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ABSTRACT

Unmanned Aerial Vehicle Tracking System with

Out-Of-Sequence Measurement in a Discrete

Time-Delayed Extended Kalman Filter

by

Roque Lora, Master of Science

Utah State University, 2017

Major Professor: Rajnikant Sharma, Ph.D.
Department: Electrical and Computer Engineering

This extends the delayed Kalman filter to a delayed extended Kalman filter that takes

into account the delays of the measurement. The filter uses GPS and camera measurements

for the estimation of the states of an unmanned aerial system (UAS). The GPS output is

delayed by a random number, which produces the out-of-sequence measurement problem.

The filter is based on calculating the states with the measurements at the moment, so

that when the delayed measurements are available, the optimal filter for the time of the

measurement is calculated and propagated to the present time. The estimates provided by

the filter are used to point an antenna and a camera towards the UAS.

(61 pages)
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PUBLIC ABSTRACT

Unmanned Aerial Vehicle Tracking System with

Out-Of-Sequence Measurement in a Discrete

Time-Delayed Extended Kalman Filter

Roque Lora

The goal of this thesis is to extend the delayed Kalman filter so it can be used with

non-linear systems and that it can handle randomized delays on the measurements. In the

particular case of this study, the filter is used to estimates the states of an unmanned aerial

system. The outputs of the filter are used to point an antenna and a camera towards a

UAS. Different scenarios are simulated for the purpose of comparing the efficiency of this

technique in various situations.
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CHAPTER 1

INTRODUCTION

1.1 Background

Recently the use of unmanned aerial systems (UAS) has increased dramatically in both

civilian and military applications. Because of this, the Federal Aviation Administration

(FAA) has been modifying the requirements for the operation of UAS. The one that concerns

us is the line-of-sight (LOS) requirement, which constrains the aircraft mission to be within

the visual field of the operator. The existing method is to keep an eye on the aircraft with

binoculars, which is prone to lose the plane frequently. The importance of UAS tracking

systems relies on h00001aving a good link between the aircraft and the ground control

station (GCS), which can be assured using a good antenna pointing system.

Another critical requirement in the reliability of a UAS mission is the communication

with the ground station. For reliable communication it is necessary to point the antenna

towards the UAS and maintain the LOS with the aircraft. Therefore, the communication

link will be strong as long as we have LOS. This is apparent for applications that require

real-time feedback, because if the tracking of the UAS is not accurate, the link could be

interrupted and no feedback would be sent back. An example is a military mission where

an aircraft supports an advancing troop in enemy territory. The decisions made by the

leader of the troop are greatly influenced by the feedback of the UAS. If the communication

between the UAS and the GCS is lost, there would not be any feedback from the UAS and

the safety of the soldiers could be compromised. Moreover, in a civilian application such

as disaster relief for an earthquake, the aircraft could be equipped with a thermal imaging

camera to detect heat sources. It would identify warm bodies under the rubble in real time

so the help could get there as soon as possible. If the communication is lost between the

UAS and the GCS, some information might be missed that could lead to the detection of a
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survivor.

1.2 Contributions

Fig. 1.1: Antenna Pointer

The main focus of this work is to design an autonomous system to point an antenna

mounted with a camera towards a flying UAS to maintain communication and visual LOS

to satisfy FAA requirements. In order to point a camera, the precise position of the aircraft

is required. The existing approach is for the GCS to use the position obtained from a GPS

receiver on board the UAS. There are several limitations of this approach.

• The GPS receives position updates at 1-4 Hz, not fast enough to point the antenna

towards an UAS flying at 20 m/s.

• The position updates at the antenna are delayed and have out-of-sequence measure-

ments (OOSM) due to communication delays.

t0 t1 t2 t3 t4

t0 t1 t2 t3 t4

GPS
Receiver

GCS

Fig. 1.2: OOSM. In this diagram the generation time of various measurements (GPS receiver
line) and the time that they are available to the system (GCS line) are shown. Measurements
t1 and t2 are out-of-sequence since t2 is available first than t1.
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A measurement is called out-of-sequence if it is available to a processing unit first than

another measurement taken in an earlier time step. This situation is shown in figure 1.2.

The first problem is addressed by adding a camera which provides location measure-

ments from images of the aircraft at 30 Hz, compensating the slow update rate of GPS.

However, the camera’s accuracy deteriorates with distance, since at higher distances the

aircraft would only be a couple of pixels in the camera image, making the recognition of

the UAS impossible. On the other hand, GPS measurements’ errors are independent of the

distance between the fixed wing and the antenna pointer, making the relative error smaller

at higher distances. Hence, we can say that the camera and GPS are complementary sensors

for pointing the antenna. The second problem of receiving out of sequence measurements

is addressed by using an extended Kalman filter which uses out of sequence GPS measure-

ments with camera measurements to estimate the position of the UAS. This estimation is

then used to reliably point the antenna and camera towards the aircraft.
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1.3 Literature Review

For more than two decades, the problem of OOSM have been addressed in several

different ways. The initial studies about the OOSM are presented in [1] in 1993, where a

negative-time update technique is developed using the criterion of minimum mean-square

error. The first optimal algorithm for the general multi-step lag problem appeared in [2] in

2001. It consisted in buffering all the measurements received and running the filter behind

real-time. Consequently, this algorithm is not able to run in real time. In [3], a solution of

this problem is presented, in which a new filter is developed where the measurements are

extrapolated forward in time using past and present estimates to calculate an optimal gain

for the Kalman filter. The work of [3] is expanded in [4], where a covariance union method

is proposed to solve the multi-lag OOSM when the delay is not precisely known. In [5] a

linear minimum variance estimation algorithm was extended to handle multiple lags and

dynamics models. This exposed that as the number of lags increases, the state estimation

accuracy decreases. The same problem is addressed in [6]. The one-step lag OOSM solution

is generalized to solve problems when multiple lags arise. This extension comes with a

significantly lower storage requirement and a small (1%) degradation of MSE performance.

A two-step method was presented in [7] which requires one more step to update the state at

the OOSM time. Two optimal algorithms were presented in [8] to approach the multi-step

OOSM problem using fixed-point smoothing. It was shown that both of these algorithms

are flexible and relatively simple but highly computationally demanding. In [9] the exact

state update equation for the OOSM problem is presented and compared to two suboptimal

algorithms. Each method is tied to the situations where they should be used comparing

simplicity against optimality. A smoothing-based algorithm was proposed in [10] in the

case of multi-sensor multi-target ground moving target tracking problem. It concluded that

discarding OOSM can lead to severe degradation in the state estimation. Also these two

methods have better accuracy than the previous buffering method approach. A unified

sub-optimal Bayesian approach is proposed in [11] for the multi-lag OOSM problem. This

algorithm, developed on the basis of a fixed-lag smoothing framework and its solution
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reduces to an augmented state Kalman filter. An extension of the particle filter approach

can be found in [12] where it compares it results with the extended Kalman filter, showing

that both have similar performance. The work of [13] develops an out-of-order sigma-

point Kalman filter for solving the multi-lag OOSM in a single measurement vector and

using the batch-form update. This method is equivalently complex per iteration as the

sigma-point Kalman filter but it requires more iterations. An extended Kalman filter was

used to estimate the position of a UAS using a camera and then coupled with an inertial

measurement unit (IMU). The results shown that coupling the camera with an IMU reduces

the position estimation error by almost and order of magnitude, compared to using only the

camera [14]. In [15] three different approaches were proposed to achieve optimality. The

study yielded that the complete in-sequence information fixed point smoothing method was

the optimal approach, but it lacks simplicity.

The work of this thesis is developed by combining the delayed Kalman filter of [3] and

the extended Kalman filter explained in [16]. Both techniques are combined in a filter with

a nonlinear model of the system that can handle delays. Moreover, random delays and

the OOSM problem will be handled by the modified filter. The estimation errors will be

compared for different GPS measurement delays, fixed and randomized, as well as using

GPS alone or coupled with a camera. Also, for comparison purposes, the estimation is done

by an extended Kalman filter which will not take into account the delays or the OOSM

problem. Therefore, the major contribution of this study is to clearly show the increase in

accuracy that comes from using this delayed extended Kalman filter.
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CHAPTER 2

SENSORS AND KALMAN FILTERS

In this chapter we explain the required elements for the antenna pointer system. The

first requirement to track a UAS is some information about its position. This data is pro-

vided by a GPS mounted in the aircraft and a camera mounted in the antenna pointer.

These sensors are low cost and are very common in unmanned aircraft systems. The com-

bination of these sensors is due to the characteristics of them. Since the GPS measurement

errors are independent of the distance between the aircraft and the antenna pointer, it is

relatively accurate at medium and long distances, but not at short range. By contrast, the

camera can estimate correctly the position of an object within short range, but at medium

and long distances it cannot detect the target since it is just a few pixels in the image,

therefore at long distances it is practically unusable. Furthermore, the GPS has an update

frequency of 1 Hz to 4 Hz, while cameras can sample from 5 Hz to more than 20 Hz. In

section 2.2 we explain how GPS works and provide an algorithm to estimate the states of a

UAS. Then in section 2.3 we present the camera model used for this simulation, and some

coordinates frames that we use to geolocate a target based on camera images. Also a simple

algorithm for pointing the antenna towards the UAS is shown.

The second requirement of our system is the ability to process the information received

from both sensors to fuse the data and improve the estimation of the states of the UAS.

For this purpose, a Kalman filter is used. In section 2.4 we explain briefly the basic Kalman

filter. Later on, the extended Kalman filter is presented. Different reasons can cause delays

on the measurements. Therefore, an algorithm called delayed extended Kalman filter is

explained, which takes in consideration the time lag on the measurements and compensates

for it to produce a better estimation of the states.
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2.1 Aircraft Dynamics

12-state equations of motion

ṗn = (cos θ cosψ)u+ (sinφ sin θ cosψ − cosφ sinψ)v

+ (cosφ sin θ cosψ + sinφ sinψ)w

ṗe = (cos θ sinψ)u+ (sinφ sin θ sinψ + cosφ cosψ)v

+ (cosφ sin θ sinψ − sinφ cosψ)w

ḣ = u sin θ − v sinφ cos θ − w cosφ cos θ

u̇ = rv − qw − g sin θ

+
ρV 2

a S

2m
[CX(α) + CXq(α)

cq

2Va
+ CXδe (α)δe]

+
ρSpropCprop

2m
[(kmotorδt)

2 − V 2
a ]

v̇ = pw − ru+ g cos θ sinφ+
ρV 2

a S

2m

× [CY0 + CYββ + CYp
bp

2Va
+ CYr

br

2Va
+ CYδa δa + CYδr δr]

ẇ = qu− pv + g cos θ cosφ

+
ρV 2

a S

2m
[CZ(α) + CZq(α)

cq

2Va
+ CZδe (α)δe]

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + t cosφ sec θ

ṗ = Γ1pq − Γ2qr +
1

2
ρV 2

a Sb

× [Cp0 + Cpββ + Cpp
bp

2Va
+ Cpr

br

2Va
+ Cpδa δa + Cpδr δr]

q̇ = Γ5pr − Γ6(p
2 − r2) +

ρV 2
a Sc

2Jy

× [Cm0 + Cmαα+ Cmq
cq

2Va
+ Cmδe δe]

ṙ = Γ7pq − Γ1qr +
1

2
ρV 2

a Sb

× [Cr0 + Crββ + Crp
bp

2Va
+ Crr

br

2Va
+ Crδa δa + Crδr δr]
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2.2 Global Positioning System

The global positioning system (GPS) is a navigation system supported by satellites

that provides location information for objects on or near the surface of the earth. The

navigation satellite timing and ranging (NAVSTAR) GPS has been functioning since 1993

and was developed by the United States Department of Defense. The GPS is one of the most

important technologies that allows the functioning of UAS, giving them spatial localization.

A more detailed description of the global navigation satellite systems can be found in many

texts such as [17], [18], [19], [20], and [21]. In this section we explain briefly how the sensing

works in GPS systems and we present a GPS model appropriate for simulation.

The most important element in the GPS system is the 24 satellites that orbit continu-

ously around the earth at an altitude of 20,180 km [17]. The constellation of the satellites

orbits is configured so that any location on the surface of the earth can be observed by at

least four satellites all the time. It is common knowledge that with one range measurement

is possible to locate a point in a line. With two range measurements a point on a plane and

with three range measurements, a point on a 3-D surface. This explains the need for three

of the four satellites. But the last one comes from clock synchronization errors between the

satellites and the receiver. Therefore, with four independent pseudo-range measurements,

there exists a system of four nonlinear equations which yield to the solution of the four

variables of interest: latitude, longitude, altitude and receiver clock time offset [17]. This

section is based on the work of [22].

2.2.1 GPS Measurement Error Model

The two factors that affect the precision of a GPS position measurement are the accu-

racy of the satellite pseudo-range measurements and the configuration of the satellites from

which these pseudo-measurements are taken. The first factor is impacted by errors in the

time of flight for each satellite. Where the second one is considered in a term called dilution

of precision (DOP).
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Standard Pseudo-Range Error Sources

Ephemeris Data

The satellite ephemeris gives the position of the satellite in the sky at a given time. The

position of the GPS receiver is calculated using measurement ranges with respect to satel-

lites. To determine this position, we are required to know the locations of the satellites in

the first place. Ephemeris errors in the measurements exists because of the inaccuracies in

the transmitted orbital satellite location. Common errors vary from 1 to 5 m.

Satellite Clock

The atomic clocks used in GPS satellites are made of cesium and rubidium. These clocks

can drift about 10 ns a day. This translates to an error of 3.5 m. But their clocks are

synchronized twice a day, therefore leading to an approximately 1.75 m error.

Ionosphere

This is the topmost layer of the atmosphere of the earth and consists of a shell of electrons

and electrically charged atoms and molecules that surround the earth. This particles can

delay the transmission of GPS signals. Even though the GPS receivers compensate for this

delay, variations in the speed of light along this atmosphere’s layer, is the biggest cause of

GPS measurement errors, which contributes to approximately 2 to 5 m.

Troposphere

The troposphere is the lowest portion of the atmosphere containing approximately 80% of

the atmosphere’s mass and is located at an altitude of 7 to 20 km. Most of the weather

phenomena occurs in this region. This produces variations in the speed of light and conse-

quently in the time of flight and pseudo-range estimates. These variations introduces errors

in the GPS measurements of about 1 m.

Multipath Reception

Multipath errors occur when reflected signals are received by the GPS receiver, mixing with



10

the real signal. Big surfaces as large buildings or structures increases this error. Normally

this error source contributes to 1 m of variation in the GPS measurement.

Receiver Measurement

This error is caused by the implicit limits with which the time of the satellite signal can be

calculated. Modern receivers errors for this source is less than 0.5 m.

The pseudo-range error sources described previously are considered statistically uncor-

related and we can use the root sum of squares to add them. The addition of all of these

error sources is called the user-equivalent range error. Parkinson, et al. [18] characterized

these errors as a combination of slowly varying biases and random noise.

Transient Characteristic of GPS Positioning Error

For simulation purposes we are required to know the dynamic characteristics of the

GPS error. According to [23], the dynamic model that describes the GPS error is a Gauss-

Markov process which is modeled by

ν[n+ 1] = e−kGPSTsν[n] + ηGPS [n] , (2.1)

where ν[n] is the error being modeled, ηGPS [n] is zero-mean Gaussian white noise, 1/kGPS

is the time constant of the process, and Ts is the sample time. An appropriate model for

simulation of GPS measurements is given by

yGPS,n[n] = pn[n] + vn[n] (2.2)

yGPS,e[n] = pe[n] + ve[n] (2.3)

yGPS,d[n] = pd[n] + vd[n] , (2.4)

where pn, pe, and pd are the position coordinates in the local tangent plane or the North

East Down coordinate system, and n is the time step of the measurement. Usually the GPS
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receivers used by small UAV have a measurement frequency of 1 to 4 Hz.

GPS Velocity Measurements

Using the Doppler Effect, which is the changes in frequency of a wave for an observer

moving relative to its source, the speed of the GPS receiver can be estimated. This ap-

proximation has a standard deviation of 0.01 to 0.05 m/s. Modern GPS receivers usually

provide more than just the position and also include the velocity of the receiver, horizontal

ground speed and course angle [22]. The last two are calculated from the north and east

velocity components as

Vg =
√
V 2
n + V 2

e (2.5)

χ = tan−1
(
Vn
Ve

)
, (2.6)

where Vn = Va cosψ + wn, and Ve = Va sinψ + we.

Using uncertainty analysis as in [24], the uncertainty in ground speed and course mea-

surements can be approximated as

σVg =

√
V 2
n σ

2
Vn

+ V 2
e σ

2
Ve

V 2
n + V 2

e

σχ =

√
V 2
n σ

2
Ve

+ V 2
e σ

2
Vn

(V 2
n + V 2

e )2
.

If the uncertainty in the north and east axis have the same magnitude (i.e., σVn = σVe = σV ),

these formulas simplify as

σVg = σV (2.7)

σχ =
σV
Vg

. (2.8)

In these expressions we can observe that the uncertainty in the course measurements

increases with the inverse of the ground speed with high speeds yielding small errors and

low velocity creating big errors. The reason for this behavior is because the course angle is
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only defined for moving objects. The ground speed and the course angle measurements of

the GPS receiver can be modeled parting from (2.5)-(2.6) and (2.7)-(2.8)

yGPS,Vg =
√

(Va cosψ + wn)2 + (Va sinψ + we)2 + ηV (2.9)

yGPS,χ = arctan2(Va sinψ + we, Va cosψ + wn) + ηχ , (2.10)

where ηV and ηχ are zero-mean Gaussian processes with variances σ2Vg and σ2χ .

2.2.2 GPS Smoothing

In this section we present an algorithm that estimates the position, ground speed,

course, wind speed and heading of a fixed wing aircraft. Assuming that the flight path

angle (γ) is zero, the position can be expressed as

pn = Vg cosχ

pe = Vg sinχ

where χ is the course angle of the UAS. To get the variation of the ground speed we must

differentiate (2.5) getting

V̇g =
d

dt

√
(Va cosψ + wn)2 + (Va sinψ + we)2

=
1

Vg
[(Va cosψ + wn)(V̇a cosψ − Vaψ̇ sinψ + ẇn)

+ (Va sinψ + we)(V̇a sinψ + Vaψ̇ cosψ + ẇe)] ,

where ψ+wn and ψ+we are the wind speed in the north and the east direction respectively,

and Va is the air velocity. If we assume that the wind speed and airspeed are constant the

evolution of the ground speed simplifies to

V̇g =
(Va cosψ + wn)(−Vaψ̇ sinψ) + (Va sinψ + we)(Vaψ̇ cosψ)

Vg
.
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On the other hand, the evolution of χ is described as

χ̇ =
g

Vg
tanφ cos(χ− ψ) ,

and the dynamic of ψ is given by

ψ̇ = q
sinφ

cosφ
+ r

cosφ

cosφ
.

The nonlinear propagation model is given by ẋ = f(x, u), where x is the state and is

defined as x = (pn, pe, Vg, χ, wn, we, ψ)>, and u is the input expressed as u = (Va, q, r, φ, θ)
>,

and ẋ is defined as



ṗn

ṗe

V̇g

χ̇

ẇn

ẇe

ψ̇



=



Vg cosχ

Vg sinχ

(Va cosψ+wn)(−Vaψ̇ sinψ)+(Va sinψ+we)(Vaψ̇ cosψ)
Vg

g
Vg

tanφ cos(χ− ψ)

0

0

q sinφ
cosφ + r cosφcosφ



. (2.11)

The Jacobian matrix, obtained by taking partial derivatives of the propagation model ẋ =

f(x, u) with respect to x, is expressed as

∂f(x, u)

∂x
=



0 0 cosχ −Vg sinχ 0 0 0

0 0 sinχ Vg cosχ 0 0 0

0 0 − V̇g
Vg

0 −ψ̇Va sinψ ψ̇Va cosψ
∂V̇g
∂ψ

0 0 ∂χ̇
∂Vg

∂χ̇
∂χ 0 0 ∂χ̇

∂ψ

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, (2.12)



14

where

∂V̇g
∂ψ

=
−
(
q sinφ
cosφ + r cosφcosφ

)
Va(wn cosψ + we sinψ)

Vg
∂χ̇

∂Vg
= − g

V 2
g

tanφ cos(χ− ψ)

∂χ̇

∂χ
= − g

Vg
tanφ sin(χ− ψ)

∂χ

∂ψ
=

g

Vg
tanφ sin(χ− ψ) .

The input u is composed by the north position, east position, ground speed, and course

supplied by the GPS receiver.

For measurements, we use the GPS signals for north and east position, ground speed

and course. Due to the coupling of the states, we require the triangle relationship given by

Vg


cosψ cos γ

sinψ cos γ

− sin γ

−

wn

we

wd

 = Va


cosψ cos γa

sinψ cos γa

− sin γa

 .

If we assume that γ = γa = 0, the down component is discarded, and we are left with

Va cosψ + wn = Vg cosχ

Va sinψ + we = Vg sinχ .

Using these equations we can define the pseudo measurements as

ywind,n = Va cosψ + wn − Vg cosχ

ywind,e = Va sinψ + we − Vg sinχ ,

The consequent measurement model is expressed as

yGPS = h(x, u) + ηGPS ,
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where yGPS = (yGPS,n, yGPS,e, yGPS,Vg , yGPS,χ, ywind,n, ywind,e), u = V̂a, and

h(x, u) =



pn

pe

Vg

χ

Va cosψ + wn − Vg cosχ

Va sinψ + we − Vg sinχ


, (2.13)

And the Jacobian, obtained by taking partial derivatives of the measurement model with

respect to x, is given by

∂h

∂x
(x̂, u) =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 − cosχ Vg sinχ 1 0 −Va sinψ

0 0 − sinχ −Vg cosχ 0 1 Va cosψ


. (2.14)

The estimation of pn, pe, Vg, χ, wn, we and ψ, are going to be calculated using two algorithms

called the extended Kalman filter (EKF) and the delayed extended Kalman filter (DEKF),

which are going to be explained in section 2.4.
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2.3 Camera

This section introduces state estimation using camera data and the control of a gimbal.

First, we address the coordinate frame geometry and describe the gimbal and camera frames.

Then, the projection of a 3-D object into the 2-D image plane is presented. We also present

a simple gimbal pointing algorithm which is implemented in a pan-tilt gimbal to point an

antenna towards the UAS. Moreover, we discuss a geolocation algorithm used to estimate

the position of an aircraft within its field of view. This study assumes that an image

recognition algorithm exists which detects the UAS in the image data. This section is

based on the work of [22].

2.3.1 Gimbal and Camera Frames and Projective Geometry

Assuming that the center of mass of the antenna pointer is the origin of the gimbal

and camera frames, there are three frames of interest. The camera frame denoted by

Fc = (ic, jc,kc) .

The second frame of interest is obtained by rotating the body frame an angle of αaz, the

azimuth angle, about the kb axis, resulting in the gimbal frame (g1). This frame is denoted

by

Fg1 = (ig1, jg1,kg1) .

The rotation matrix of this coordinate frame transformation is given by

Rg1b (αaz) ,


cosαaz sinαaz 0

− sinαaz cosαaz 0

0 0 1

 . (2.15)

Finally, if the gimbal-1 frame is rotated an angle of αel, the elevation angle, in the jg1 axis,

the third frame of interest is obtained, which is the gimbal frame. This transformation is
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described by

Rgg1(αel) ,


cosαel 0 − sinαel

0 1 0

sinαel 0 cosαel

 . (2.16)

To obtain the rotation matrix from the body frame to the gimbal frame we just need to

multiply the matrices in 2.15 and 2.16, resulting in

Rgb = Rgg1R
g1
b =


cosαel cosαaz cosαel sinαaz − sinαel

− sinαaz cosαaz 0

sinαel cosαaz sinαel sinαaz cosαel

 . (2.17)

The convention in computer vision and image processing for the camera frame is that

the ic axis points to the right of the image, jcaxis points down of the image, and kc axis

points along the optical axis. Therefore, the transformation from the gimbal frame to the

camera frame is given by

Rcg =


0 1 0

0 0 1

1 0 0

 . (2.18)

2.3.2 Camera Model

Lets assume that the pixels and the pixel array are square. Defining M as the width

of the square pixel array and v as the field-of-view of the camera, then f which is the focal

length, is given by

f =
M

2 tan v
2

. (2.19)

The position of the UAS projected into the camera frame is given by (Pεx , Pεy , Pf ), where

εx and εy are the pixel location of the aircraft in units of pixels. The distance between the
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origin of the camera frame and the location of the plane (εx, εy), is PF where

F =
√
f2 + ε2x + ε2y . (2.20)

Using basic trigonometry we get

lcx
L

=
Pεx
PF

=
εx
F

(2.21)

lcy
L

=
εy
F

(2.22)

lcf
L

=
f

F
. (2.23)

Defining lc as the vector to the UAS and L = ||l|| we can express (2.21) through (2.23) as

lc =
L
F


εx

εy

f

 , (2.24)

since L is unknown, lc cannot be calculated only with camera data. Even so, the unit vector

that points towards the aircraft can be obtained as

lc

L
=

1

F


εx

εy

f

 =
1√

ε2x + ε2y + f2


εx

εy

f

 . (2.25)

Since this unit vector is used multiple times throughout this section, we use the notation

ľ ,


ľx

ľy

ľz

 ,
lc

L
.



19

2.3.3 Gimbal Pointing

In this section we present a basic gimbal-pointing algorithm, which is used by our

antenna pointer. The tracking system is assumed to pan and tilt with the respective angles

azimuth and elevation. The dynamic model of the gimbal is assumed as

α̇az = uaz

α̇el = uel .

The purpose of this algorithm is to point an antenna mounted in the gimbal to a given

position, in our case the aircraft location. Let piobj be the position of the UAV in the

inertial frame. Our goal is to center the aircraft in the image plane, therefore aligning the

optical axis of the camera with the desired relative position vector

lid , piUAV − piAP ,

where piAP = (pn, pe, pd)
> is the inertial position of the antenna pointer and the subscript

d indicates a desired quantity. The unit vector that targets the UAS in the body-frame is

ľ
b
d =

1

||lid||
Rbi lid .

Furthermore, we need to calculate the desired azimuth and elevation angles so that the UAS

is located in the origin of the image plane, this is, to align the optical axis with ľbd. The

next step is to determine the desired azimuth and elevation angles that aligns the optical

axis with ľbd. Since the optical axis is given by (0, 0, 1)c, the c denoting that is in the camera
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frame, the commanded gimbal angles αcaz and αcel are

ľ
b
d ,


ľbxd

ľbyd

ľbzd

 = Rbg(αcaz, αcel)Rgc


0

0

1

 (2.26)

=


cosαcel coscaz − sincel − sinαcel cosαcaz

cosαcel sinα
c
az cosαcaz − sinαcel sinα

c
az

sinαcel 0 cosαcel




0 0 1

1 0 0

0 1 0




0

0

1

 (2.27)

=


cosαcel cosαcaz

cosαcel sinα
c
az

sinαcel

 . (2.28)

Therefore the desired azimuth and elevation angles are

αcaz = tan−1

(
ľbyd

ľbxd

)
(2.29)

αcel = sin−1
(
ľbzd

)
. (2.30)

Then, choosing the gimbal servo commands we have

uaz = kaz(α
c
az − αaz) (2.31)

uel = kel(α
c
el − αel) , (2.32)

where kaz and kel are positive control gains.
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2.3.4 Geolocation

The objective of this section is to describe an algorithm that can determine the position

of an aircraft in inertial coordinates using a EO/IR camera mounted in the antenna pointer.

For this study we assume that the antenna pointer can measure its own position. Continuing

the discussion of section 2.3.1, lets define l = pUAV − pAP as the relative position vector

between the aircraft and the antenna pointer, L = ||l|| as the range to the aircraft, and

ľ = l/L as the unit vector that points towards the UAV. Using simple geometry, we have

that

pi
UAV

= piAP +RibRbgRgc lc

= piAP + L(RibRbgRgc ľ
c
) , (2.33)

where piAP = (pn, pe, pd)
>, Rib = Rib(φ, θ, ψ), and Rbg = Rbg(αaz, αel). Note that all the

elements on the right-hand side of (2.33) are known, except L. Hence, the geolocation of a

target is simply as estimating the range to the target L.

Range to Target Using the Flat-Earth Model

Since we assumed that the antenna pointer can determine its position, we have available

the height-above-ground of the pointer, h. Also since UAS missions are are not usually long

range we can neglect the curvature of the earth, and assume a flat-earth model. Then using

simple trigonometry we have that

L =
h

cosϕ
,

where

cosϕ = ki · ľi

= ki · RibRbgRgc ľ
c
.
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Subsequently, the estimation of the range to the target is given by

L =
h

ki · RibRbgR
g
c ľ
c . (2.34)

And finally combining (2.33) and (2.34) the geolocation estimate can be expressed as

pi
UAV

=


pn

pe

pd

+ h
RibRbgR

g
c ľ
c

ki · RibRbgR
g
c ľ
c (2.35)

Geolocation Using an Extended Kalman Filter

Since the geolocation estimation made by (2.35) provides an approximation of the lo-

cation of the UAS, and does not take into account the past measurements, it is prone to

errors. Therefore, in this section we present a method to solve the geolocation problem iter-

atively, the extended Kalman filter(EKF). This algorithm and its derivation are explained

in section 2.4.

If we assume that the antenna pointer is stationary, we have

ṗiAP = 0 .

Since L = ||pi
UAV
− piAP ||, we have

L̇ =
d

dt

√
(pi

UAV
− piAP )>(pi

UAV
− piAP )

=
(pi

UAV
− piAP )>(ṗi

UAV
− ṗiAP )

L

=
(pi

UAV
− piAP )>ṗi

UAV

L
,
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If a constant-altitude flight is assumed, we can approximate ṗi
UAV

as

ṗi
UAV

=


V̂g cos χ̂

V̂g sin χ̂

0

 ,

and where V̂g and χ̂ are calculated using the EKF and the DEKF discussed in the next

section. The input to the geolocation algorithm is the position of the antenna pointer in

the inertial frame and the estimate of the normalized line-of-sight vector as given in (2.25).

To implement the geolocation problem with an Extended Kalman filter, we define the

state as x̂ = (p̂i
>

UAV
, L̂)> and prediction equations given by

 ˙̂pi
UAV

˙̂L

 =

 0

(pi
UAV

−piAP )
>ṗi

UAV

L̂

 .

Taking partial derivatives of f with respect to x, we have the Jacobian which is described

by

∂f

∂x
=

 0 0

ṗi
UAV

L̂
−

(pi
UAV

−piAP )
>ṗi

UAV

L̂2

 .

The output equation is given by (2.33), and its Jacobian is given by

∂h

∂x
=

(
0 RibRbgR

g
c ľ
c

)
.
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2.4 Kalman Filter

A Kalman filter is an optimal recursive data processing algorithm. One of the aspect

of this optimality is that the Kalman filter incorporates all the information that can be

provided to it. It processes all available measurements, regardless of their precision, to

estimate the current value of the variables of interest, with use of knowledge of the system

and measurement device dynamics, the statistical description of the system noises, mea-

surement errors and uncertainty in the dynamics models, and any available information

about initial conditions of the variables of interest. One of the interesting characteristics

of the Kalman filter is that it does not require all previous data to be kept in memory and

reprocessed every time a new measurement is taken, making the filter implementation more

practical. The filter is actually a data processing algorithm, and therefore it incorporates

discrete-time measurement samples rather than continuous time inputs. Often the variables

of interest, some finite number of quantities to describe the state of the system, cannot be

measured directly, and some means of inferring these values from the available data must

be generated, thus the need of the filter. This inference is complicated by the facts that

the system is typically driven by inputs other than our own known controls and that the

relationships among the various state variables and measured outputs are known only with

some degree of uncertainty. Furthermore, any measurement is corrupted to some degree by

noise, biases, and device inaccuracies, and so a means of extracting valuable information

from a noisy signal must be provided as well. There may also be a number of different

measuring devices, each with its own particular dynamics and error characteristics, that

provide some information about a particular variable, and it would be desirable to combine

their outputs in a systematic and optimal manner. A Kalman filter combines all avail-

able measurement data, plus prior knowledge about the system and measuring devices, to

produce an estimate of the desired variables in such a manner that the error is minimized

statistically. In other words, if we were to run a number of candidate filters many times for

some application, then the average results of the Kalman filter would be better than the

average results of any other [25].
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2.4.1 Discrete Kalman Filter

This section is based on the work of [22]. There are several different forms of the

Kalman filter, but the form particularly useful for Small UAS applications is the continuous-

propagation, discrete-measurement Kalman filter. Let’s assume that the linear system

dynamics are given by

ẋ = Ax+Bu+ ξ

y[n] = Cx[n] + η[n] ,

(2.36)

where y[n] = y(tn) is the nth sample of y, x[n] = x(tn) is the nth sample of x, η is the

measurement noise at time tn, ξ is a zero-mean Gaussian random process with covariance Q,

and η[n] is a zero-mean Gaussian random variable with covariance R. The random process

ξ is called the process noise and represents modeling error and disturbances on the system.

The random variable η is called the measurement noise and represents noise on the sensors.

The covariance R can usually be estimated from sensor calibration, but the covariance Q is

generally unknown and therefore becomes a system parameter that can be tuned to improve

the performance of the observer. Note that the sample rate does not need to be fixed.

The continuous-discrete Kalman filter has the form

˙̂x = Ax̂+Bu (2.37)

x̂+ = x̂− + L(y(tn)− Cx̂−) , (2.38)

where L is the Kalman gain. Define the estimation error as x̃ = x − x̂. The covariance of

the estimation error at time t is given by

P (t) , E[x̃(t)x̃(t)>] . (2.39)

Note that P (t) is symmetric and positive semi-definite, therefore, its eigenvalues are real

and non-negative. Also, small eigenvalues of P (t) imply small variance, which implies

low average estimation error. Therefore, we would like to choose L(t) to minimize the
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eigenvalues of P (t). Recall that

tr(P ) =
n∑
i−1

λi,

where tr(P ) is the trace of P , and λi are the eigenvalues of P. Therefore, minimizing

tr(P ) minimizes the estimation error covariance. The Kalman filter is derived by finding

L to minimize tr(P ). The equations of the Kalman filter can be categorized into two

groups: time update equations and measurement update equations. The first is responsible

for projecting forward in time the current state and error covariance estimates to obtain a

priori estimate for the next time step. The measurement update equations are responsible

for incorporating a new measurement into the a priori estimate to obtain an improved a

posteriori estimate.

Time Update Equations

Differentiating x̃ we get

˙̃x = ẋ− ˙̂x

= Ax+Bu+ ξ −Ax̂−Bu

= Ax̃+ ξ.

Solving the differential equation with initial condition x̃0 we obtain

x̃(t) = eAtx̃0 +

∫ t

0
eA(t−τ)ξ(τ)dτ.
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Computing the evolution of P, the error covariance we get

Ṗ =
d

dt
Ex̃ ˙̃x>

= E( ˙̃xx̃> + x̃ ˙̃x>)

= E(Ax̃x̃> + ξx̃> + x̃x̃>A> + x̃ξ>)

= AP + PA> + E(ξx̃>) + E(x̃ξ>)

Calculating E(x̃ξ>) as

E(x̃ξ>) = E(eAtx̃0ξ
>(t) +

t∫
0

eA(t−τ)ξ(τ)ξ>(τ)dτ)

=

t∫
0

eA(t−τ)Qδ(t− τ)dτ

=
1

2
Q,

where the 1
2 is because we only use half of the area inside the delta function. Therefore,

since Q is symmetric we have that P evolves between measurements as

Ṗ = AP + PA> +Q.

Measurement Update Equations

When a measurement is received, we have that

x̃+ = x− x̂+

= x− x̂− − L(Cx+ η − Cx̂−)

= x̃− − LCx̃− − Lη.
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On the other hand we have that

P+ = E(x̃+x̃+
>

)

= E[(x̃− − LCx̃− − Lη)(x̃− − LCx̃− − Lη)>]

= E[x̃−x̃−
> − x̃−x̃−>C>L> − x̃−η>L>

− LCx̃−x̃−> + LCx̃−x̃−
>
C>L> + LCx̃−η>L>

− Lηx̃−> + Lηx̃−
>
C>L> + Lηη>L>]

= P− − P−C>L> − LCP− + LCP−C>L> + LRL>. (2.40)

Since η and x̃− are independent, E(x̃−η>L>) = E(Lηx̃−
>

) = 0.

To continue our derivation, the following matrix relationship is required:

∂

∂A
tr(BAD) = B>D>

∂

∂A
tr(BAA>) = 2AB, ifB = B>.

Our goal is to minimize tr(P+) by choosing L. A required condition is that

∂

∂L
tr(P+) = −P−C> − P−C> + 2LCP−C> + 2LR = 0

⇒ 2L(R+ CP−C>) = 2P−C>

⇒ L = P−C>(R+ CP−C>)−1.

If we substitute into (2.40) we get

P+ = P− + P−C>(R+ CP−C>)−1CP− − P−C>(R+ CP−C>)−1CP−

+ P−C>(R+ CP−C>)−1(CP−C> +R)(R+ CP−C>)−1CP−

= P− − P−C>(R+ CP−C>)−1CP−

= (I − P−C>(R+ CP−C>)−1C)P−

= (I − LC)P−.
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Summarizing the Kalman filter we have two sets of equations. The time update equations,

which propagate the state estimates

˙̂x = Ax̂+Bu (2.41)

Ṗ = AP + PA> +Q, (2.42)

where x̂ is the estimate of the state, and P is the symmetric covariance matrix of the

estimation error. The second set of equations, the measurement update equations, are used

when a measurement is received from the ith sensor, which updates the state estimates and

error covariance with the following equations

Li = P−C>i (Ri + CiP
−C>i )−1 (2.43)

P+ = (I − LiCi)P− (2.44)

x̂+ = x̂− + Li(yi(tn)− Cix̂−), (2.45)

where Li is called the Kalman gain for the ith sensor.

2.4.2 Extended Kalman Filter

This section is based on the work of [22]. In the previous section we assumed that

the system propagation model and measurement model are linear. However, for many

applications, including the one used in this thesis, the system propagation model and the

measurement model are nonlinear. Therefore the model in (2.36) becomes

x̂ = f(x, u) + ξ (2.46)

y[n] = h(x[n], u[n]) + η[n], (2.47)

This case is called the extended Kalman filter. For the EKF, the state propagation and

update equations use the nonlinear model, but the propagation and update of the error

covariance use the Jacobian of f for A, and the Jacobian of h for C.



30

Pseudo-code for the continuous discrete extended Kalman filter is given below

· Initialize: x̂ = x0.

· Pick an output sample rate Tout that is less than the sample rates of the sensors.

· At each sample time Tout:

· for i = 1 to N do [Time Update Equation]

· x̂ = x̂+ Tout
N f(x̂, u)

· A = ∂f
∂x (x̂, u)

· P = P + Tout
N (AP + PA> +Q)

· end for

· if Measurement has been received from sensor i then [Measurement Update Equation]

· Ci = ∂hi
∂x (x̂, u[n])

· Li = PC>i (Ri + CiPC
>
i )−1

· P = (I − LiCi)P

· x̂ = x̂+ Li(yi[n]− h(x̂, u[n]))

· end if

2.4.3 Delayed Extended Kalman Filter

In real world applications, measurements usually have processing and communication

delays which cannot be ignored. These delays can have big variations, consequently some

measurements can arrive in an out of sequence fashion, which worsen the estimations if not

handled properly.

In this section we show a modification of the extended Kalman filter, which enables it

to handle delayed measurements and the OOSM problem. This filter works by introducing

the measurement in the estimation as soon as they arrive, but using it to estimate the states

at the time that the measurement was made. After that, this estimation is propagated for-

ward in time. If another measurement more recent is available, then it is incorporated into

the estimation and the states are propagated again in time. This is done until the filter

is on the current time. Therefore, opposed to how the filter works in [2], this filter can

run in real time. For this, we need to store the state estimations, the error covariance ma-
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trices and the delayed measurements for as many time steps as the maximum probable delay.

Pseudo-code for the continuous discrete delayed extended Kalman filter is given below

· Initialize: x̂ = x0.

· Pick an output sample rate Tout that is less than the sample rates of the sensors.

· At each sample time Tout:

· [x̂, P ] = propagate (x̂, P,N) [Time Update Equation]

· if Measurement has been received from GPS sensor then

· Organize measurements (newest first)

· [x̂, P ] = (x̂tmeasnew , Ptmeasnew )

· for j = position of new measurement to 0 do

· [x̂, P ] = update (x̂, P,measj) [Measurement Update Equation]

· if j > 1 then

· N = 100 (tmeasj − tmeasj−1)

· else

· N = 100 (tcurrent − tmeasj )

· end if

· [x̂, P ] = propagate (x̂, P,N)

· end for

· end if

· if Measurement has been received from camera then

· [x̂, P ] = update (x̂, P,meascamera)

· end if

Where the propagate function represents the Time Update Equation and is described as

· function [x̂, P ] = propagate (x̂, P,N)

· for i = 1 to N do

· x̂ = x̂+ Tout
N f(x̂, u)
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· A = ∂f
∂x (x̂, u)

· P = P + Tout
N (AP + PA> +Q)

· end for

· end function

And the update function, which is the Measurement Update Equation, is represented by

· function [x̂, P ] = update (x̂, P,meas)

· C = ∂h
∂x(x̂, u[n])

· L = PC>(R+ CPC>)−1

· P = (I − LC)P

· x̂ = x̂+ L(y[n]− h(x̂, u[n]))

· end function
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CHAPTER 3

SIMULATION

3.1 Simulation Overview

This simulation was developed by [26] using MATLAB and Simulink, for the purpose

of tracking several ground targets. This was achieved by using a camera mounted in an

aircraft and pointing it in an optimal fashion to improve the estimation of the states of

all the objectives. A block was added to provide the means of pointing an antenna and a

camera towards a UAV, estimating the states with a Delayed Extended Kalman filter. In

this study we are not concerned about the behavior of the plane, since we will point at it

as long as it is within the line-of-sight. The simulation has four main blocks: UAV Sensor

Block, Target Selection Step, Antenna Pointer block, and 3-D Plot block. We will only

focus on the block that we developed, the Antenna Pointer block.
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Fig. 3.1: System Overview
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3.2 Antenna Pointer

The antenna pointer block precisely points an antenna and a camera towards the air-

craft. It consists of four blocks: GPS, camera, EKF/DEKF and a pointer block as shown

below.
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Fig. 3.2: Antenna Pointer Block. The interaction of each sub-block of the Antenna Pointer
Block is shown here. The GPS receives the real measurements, adds noise and delays them.
The camera receives the estimated states of the plane and if in the field of view send the
position to the DEKF. The filter process all the data and outputs the estimation of the
states. Finally the Pointer calculates the azimuth and elevation angles required to point
towards the UAV.

3.2.1 GPS

This block generates the GPS measurements based in the real states received from the

UAV sensor block. First, it reduced the frequency of the data from 100 Hz to 4 Hz, which is

the common frequency found in modern GPS. Afterward, it adds noise to the measurements

as described in section 2.2.1. Finally, it waits a random time to send each measurement to

the EKF/DEKF block where they are implemented in the estimation.
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3.2.2 Camera

The camera block simulates a camera mounted in the antenna pointer working at 10

Hz and 20 Hz frequency. If the aircraft is in the field of view of the camera, the position

in the camera frame is sent to the EKF/DEKF to introduce this data to the estimation of

the states. In this simulation we assume that there is an algorithm which detects the UAV

as long as it is in the field of view of the camera. The model of this camera is explained in

section 2.3.2.

3.2.3 EKF/DEKF

This block process the information sent by the GPS and camera blocks to estimate the

states of the aircraft. The processing of this data is done by the Delayed Extended Kalman

filter, defined in section 2.4.3, which compensates for the delays in the GPS measurements.

For comparison purposes the Extended Kalman filter defined in section 2.4.2 is used, to see

how the estimates are impacted if we disregards the delays in the measurements. In this

work, we assume that the delays in the camera measurements can be neglected since the

processing unit and the camera are connected directly.

3.2.4 Pointer

This block calculates the angles to command and the controller of the antenna pointer.

First, the pointer uses the estimated states sent by the EKF/DEKF block to calculate the

azimuth and elevation angles required to point towards the aircraft. Next, the angles are

sent to a simple proportional controller, defined by equations (2.31)-(2.31), which actuates

the servos in the antenna pointer and feed backs the actual angles to the camera and the

EKF/DEKF blocks.
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3.3 3-D Plot

The purpose of this block is to collect all the data and plot the aircraft, the antenna

pointer and the field of view of the camera mounted in the antenna pointer in real time.

Fig. 3.3: Antenna Pointer tracking a UAV. This figure shows a UAV tracking different
ground targets using a camera. At the same time, our antenna pointer system, follows the
aircraft pointing an antenna and a camera towards it. This graphic was generated using
Matlab and Simulink.
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CHAPTER 4

RESULTS

This chapter presents the results gathered by the simulations explained in chapter 3.

Three different sets of comparisons are presented. The first comparison shows the difference

in accuracy of using a GPS sensor and a GPS coupled with a camera. The second case is

to show how the delays affect the accuracy of the estimations. And the last case compares

the estimations of the Extended Kalman filter against the Delayed Extended Kalman filter

with delayed measurements, to see the impact of disregarding the delays.

4.1 Comparison of Estimations Between GPS and GPS Coupled with Camera

In this scenario, we focus on the comparison between using a GPS at 1 Hz coupled with

a camera at 20 Hz, and the GPS alone. The introduction of the camera measurements are

expected to improve the estimation. In this case, the GPS measurements have a random

delay of 0.75 seconds.
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Fig. 4.1: UAV Trajectory Comparison - GPS vs GPS and Camera. The real trajectory of
the aircraft is shown in this plot, against the estimated trajectory calculated by using a
GPS coupled with a camera, and just a GPS.
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Fig. 4.2: North Position Error Comparison - GPS vs GPS and Camera. The error in the
north position is shown in this plot. The states estimations are compared for GPS and GPS
coupled with a camera.
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Fig. 4.3: East Position Error Comparison - GPS vs GPS and Camera. The error in the
east position is shown in this plot. The states estimations are compared for GPS and GPS
coupled with a camera.
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Fig. 4.4: Azimuth Error Comparison - GPS vs GPS coupled with Camera. The error in the
azimuth angle calculated by the estimations are presented. It can be seen that coupling a
GPS with a camera improves the estimation.
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Fig. 4.5: Elevation Error Comparison - GPS vs GPS coupled with Camera. The error in the
elevation angle calculated by the estimations are presented. It can be seen that coupling a
GPS with a camera improves the estimation.

4.2 Comparison of Estimation Accuracy for EKF and DEKF with 0.75 s Ran-

dom Delay

In this scenario the precision of the state estimations from an EKF and a DEKF are

considered. Again, a GPS coupled with a camera serves as the inputs for the filters. Here

we show how the estimations are impacted if the measurements have delays and a filter that

does not take them into account is used. An improvement in the estimations is expected

using the DEKF.
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Fig. 4.6: UAV Trajectory Comparison - EKF vs DEKF. The trajectory of the aircraft is
shown in this plot, against the estimated trajectory calculated by an EKF and by a DEKF.



42

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−30

−20

−10

0

10

20

30

Time(seconds/100)

 

 
EKF

DEKF

+5σ

−5σ

Fig. 4.7: North Position Error Comparison - EKF vs DEKF. The error in the north position
is shown in this plot. The states estimations are compared for an EKF and a DEKF.
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Fig. 4.8: East Position Error Comparison - EKF vs DEKF. The error in the east position
is shown in this plot. The states estimations are compared for an EKF and a DEKF.
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Fig. 4.9: Azimuth Error Comparison - EKF vs DEKF. The error in the azimuth angle
calculated by the estimations is shown in this plot. Azimuth for the EKF and the DEKF
are compared.
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Fig. 4.10: Elevation Error Comparison - EKF vs DEKF. The error in the elevation angle
calculated by the estimations is shown in this plot. Elevation for the EKF and the DEKF
are compared.
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4.3 Comparison of Estimation Accuracy Between No delay, 0.25 s, 0.50 s, and

0.75 s Random Delays

For this scenario we will use a GPS coupled with a camera. This scenario compares

the estimation made by a DEKF for no delay, random delay of up to 0.25 s, 0.50 s, and

0.75 s. Since the delays are randomly generated, some of the measurements arrive in an

out-of-sequence fashion. The Delayed Extended Kalman filter also compensates for this.
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Fig. 4.11: UAV Trajectory Comparison - Different Delays. The trajectory of the aircraft
is shown in this plot, against the estimated trajectory calculated by a DEKF for no delay,
0.25 s, 0.50 s, and 0.75 s of random delay.
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Fig. 4.12: North Position Error Comparison - Different Delays. The error in the north
position is shown in this plot. The states estimations are compared for no delay, 0.25 s,
0.50 s, and 0.75 s of random delay.
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Fig. 4.13: East Position Error Comparison - Different Delays. The error in the east position
is shown in this plot. The states estimations are compared for no delay, 0.25 s, 0.50 s, and
0.75 s of random delay.
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Fig. 4.14: Azimuth Error Comparison - Different Delays. The error in the azimuth angle
calculated by the estimations is shown in this plot. Azimuth for no delay, 0.25 s, 0.50 s,
and 0.75 s of random delay, are compared.
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Fig. 4.15: Elevation Error Comparison - Different Delays. The error in the elevation angle
calculated by the estimations is shown in this plot. Elevation for no delay, 0.25 s, 0.50 s,
and 0.75 s of random delay, are compared.
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CHAPTER 5

CONCLUSION

The purpose of this study is to develop an algorithm which could point an antenna

and a camera towards a UAS. The reasons and motivations of this problem are primar-

ily two. The first motivation was the Line-Of-Sight requirement of the Federal Avia-

tion Administration which limits UAV missions to operate if and only if the aircraft is

in the field of view of the operator. The existing method, is to keep an eye on the UAV

with binoculars, which is prone to miss the plane frequently. Likewise, the other reason

for the study was to improve the reliability of the mission by assuring the communica-

tion link with the aircraft, which can be achieved with a trustworthy tracking system.

The main hypotheses that we had were the following three.

1. The coupling of a camera with a GPS improves the state estimations of an aircraft.

2. Delayed and out of sequence measurements affect the state estimations in an inversely

proportional way. A special Kalman filter needs to be used to address this scenario.

With the empirical findings we were able to conclude that:

1. If a camera is coupled with a GPS for state estimation in a Kalman filter, the errors

will be less than those of using a GPS alone. This is more evident when the GPS

measurements are delayed.

2. State estimations are adversely affected by an increase of delays in the measure-

ments. Errors were significantly decreased when a special filter called Delayed Ex-

tended Kalman filter was used, instead of using the regular Extended Kalman filter.
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One of the impacts of this study is the possibility of a modification of the Line-Of-Sight

requirement of the FAA, allowing tracking systems to comply with this regulation as long as

they are equipped with a camera. Therefore, freeing the operator of this task. Furthermore,

tracking systems could implement these findings to improve their robustness, making more

reliable the mission as a whole.

This research could be extended with the implementation of the antenna pointer sys-

tem, to run more extensively tests. On the other hand, the same principle could be analyzed

where the only sensors available were a camera and a signal strength receiver. Moreover,

a scenario where communication or measurements are lost could be an interesting case of

study.

This thesis has offered an approach to UAV tracking systems to improve the existing

process, and was conducted in a simulated platform, MATLAB and Simulink, to have a

strictly controlled environment. For simplifying purposes we made two main assumptions

that need to be mentioned. One of the premises was that there was an image recognition

algorithm which always recognized the aircraft as long as it were in the field-of-view of the

camera. The second assumption was that the delays in the camera measurements were so

small that they could be neglected without a big impact of the estimations.

As a support of what is often reasoned, an algorithm which consider the delays in

the measurements and the OOSM problem, such as the Delayed Extended Kalman filter,

reduces the estimates errors. Hence, a system which regards these conditions, can efficiently

track a UAS increasing the reliability of the whole mission.
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