 

of a cheese block and frozen for at least 2 hr at -80 °C. The frozen sample was sliced to 

thin samples (16 IJ.m thick) using a IM236 microtome (International Equipment Co., 

Needham Heights, MA). The sliced film was then placed on the surface of a silver 
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chloride crystal in the light path of the Bio-Rad FTS-7 FTIR spectrometer (Bio-Rad, 

Digitlab Division, Cambridge, MA) equipped with a deuterated triglycine sulphate 

(DTGS) detector. The samples were allowed to equilibrate for at least 10 min, and spectra 

of samples in the region between 4000 and 400 cm-1 were obtained with a resolution of 4 

cm-1 and a scanning frequency of 32 scans/sample. The spectra of cheese samples were 

collected at different aging time: every week during the first month, every 2 weeks 

between months two to three, and every 4 weeks after 3 months. The collected 

spectroscopy data were processed, and the area of peak for selected functional groups is 

obtained using the peak report option in the Bio-Rad Win-IR software (Bio-Rad, 

Cambridge, MA). 

Texture profile analysis (TPA) 

A cylindrical probe of l-inch diameter was used for all the tests. Cylindrical 

samples of 15-mm diameter, and 15-mm height (Jacket al. , 1993), were chosen for all 

texture tests. The primary consideration in sampling is representation, homogeneity, and 

suitability to accommodate the entire diameter of the probe. These samples were large 

enough to represent the whole block and at the same time small enough to avoid the 

inclusion of structural irregularities (Prentice, 1992). All the samples were cut at 4°C 

using a cork borer, to prevent barreling of the cylinders. The samples were obtained from 

the middle of the whole cheese block rather than from the surface. The firmness of cheese 

at the surface of the block is expected to be relatively greater than that in the middle, due 

to the effect of surface drying (Prentice, 1992). Texture and spectra data of 50% reduced­

fat and full-fat Cheddar cheese were obtained simultaneously for different ripening times. 
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A Steven Farnells QTS-25 texture analyzer was used for measuring the texture 

properties of cheese using the TP A option. The instrument can be operated with the help 

of an interactive Windows-based program which calculates and provides absolute values 

for product texture parameters (hardness, cohesiveness, adhesiveness, gumminess, 

chewiness, and springiness). Speed ofthe probe is 10 mm/min, and the deformation is set 

at 20%. The samples were allowed to equilibrate in room temperature for 1 hr in a closed 

container (Marshall, 1990) before the tests. All tests were done at room temperature in 

replicates of five. 

Statistical analysis 

Correlation of texture development data and spectral absorbance changes of main 

bands in the spectra of Cheddar cheese were obtained using a statistical analysis system. 

Multiple regression analysis was used to quantify cheese hardness, springiness, and 

adhesiveness with the highly correlated bands using the statistical analysis system (SAS 

Inc., Cary, NC). 

RESULTS & DISCUSSION 

TP A analysis 

Hardness, the force necessary to attain a given deformation, is one of the 

important factors in determining cheese texture (Bryant et al., 1995). Reduction of fat 

content in cheese increased the hardness of cheese (Fig. 5.1). However, the trend of 

hardness for FFCC and RFCC during ripening had a similar pattern. Hardness decreased 

within 4 to 6 weeks, and increased after that. The decrease in hardness during the early 
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stages of ripening is due to the initial rubbery texture of young cheese curd, which rapidly 

transforms into a smoother, and a more homogeneous product due to proteolysis of the 

casein network. This casein network was greatly weakened when only a single bond in 

about 20% of the a 51 -casein was hydrolyzed by the coagulant to give the peptide a 51 -I 

(Creamer and Olson, 1982). The increase in hardness value after 4-6 weeks is mainly due 

to the status of water during proteolysis (Lawrence and Gilles, 1987). As each peptide 

bond is cleaved, two new ionic groups are generated, and each of these competes with the 

available water in the system. Thus, the water previously available for solvation of the 

protein chains will become tied to the new ionic groups. Relatively low moisture cheese, 

such as Cheddar, tends, therefore, to become increasingly harder with age and more 

resistant to small deformations (Creamer and Olson, 1982). The composition of FFCC 

and RFCC, given in Table 5.1 , reports a higher moisture content for RFCC. Change in 

hardness indicates that this minor increase in moisture content does not sufficiently 

compensate for the higher protein content in cheese. The increase in hardness of RFCC is 

more pronounced with age as more ionic groups compete with the available water. 

Lawrence and Gilles (1987) in a similar study concluded that the lower the ratio of 

moisture to casein, the firmer will be the casein matrix of the cheese. The rate of 

proteolysis is controlled largely by the proportion of residual rennet and plasmin in the 

cheese, salt-to-moisture ratio, and storage temperature. The rise in pH that occurs during 

ripening is another factor that might affect the overall hardness. 

Cohesiveness is the ratio of the positive force area during the second compression 

to that during the first compression (Figure B1). The mean values for both FFCC and 



Table 5.1--Composition ofFFCCs and RFCCs 

Compositions 

Fat 

Protein 

Moisture 

Ash 

Sample and percentage of compositions 

FFCC RFCC 

31.3 ± 0.2 

17.2±0.3 

38.5 ± 0.8 

2.7 ± 0.4 

21.4 ± 0.2 

21.8 ± 0.3 

42.4 ± 0.4 

3.4 ± 0.2 
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RFCC (Fig. 5.2) indicate a slight increase in cohesiveness as fat content of cheeses 

decreased from 31.3% to 21.4%. Bryant et al. (1995) reported that as fat was removed, 

the cheese became more springy. In this state, the resistance to deformation is higher and, 

hence, does not rupture easily. Therefore, RFCC is more cohesive than FFCC. During 

cheese ripening, cohesiveness for both full-fat and reduced-fat cheese changed slightly 

(Fig. 5.2). The increase in cohesiveness with a decrease in fat can also be attributed to an 

increase in the area of protein matrix and an increased presence of moisture in the cheese 

system. 

Gumminess, the product of hardness and cohesiveness, increased in proportion to 

hardness and cohesiveness, as fat content decreased (Fig. 5.3). Change in gumminess 

during ripening is similar to the change in hardness for both full-fat and reduced-fat 

cheese for similar reasons deduced for hardness. 

Adhesiveness, which is the work necessary to overcome attractive forces between 

the surface of cheese and surface of contracting material, decreased slightly with 

decreasing fat content from 31 to 21% (Fig. 5.4). A suggested reason is that the decrease 

in fat contents in RFCC resulted in an increase in protein content during manufacture. 
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The increased protein content altered the protein matrix, making it more compact and, 

therefore, less adhesive, alternatively more cohesive. Both RFCC and FFCC ripened for 6 

months were less adhesive (Fig. 5.4). A similar trend was observed by Bryant et al. 

(1995) in their study of low-fat cheeses wherein the authors reported lower values for 

adhesiveness in cheese ripened for 4 months. This can be attributed to the fact that during 

ripening, in addition to proteolysis, there is also a movement of moisture and a 

subsequent rearrangement of the protein matrix. More homogeneous regions are found in 

the matrix, resulting in a decrease in adhesiveness with time. Protein content was the 

dominant factor influencing adhesiveness of cheese with varying composition (Chen et 

al., 1979). 

Springiness is the rate and extent that a deformed material goes back to its 

undeformed state after the force is removed. Bryant et al. (1995) observed that reduced­

fat cheeses (13-27% fat content) were springier than full-fat (32-34%) cheese using a 

55% compression test. Emmons et al. (1980) demonstrated that low-fat Cheddar cheese 

was springier than full-fat Cheddar cheese, thereby hypothesizing that reducing fat 

content resulted in fewer fat globules with more casein present per unit volume as 

evidenced by electron micrographs. In this research, the mean values of springiness 

determined using texture profile analysis are not significantly different between FFCC 

(31.3% fat content) and RFCC (21.4% fat content) (Fig. 5.5). A plausible reason could be 

that the 20% deformation used in the TP A experiment is not sufficient. At 20% 

deformation, perhaps the fat and protein present are mechanically exerted within their 

elastic limit and, irresprective of the fat content, have a similar behavior. However, when 
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higher deformation values are used, the behavior of these constituents extends to the 

plastic state, and fat being more pliable than protein tends to impart a higher degree of 

springiness to higher fat cheeses. A slight increase in springiness was observed with 

ripening for both FFCC and RFCC. This may be due to the fact that moisture available 

for the casein matrix is restricted due to the hydration of peptide and hydrolysis products 

formed from proteolysis. In addition, protein level is the dominant component affecting 

the elasticity in cheese (Chen et al., 1979; Emmons et al., 1980; Bryant et al., 1995). 

Tunick et al. ( 1991) reported greater values for springiness with reduced moisture levels 

in Mozzarella cheese. Higher moisture in reduced-fat Cheddar cheese did not decrease its 

springiness. Hence, chewiness, the product of hardness, cohesiveness, and springiness, 

increased with a decrease in fat content and an increase in aging time, and followed the 

same trend of hardness, as shown in Fig. 5.6. 

Correlation of TPA and FTIR data 

Texture profiles of full-fat and reduced-fat Cheddar cheese (FFCC and RFCC) 

were correlated with the absorbance of peak areas of main reactive groups (Tables A3 and 

A4). Hardness is more related to the change in absorbance ofbands at 1167, 1461, 1744, 

and 2850 cm-1 for FFCC (Table 5.2), and at 1116, 1640-1650, 1744, and 2850 cm-1 for 

RFCC (Table 5.3) as seen from their respective correlation coefficients. The difference in 

hardness is highly related to the band at 1167 cm-1 arising from C-0 stretch for FFCC 

instead of the band at 1640-1650 cm-1 arising from protein amide I and bound water 

(Surewicz and Mantsch, 1988; van de Voort et al., 1992) for RFCC. During cheese 

ripening, fat content of cheese, hydrolysis products of proteolysis, and water available for 
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Table 5.2--Correlation coefficients for hardness versus absorbance of peak area of 

each functional group for FFCC 

Frequency of peak Related functional Correlation 

(cm- 1) groups coefficient 

1116 C-N & C-C stretch -0.16 

1167 C-0 stretch 0.66 

1240 C-C & C-N stretch 0.43 

1461 -CH2X, X=CO, 0, N, OCO 0.62 

1744 R(CO)X, X= o-, OR, H, R 0.60 

2850 R(CH2)R 0.44 

2930 CH3R 0.29 

1530-1540 amide I (peptide bond) 0.16 

1640-1650 random portion 0.17 

1653-1658 helical portion -0.03 

Hardness=248.61 + 14_56 * 1116cm-1 + 71.83 * 1167cm-1
- 92.26 * 1240cm-1 

+ 22.45 * 1461cm-1 -7.36 * 1744cm-1 + 2.10 * 2850cm-1 

- 5.91 * 2930 cm-1
- 4.03 * 1640-1650 cm-1 

Root MSE: 87.91 



Table 5.3--Correlation coefficients for hardness versus absorbance of peak area 

of each functional group for RFCC 

Frequency of peak Related functional Correlation 

(cm-1
) groups coefficient 

1116 C-N & C-C stretch -0.25 

1167 C-0 stretch -0.05 

1240 C-C & C-N stretch -0.09 

1461 -CH2X, X=CO, 0, N, OCO -0.10 

1744 R(CO)X, X= o-, OR, H, R 0.26 

2850 R(CH2)R -0.28 

2930 CH3R -0.16 

1530-1540 amide I (peptide bond) -0.05 

1640-1650 random portion 0.32 

1653-1658 helical portion -0.06 

Hardness= 591.31- 55.87 * 1116cm-1 -92.20 * 1240cm-1
- 18.69 * 1461cm-1 

+ 70.43 * 1744cm-1
- 7.03 * 2850cm-1

- 27.10 * 
2930cm-1 + 68.04 * 1640-1650 cm-1 

0.51 

214.96 
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solvation of protein chains all contribute to the development of hardness (Lawrence and 

Gilles, 1987). Change in absorbance of the amide I band is more significantly correlated 

to RFCC, which led us to hypothesize that the function of protein is a predominate factor 

affecting hardness during ripening. In FFCC, a more significant correlation between 

hardness and the band at 1167 cm-1 corresponding to fat and protein content showed that 

lipolysis and proteolysis significantly contributed to hardness in FFCC during aging. The 

effect of lipolysis and its subsequent contribution to hardness is due to a 10% increase in 

the fat content in FFCC. A maximum R2 obtained by regressing hardness with 

predominant reactive groups in FFCC is 0.67 and that for RFCC is 0.51. 

Springiness has a significant correlation with the bands at 1744, 1167, and 2850 

cm-1 for FFCC (Table 5.4), and at 1116 and 1744 cm-1 for RFCC (Table 5.5). Protein 

bands that changed greatly during aging had lower correlation with springiness. A 

maximum R2 of 0.75 for FFCC and 0.54 for RFCC is obtained through regression 

analysis. The primary groups correlating with springiness are R(CO)X (X= o-, OR, H, R) 

and C-0 stretch in fat and protein for FFCC, and R(CO)X (X= o-, OR, H, R) and C-N 

and C-C stretch for RFCC. Change in absorbance of these bands represented the rate of 

lipolysis and proteolysis and its product in cheese. Hence, major factors that affect 

springiness or elasticity of cheese are fat and protein content in cheese, status of moisture, 

and the rate of lipolysis and proteolysis. 

Tables 5.6 and 5.7 show the correlation of adhesiveness to the reactive groups in 

the FTIR spectra. The highly correlated bands for FFCC are at 1167, 1744, and 1530-



Table 5.4--Correlation coefficients of springiness versus absorbance of peak area 

of each functional group for FFCC 

Frequency of peak Related functional Correlation 

(cm-1
) groups coefficient 

1116 C-N & C-C stretch -0.21 

1167 C-0 stretch 0.62 

1240 C-C & C-N stretch 0.46 

1461 -CH2X, X=CO, 0, N, OCO 0.37 

1744 R(CO)X, X= o-, OR, H, R 0.70 

2850 R(CH2)R 0.53 

2930 CH3R 0.26 

1530-1540 amide I (peptide bond) 0.17 

1640-1650 random portion 0.25 

1653-1658 helical portion 0.31 

Springiness= 1.36 + 0.02 * 1167cm-1 + 0.09 * 1240cm-1
- 0.22 * 1461cm-1 

+ 0.23 * 1744cm-1 
- 0.001 * 2850cm-1 

- 0.06 * 2930cm-1 

- 0.08 * 1530-1540 cm-1 + 0.02 * 1640-1650 cm-1 

R2 0.75 

Root MSE: 0.35 
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Table 5.5--Correlation coefficients of springiness versus absorbance of peak area of 

each functional group for RFCC 

Frequency of peak Related ftmctional Correlation coefficient 

(cm-1) groups 

1116 C-N & C-C stretch -0.33 

1167 C-0 stretch -0.11 

1240 C-C & C-N stretch -0.01 

1461 -CHzX, X=CO, 0, N, OCO -0.12 

1744 R(CO)X, X= o-, OR, H, R 0.33 

2850 R(CHz)R 0.05 

2930 CH3R -0.11 

1530-1540 amide I (peptide bond) -0.05 

1640-1650 random portion 0.14 

1653-1658 helical portion -0.09 

Springiness = 2.89- 0.20 * 1116 cm-1
- 0.25 * 1167 cm- 1 + 0.16 * 1461cm-1 

+ 0.18 * 1744 cm-1 
- 0.05 * 2930cm- 1 

- 0.04 * 1658 cm-1 + 0.003 * 1640-1650 cm-1 

R2
: 0.54 

Root MSE: 0.36 



Table 5.6--Correlation coefficients of adhesiveness versus absorbance of peak 

area of each functional group for FFCC 

Frequency of peak Related functional Correlation 

(cm-1) groups coefficient 

1116 C-N & C-C stretch 0.09 

1167 C-0 stretch 0.28 

1240 C-C & C-N stretch 0.12 

1461 -CH2X, X=CO, 0, N, OCO -0.12 

1744 R(CO)X, X= o-, OR, H, R 0.24 

2850 R(CH2)R 0.11 

2930 CH3R 0.09 

1530-1540 amide I (peptide bond) -0.21 

1640-1650 random portion -0.11 

1653-1658 helical portion 0.13 

Adhesiveness =86.37 + 45.79 * 1167 cm- 1
- 48.72 * 1240 cm-1

- 21.84 * 
146lcm-1 

- 3.09 * 1744 cm-1
- 1.37 * 2850cm-1 

+ 5.26 * 1530-1540 cm-1
- 1.27 * 1640-1650 cm-1 

+ 1.83 * 1658 cm-1 

Root MSE: 34.69 
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Table 5. 7--Correlation coefficients of adhesiveness versus absorbance of peak area 

of each functional group for RFCC 

Frequency of Peak Related Functional Correlation 

(cm-1
) Groups Coefficient 

1116 C-N & C-C stretch 0.19 

1167 C-0 stretch -0.08 

1240 C-C & C-N stretch -0.19 

1461 -CH2X, X=CO, 0, N, OCO -0.23 

1744 R(CO)X, X= o·, OR, H, R .0.25 

2850 R(CH2)R -0.04 

2930 CH3R -0.09 

1530-1540 amide I (peptide bond) -0.22 

1640-1650 random portion 0 

1653-1658 helical portion -0.20 

Adhesiveness =73.60 + 13.98 * 1116 cm·1 + 35.23*1167 cm-1
- 103.55*1240 cm-1 

- 13.33 * 1461 cm-1 + 10.29 * 1744cm·1 + 5.30 * 2930 cm-1 

- 6.36 * 1653-1658 cm·1 + 12.48 * 1530-1540 cm-1 

Root MSE: 26.71 
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1540 cm·1 (Table 5.6), and those for RFCC are at 1461 , 1744, 1530-1540 cm·1 (Table 

5. 7). Protein content in cheese is the dominant factor influencing adhesiveness of cheese 

with varying composition; however, the movements of moisture and rearrangement of 

protein matrix during ripening also affect adhesiveness of cheese. Both fat- and protein-

related bands correlate with adhesiveness but have very low correlation coefficients. 

Maximum R2 is 0.54 for FFCC and 0.58 for RFCC. 

Higher values of R2 could be expected if larger sample data set and longer aging 

times are used to set up the model. Nonlinear statistical analysis and incorporation of 

interactions in the model may also improve the correlation. The spectra data may not 

completely reflect the complex physical and biochemical changes during cheese aging. 

However, the work presented is a first attempt to characterize cheese texture with respect 

o the change in chemical groups from FTIR spectra. 

CONCLUSION 

Hardness of full-fat and reduced-fat Cheddar cheese during aging had a similar 

trend. Hardness decreased within 4 to 6 weeks and increased after that. Greater hardness 

for RFCC than that for FFCC was due to the effect of reduction in fat content, function of 

protein, and moisture available for solvation of the protein chain due to its attachment to 

the cleaved ionic groups during proteolysis. 

Adhesiveness decreased with a reduction of fat content and increasing ripening 

time. More homogeneous regions were found in the matrix, which resulted in a decrease 

in adhesiveness with time. Protein content was the dominant factor influencing 
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adhesiveness of cheese with varying composition. Cohesiveness increased slightly with a 

decrease in fat content but did not change significantly during aging. Removal of fat, 

which increased protein content, altered the protein matrix, making it more compact and, 

therefore, less adhesive, alternatively more cohesive. Springiness was not significantly 

different between FFCC (31% fat) and RFCC (21% fat) but increased slightly during 

aging. Gumminess, a product of hardness and cohesiveness, and chewiness, a product of 

hardness, cohesiveness, and springiness, followed the same trend as hardness. 

Correlation of texture and spectra data varied depending on the effect of specific 

bands in spectra on the texture parameters. A maximum R2 obtained for hardness in 

FFCC was 0.67 and that for RFCC was 0.51. R2 for springiness was 0.75 for FFCC and 

0.54 for RFCC, and that for adhesiveness was 0.54 and 0.59 for FFCC and RFCC, 

respectively. A higher R2 value could be expected if a larger sample set and longer aging 

time are used to set up the model. Nonlinear statistical analysis and incorporation of 

interactions in the model may also improve the correlation. The work presented is a first 

attempt to characterize cheese texture with respect to the change in chemical groups from 

FTIR spectra. The work conducted and further improvement will provide a chemical 

basis to explain a mechanical phenomenon. 
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Well-separated spectra of cheeses were obtained by using a microtome sampling 

technique at a resolution of 4 cm-1
, using 32 scans/sample, and a sample thickness of 16 

~-tm . Moisture in the sample was critical for a satisfactory performance using this 

measurement technique. Repeatable spectra could be obtained after equilibrating the 

sample for at least 10 min. Sample inhomogeneity and the manner of application are main 

factors that affect the accuracy and reproducibility of spectra. However, this could be 

minimized by taking samples from different locations in the cheese and improving the 

attachment of the sample to the silver chloride crystal. The absorbance intensity of fat­

and protein-related bands was proportional to the fat and protein contents in the cheese 

sample. FTIR spectroscopy coupled with the microtome sampling accessory could also be 

used to monitor changes in the secondary structure of casein protein due to proteolysis 

during ripening. 

The spectra of FFCC and all the RFCC (25%, 50%, and 75%) were collected 

during their aging. Correlation of the absorbance of protein- and fat-related bands with 

proximate analysis resulted in an R2 of 0.77 for fat and 0.86 for protein-related bands, 

respectively. The NPN content was determined, and the absorbance at 21 0 nm due to as1-

casein was measured using CE experiments. Comparison of the 90-days-old with that of a 

1-day-old sample indicated that the breakdown of a 51-casein by chymosin present in the 

coagulant resulted in a 3.2-fold increase in a 51 -casein f24-199 and a 4.4-fold increase in 
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a 51 -casem fl02-199 fragments during aging. As a result of the increase of small 

fragments, NPN content was increased during aging for both FFCC and RFCC. 

Absorbance offat-related bands at 1167, 1744, 2850, and 2930 cm-1
, and protein­

related bands in the range of 1500-1580 and 1600-1690 cm-1 changed greatly during 

ripening predominantly due to proteolysis and lipolysis. Relatively, absorbance at bands 

from 1100-1240 cm-1 related to both fat and protein contents changed slightly, which 

could be suitable for quantitative analysis of fat and protein contents in cheese. 

Variation in the bands at 1620-1635, 1640-1648, 1650-1558, and 1660-1688 cm-1 

assigned to I)-sheet, random, helix, and the turns/sheet portion of secondary structure of 

protein, respectively, was observed for RFCC and FFCC during ripening. The 

predominance of the bands at 1650-1658 and 1660-1688 cm-1 due to the helical and 

turns/sheet portion of secondary structure indicated that these structures were more stable 

than other secondary structures found in protein. Absorbance change of these bands could 

be due to the formation of various small polypeptides produced during the breakdown of 

casein by rennet and proteinases during ripening of 1 to 29 weeks. The analysis results 

indicated that different polypeptides, small peptides and segments, and free amino acids 

were formed during the breakdown of casein by proteolysis in each cheese during the 

cheese-making and ripening stages. Since the rate and products of lipolysis and 

proteolysis are important for flavor and texture development, this information could help 

us to understand the biochemical reactions and to monitor cheese maturation. 

A simple regression model for ripening index was obtained by correlation of the 

absorbance of key reactive groups with ripening time. A maximum R2 of 0.83 for FFCC 
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and 0.59 for RFCC was obtained for the respective ripening index regression models. 

This methodology could be adopted to study the ripening of new cheese varieties using 

accelerated ripening methods. The models could be improved if more samples could be 

obtained and data collected beyond 28 weeks of ripening. 

The change in texture (hardness, gumminess, chewiness, springiness, adhesive-

ness, and cohesiveness) and its relation to the change in reactive groups was also studied. 

Higher hardness for RFCC than that for FFCC was due to the effect of reduction in fat 

content, function of protein, and moisture available for solvation of the protein chain due 

to its attachment to the cleaved ionic groups during proteolysis. Adhesiveness decreased 

with a reduction of fat content and an increase in ripening time.- Protein content was the 

dominant factor influencing adhesiveness of cheese with varying composition. 

Cohesiveness increased slightly with a decrease in fat content but did not change 

significantly during aging. Removal of fat, which increased protein content, altered the 

protein matrix, making it more compact and, therefore, less adhesive, and alternatively 

more cohesive. Springiness was not significantly different between FFCC (31% fat) and 

RFCC (21% fat) but increased slightly during aging. Gumminess, a product of hardness 

and cohesiveness, and chewiness, a product of hardness, cohesiveness, and springiness, 

followed the same trend as hardness. 

Correlation of texture and spectra data varied depending on the effect of specific 

bands in spectra on the texture parameters. A maximum R2 obtained for hardness in 

FFCC was 0.67 and that for RFCC was 0.51. R2 for springiness was 0.75 for FFCC and 

0.54 for RFCC, and that for adhesiveness was 0.54 and 0.59 for FFCC and RFCC, 
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respectively. A higher R

2 
value could be expected if a larger sample set and longer aging 

time are used to set up the model. Nonlinear statistical analysis and incorporation of 

interactions in the model may also improve the correlation. 
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Table A.l--Schedule for making FFCC (USU dairy lab) 

Stens in making Time Acid(%} content 

Add starter 0.16 0.7-0.8% 

Add rennet 0:00 0.16 90 m1/1000# 

Stir 

Set 

Cut 0:30 0.10 

Start heat 0:45 0.10 

Stop heat 1:15 0.11 38.5'C 

Start dipping 2:15 0.12 

End Dipping 2:30 0.14 

Pack 2:45 0.18 

Pile 2 high 3:30 0.28 

Pile 3 high 4:00 0.35 

Mill 4:30 0.40-0.45 pH= 5.4 

1st salt application 4:40 

2nd salt application 4:50 

3rd salt application 5:00 

Hoop 5:10 

Press 5:30 50-60 psig 
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Table A.2--Schedule for making RFCC (Wisconsin center for dairy research) 

SteQS in making Time Iili content 

Add starter 0.00 6.60m 1.25% CTD 

AddCaCh 0:15 3. 0 ounces/ 1 000# 

Add Rennet 0:20 6.54m 2.25 ounces/1 000# 

Cut 1:10 6.53w 

Start heat 1:20 

Reach cook temp 1:45 6.48w 38.5"C 

and drain 

Cut curd mass 

and cheddar 2:05 6.28c 

Cheddar 2 high 2:30 6.20 

Mill curd 4.05 5.95c 

Salt curd 4:20 0.275% 

Hoop 4:40 

Press 4:55 

(m = milk pH, w = whey pH, c = curd pH) 



Time 
1 
2 
3 
6 
10 
14 
18 
23 
27 
1 
2 
3 
4 
6 
11 
14 
18 
23 
28 

Table A.3--Data for absorbance at function group related bands in FFCC during aging 

1116cm 1167cm 1240cm 1461 em 1744cm 2850cm 2930cm 1529cm 1640cm 1658cm 
0.6 1.85 0.8 1.29 3.45 8.4 2.68 0.185 0.29 0.75 

0.37 5.71 3.05 0.46 9.68 29.54 19.1 0.46 0.57 2.87 
1.12 2.18 1.5 0.23 4.95 3.7 4.57 0.21 0.14 0.57 
1.51 4.28 2.06 0.34 7.1 7 30.55 6.46 0.2 0.76 1.99 
0.48 8.34 3.51 5.71 13.57 51.61 22.91 11.21 29.53 0 
2.02 5.76 2.45 3.87 11.13 10.38 10.96 1.75 0.37 1.31 
1.97 4.67 2.35 3.3 10.2 9.83 9.06 1.56 0.31 1.64 
0.3 7.95 3.3 5.13 14.75 39.3 20.8 2.26 0.42 1.72 

0.17 7.2 3.1 4.77 13 .04 30.4 12 2.16 0.89 1.85 
0.6 4.14 1.89 0.39 9.15 31.42 11.21 0.24 0.68 2.4 
1.3 2.52 1.22 1.86 4.59 21.6 4.4 3.26 0 1.04 

2.19 5.57 3.04 0.72 8.98 25.94 18.81 0.7 0.78 1.96 
1.3 2.33 1.48 0.23 5.52 18.3 5.14 0.17 0.06 1.31 

0.45 3.69 2.59 0.35 6.69 35.7 5.16 0.19 0.07 1.99 
0.1 4.47 2.24 3.21 15.96 23.17 10.23 5.65 0 12.97 

0.39 5.84 3 4.43 10.23 41.22 13.15 9.28 18.6 0 
0.02 6.45 2.99 4.73 12.68 35.22 11.06 1.98 0.83 2.11 
0.09 4.33 2.15 2.94 8 16.76 . 11 .04 0.16 0.47 1.47 
1.56 4.34 2.26 2.95 9.35 19.53 13.67 1.48 0.43 1.36 

...... 

...... 
~ 



Time 

2 
4 
8 
14 
19 
23 
29 

2 
3 
4 
6 
10 
14 
18 
23 
27 

Table A.4--Data for absorbance at function group related bands in RFCC during aging 

1116cm 1167cm 1240cm 1461cm 1744cm 2850cm 2930cm 1529cm 1640cm 1658cm 
2.44 2.13 1.32 0.18 3.83 9.32 1.88 0.1 0.34 2 
3.02 1.96 1.4 0.2 3.81 15.19 6.22 0.16 0.13 0.48 
1.61 2.68 2.28 0.09 7.42 7.89 10.85 0.88 1.03 0.29 
0.8 3.41 2.62 0.26 8.61 35.2 11.55 0.21 0.16 3.4 
0.98 1.66 1.3 2.94 2.47 7.53 6.42 3.01 6.31 0 
0.73 0.71 0.74 0.15 2.64 9.86 1.26 0.15 0.08 0.41 
0.96 1.47 1.4 0.14 4.4 1.5 5.21 0.1 0.04 1.44 
0.56 3.01 2.15 0.24 6.95 4.27 7.69 1.57 0.41 2.75 
1.78 1.88 1.04 1.23 3.07 5.67 5.87 0.05 0.45 1.31 
3.47 0.98 1.1 0.98 1.62 21.07 2 0.67 0.66 0.49 
0.42 2.27 1.41 1.99 4.13 25.27 7.08 5.56 0 14.14 
0.86 1.55 1.06 0.11 3.86 4.13 4.45 1.02 0.28 1.18 
0.47 1.55 1.04 0.12 3.69 11 5.46 0.2 0 1.31 
1.25 1.9 1.52 1.41 4.47 6.3 5.51 3.13 0.3 1.24 
2.04 2.15 1.8 1.88 5.17 11.71 9.15 0.63 0.26 1.38 
2.71 3.16 2.33 0.33 6.52 10.11 2.85 1.12 0.89 1.14 
1.26 1.28 1.03 1.11 3.47 12.98 3.67 0.23 0 1.08 
0.08 2.17 1.68 0.17 5.4 6.82 7.93 0.18 0.2 1.88 
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