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Departme nt: Nutrition and Food Sciences 

vi 

Protein recovery and coagulation propert i es of five commercial 

and fractionated milk clotting enzymes were studied. The 

fractionated enzymes were Sephadex G-100 fractions of the commercial 

enzymes. Milk clotting activity of each fraction was tested using 

Berridge substrate. All fractions from each preparation which had 

milk cl ot ting activity as measured with the Formagra~h were 

collected and pooled. These samples and the original enzyme 

preparations were used to coagulate milk. Percent of protein lost 

in whey was determined by Kjeldahl. Coagulation was followed using 

a spectrophotometer monitoring changes in apparent absorbance at 600 

nm. Curd protein yields using the five original enzyme preparations 

were compared with each other. Also, protein lost in whey from the 

five original preparations were compared with those using the 

isolated fraction. There was a significant difference among the 

original enzymes in protein lost in whey. There were also 



vii 
significant differences between some of the commercial enzyme 

preparations and their fractionated preparations. Gel filtration 

through Sephadex G-100 improved bovine rennet and calf 

rennet/porcine pepsin mixture more than the other three enzyme 

preparations. Calf rennet, Mucor miehei protease and modified M. 

miehei protease showed no significant reduction in protein lost to 

whey after fractionation. Protein loss using original calf rennet, 

bovine rennet and modified~ miehei protease were not significantly 

different from each other. ~ !f1iehei_ protease and calf 

rennet/porcine pepsin mixture were not significantly different from 

each other, but, the two groups were significantly different from 

each other. 

There were noticeable differences in coagulation curves of 

the five original enzymes. Coagulation properties of commercial and 

fractionated enzyme were different in all five pairs. 

(77 pages) 



INTRODUCTION 

Proteolyt ic enzymes are used to cause milk coagulation for 

manufacture of cheese. Most proteolytic enzymes obtained from 

bacteria, fungi, and animal organs are able to clot milk. Some are 

recommended as substitutes for calf rennet in cheese making, but 

most cause extensive digestion of cheese curd. 

Until recently the enzyme used for commercial manufacture of 

cheese was chymosin (rennin, EC 3.4.23.4), the gastric enzyme of 

calf, in form of a crude extract, powder or paste called rennet. 

Chymosin is still the most desirable enzyme for this purpose and is 

the standard of evaluation for other milk clotting enzymes. But 

there i s no longer enough chymosin available to satisfy the needs of 

the cheese industry and this has forced people to search for 

suitable and ine xpens ive substi tutes. 

Enzyme s from animal organs are obtained as zymogens 

(proenzymes) which must be activated. Prochymo sin is converted to 

chymosin by enzymatic proteo lysis below pH 5. At room temperature 

prochymosin is stable in the pH range of 5.5 to 9.0 (Foltmann, 

1971). Chymosin stability is affected by temperature, salt and pH. 

Chymosin solutions have opti mum stability at pH 5.3-6.3. Cheeseman 

(1969) reported on the basis of sedimentation equilibrium studies, 

that at pH 3.1 chymosin solutions contain a monomer of molecular 

weight 30,000 but at pH 5.8 to 6.5 a dimer is predominant. Among 

animal proteases which have interested the cheese industry, porcine 

pepsin is most acceptable as a replacement for rennet in making a 



number of varieties of cheese. It is difficult to get satisfactory 

milk coagulation using porcine pepsin alone. Porcine pepsin also 

shows high sensitivity to heat at pH's above 6.0, so it can be 

easily destroyed when no longer needed. 

2 

Proteolytic enzymes have been isolated from Mucor miehei, Mucor 

pusillus, Bacillus subtilis, Bacillus cereus and Endothia 

parasitica. Bacillus enzyme preparations are not suited for cheese 

making while the fungal derived enzymes show generally good results. 

Milk clotting preparations from fungal sources (especially~ 

miehei and~ pusillus) have been used in large quantity by the 

cheese industry. These preparations have general protease activity 

in addition to the specific proteolysis responsibility for 

coagulation which is called milk clotting activity. The general 

proteolysis .weakens cheese curd, reduces yield and produces peptides 

during ripeni ng which give bitter flavor to cheese (Sternberg, 

1972). ~ miehei protease produces Cheddar cheese and other hard 

type cheeses of satisfactory quality without bitter flavor (Ernstrom 

and Wang, 1974). Chymosin substitute preparations can be improved 

by removing thos e frac tions with high proteolytic activity and low 

milk clotting activity (Shaker and Brow~, 1984). 

The purpose of this work was to investigate the effects of 

commercial milk clotting preparations on protein recovery in curd 

and on the course of coagulation. Both commercially available 

enzyme preparations and preparations improved by gel fractionation 

were evaluated. 
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LITERATURE REVIEW 

Enzymatic Coagulation of Milk Casein 

Milk clotting is a complex process involving both enzymatic 

and non-enzymatic phases (Ernstrom and Wang, 1974). Factors such as 
+2 temperature, pH, Ca concentration, season of year (McDowell, et 

al., 1969), and type of milk clotting enzyme have a great effect on 

the time required for clotting of milk (Birkkgair and Thomsen, 1970; 

Dill and Roberts, 1959; Green, 1972; Green, 1977; Kowalchyk and 

Olson, 1978; and McDowell, et al., 1969 ). Less information is 

available on effects of various milk clotting time and rates of 

firming of the clot. Effects of concentration of CaC1 2 added to 

milk and seasonal effects were determined also by many workers. 

Enzymatic coagulation of milk involves three separate but 

overlapping stages, enzymatic proteo lysis, aggregation, and 

gelation. The observable change which occurs when milk is treated 

with a coagulating enzyme is formation of a visible clot. Chemical 

analysis reveals no gross change in composition (Wright, 1924). The 

main physiological function of chymosin is to digest milk in the 

acid environment of the calf's stomach. Pepsin can perform the same 

function in other animals and in humans. Chymosin is not present in 

the gastric secretion of normal human infants (Malpress, 1967). 

Despite the low pH's at which they function physiologically these 

enzymes rapidly clot fresh milk at pH 6.6 to 6.8 where their general 

proteolytic activities are extremely low. The enzymatic action 

necessary to cause milk clotting is apparently very specific. 
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In the early years Hammersten, (1914) and Van Slyke and 

Bosworth (1914) attempted to explain clotting of milk by chymosin on 
-the basis of casein homogenity. They proposed that chymosin 

converts native casein into a new form called paracasein, which 

clots in the presence of calcium ion. 

In the enzymatic or primary phase of milk clotting the enzyme 

attacks K-casein to destroy its stabilizing capacity. During this 

stage the K- casein is usually attacked by the protease in the region 

of the bond Phe105-Met 106 to yield two peptides with different 

properti es. The macropepti de moiety (res idue 109-169) is 

hydrophilic, soluble in water, and can diffuse away from the micelle 

after K-casein splitting, whereas the para- K-casein moiety (residues 

1-105) is strongly hydrophobic and remains in the micelle. 

Micelles are stable at least partly because micelles possess an 

overall negative charge on their surface giving an electrokinetic 

s-potential various ly estimated as between 10 and 20 mV (Green and 

Crutchfield, 1971; Pearce, 1976; and Darling a11d Dickson, 1979). 

This surface charge provides a barrier to close approach and 

coagulation of micelles. The macropeptide carries an appreciable 

part of this negative charge and is hydrophilic, interacting well 

with solvent to provide a boundary layer around the micelle. 

Treatment of micelles with rennet reduces the s-potential by 5 to 7 

mV (Green and Crutchfield, 1971; and Pearce, 1976), presumably by 

loss of the macropeptide, and also creates a much more hydrophobic 

micellar surface due to para-K-casein. These charges suffice to 
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alter the balance of attractive and repulsive forces between 

micelles so that coagulation becomes possible. 

Coagulation is controlled not only by interactive energy 

contributions but also by entropic factors (hydrophobic 

interactions), both of which contribute to the overall free energy 

charge which governs the reaction. It is probable that the dominant 

forces are hydrophobic, since coagulation is very dependent upon 

temperature and tends towards dissociation at low temperature. 

In native casein micelles calcium ions bound in the calcium 

phosphate or to the casein also play a part in defining the charge 

on the micelle and thus on its subsequent activity towards 

aggregation. 

calcium ions. 

Both a -casein and s-casein are capable of binding 
s 

Since this binding is temperature dependent 

(Dalgleish, 1980 and 1981) the variation of rennet clotting time 

with temperature may reflect changes in binding of calcium ions to 

casein and possibly also changes in the calcium phosphate content of 

micelles. 

Chymosin attack on K-ca sein appears to be somewhat dependent on 

the presence of intact histidine near the susceptible bond (Hill and 

Laing, 1965). Hill (1969) reported that histidine and serine 

residues appear to have catalytic effects rather than serving as 

enzyme binding sites. The chymosin susceptible bond in K-casein 

also appears to be the principal target for non-chymosin milk 

clotting enzymes. Dennis and Wake (1965) reported ~hat chymosi n, 

pepsin and chymotrypsin all destroyed the stabilizing power of 

K-casein in the same way, and gave rise to the same insoluble 
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products. The general proteolytic activities of chymosin, pepsin, 

chymotrypsin, a microbial protease (De Koning, 1967), !_:._ parasitica 

protease (Larson and Whitaker, 1970) and .!i:_ pusillus protease (Yu, 

et al., 1968) vary, but their milk clotting activities seem to 

resu lt from the same specific action on K-casein . 

Normally, aggregation of caseinate micelles begins before 

enzyme action is complete. Thus, the primary and secondary phases 

of coagulation overlap (Peters and Nelson, 1960). Berridge (1942) 

was able to separate the two phases by taking advantage of their 

different temperature coefficients. The enzyme reaction proceeds at 

a reduced but reasonable rate at 0°C without producing clotting. By 

quickly raising the temperature of chymosin-treated milk to various 

levels, he was able to measure clotting time as a function of 

temperature and determine the temperature coefficient for the 

non-enzymatic phase of milk clotting. The difference between 

temperature coefficients of the enzymatic and non-enzymatic stages 

of coagulation has been useful not only as a basis f0r estimating 

the time of the non-enzymatic stage at various temperatures 

(Berridge, 1942; and Peters and Nelson, 1960), but also as the basis 

for a continuous curd forming process in which cold milk was treated 

with rennet for an extended period, then quickly brought to a 

temperature where curd formed instantly (Berridge, 1961 and 1963). 

Chymosin Substitutes 

The rennet deficiency has necessitated a substitution by other 

enzymes whose proteolytic properties and coagulating activity are 
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similar to that of rennet (Chojnowski, et al., 1981). Rennet 

extracted from the abomasum of young suckled calves, has 

traditionally been used for coagulation of milk for cheese making. 

The characteristic of rennet (chymosin) which makes it so suitable 

for cheese manufacture is its high ratio of milk-clotting to 

proteolytic activity. Chymosin exhibits a high degree of specifity 

which results in its very limited ability to hydrolyse protein 

substrates (Fish, 1957; Bang-Jensen, et al., 1964). 

In recent years , many studies have aimed to reduce the amount 

of rennet used for cheese manufacture . Such may be possible by 

coagula t ing with immobilized enzymes which could then be reused 

(Taylor, et al., 1976). But immobilized enzymes loose their 

activity and the immobilization process is expense. These enzymes 

lo se activity because of the deposition of proteins and peptides on 

the immobilized protease, and the enzyme may slowly detach itself 

from the support (Taylor, et al., 1977; Cheryan, et al., 1975). 

Furthermore, immobilized enzymes are not transferred to the 

coagulum, thus limiting the process of proteolysis during cheese 

ripening . 

Non-chymosin milk clotting enzymes have been used only in 

recent years. All proteolytic enzymes will clot milk under proper 

conditions (Berridge, 1954). They can be obtained from plant 

sources, bacteria, fungi, and animal organs. Most plant proteases 

have been unsatisfactory because of reduced yields of cheese, pasty 

bodied cheese, and bitter flavor (Lee, 1975). 
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Milk ~lotting enzymes from microbial sources have received 

considerable attention. These enzymes show greater proteolytic 

activity than calf rennet (Mickelsen and Fish, 1970 and Richardson, 

et al., 1967). Bacterial preparations are not used commercially 

because they impart off-flavor, render poor body and texture, and 

show excessive proteolysis (Green, 1972, Puhan, 1969 and Puhan and 

Steffen, 1967). Preparations from Bacil lu s subtilis, ~ megaterium, 

and ~ cereus produce lower yields of cheese due to continued 

proteolysis beyond milk coagulation by the bacterial proteases 

(Puhan and Irvine, 1973 and Singh, et al., 1967). 

Some fungal protease preparations have been found acceptance as 

milk clotting enzymes. Milk clotting enzymes from Endothia 

parasitica, Mucor miehei and Mucor pusillus have been accepted as 

suitable and safe substitutes for calf rennet in the manufacture of 

all varieties of cheese (Kirk, 1969 and Sam, 1972). 

Milk clotting enzyme from !i.~ ~sillus var. Lindt has been used 

as a chymosin substitute in a number of cheeses and has given 

satisfactory results (Richardson, et al., 1967). However, bitter 

flavor developed in Cheddar cheese after 14 months of ripening. M. 

pusillus proteases are less proteolytic than those of~ parasitica 

but both of them are more proteolytic than chymosin (Mickelsen and 

Fish, 1970). Commercial~ parasitica protease is used in 

manufacture of Swiss cheese of high quality. High cooking 

temperature (51.7-54.41°) is responsible for preventing excess 

proteolysis and allowing desirable quality. However, it produces 

Cheddar cheese and other lcw cooking temperature cheeses with bitter 



flavor and inferior body compar~d with control cheese made with 

rennet (Sardinas, 1968). 

9 

A protease obtained from M. miehei was tested in Europe and has 

been approved for use in the U.S . Ii:_ miehei protease was completely 

satisfactory for Swiss cheese (Lee, 1975). Prins and Nielson (1970) 

reported Chedda r cheese manufactured with Ii:_ mi ehei protease to be 

of good quality even after extended curing. Ernstrom and Wang 

(1974) have found Ii:_ miehei protease at recommended levels to yield 

Chedda r and other hard type cheese of satisfactory quality without 

bit t er flavor. 

Sternberg (1971) was able to prepare .ri:_miehei protease i n 

crystalline form and he also found cheese made with calf rennet and 

with M. miehei protease to be indistinguishable. Ottesen and 

Rickert (1970) showed the great stability of M. miehei protease. 

Over 90% of the activity was retained after 8 days of incubation at 

38°C and between pH 3.0 and 6.0. When incubated at pH 6 for 11 h in 

8 M urea, the enzyme lost no activity. 

Holmes, et al. (1977) reported that Ii:_ miehei and Ii:_ pus illus 

proteases are stable and active during cheese making. At dipping 

the curd reta "ined 6% of the !1..:_ pus i 11 us protease and 4% of the Ii:_ 

miehei protease. Distribution of.!'.!_:_ pusillus and~ miehei 

proteases between curd and whey was not pH dependent, in contrast, 

distribution of rennet was pH dependent. They also found that 83% 

of the enzyme activity from Mucor sources remained in the whey and 

17% in the curd. This suggests that these enzymes' contributions in 

cheese curing are minor compared to that of lactic starter 



organisms. Duersch (1976) found that!:!_:_ miehei protease was the 

most heat stable of all the milk clotting enzymes tested. 

10 

Porcine pepsin is an animal protease which has been recommended 

as a satisfactory substitute for part of the rennet in making a 

number of varieties of cheese (Emmons, et al., 1970 and Chapman and 

Burnett, 1968 and Melachouris and Tuckey, 1964). Pepsin is secret ed 

as inactive pepsinogen that has molecular weight of 40,400. 

Pepsinogen is stable in slightly alk aline or neutral solutions . 

Below pH 5 pepsin catalyzes conve r sion of pepsinogen to pepsin (Lee , 

1975) . Because of instability of porcine pepsin above pH 6.5, slow 

coagulation of milk could give a weak curd and high fat losses 

(Emmons, et al., 1970 and Chapman and Burnett, 1968). 
I 

Between pH 6.3 and 6.8 the milk clotting activity of porcine 

pepsin decreases much more rapidl y than that of chymosin (Tsugo and 

Yamauchi, 1959). In fact, at pH 6. 8 , porcine pepsin may not clot 

milk (Ernstrom, 1961). Pepsin shows high sensitivity to heat at 

pH's other than 6. 3, so it can be easily destroyed when no longer 

needed. 

Green (1972) reported that Ch eddar cheese made from bovine and 

swine pepsins were only slightly inferior in quality and intensity 

of Cheddar cheese flavor to rennet cheeses. Ratios of milk clotting 

activity to general proteolytic activity were high for rennet and 

bovine pepsin and low for swine pepsins. Bovine mucosa gave low 

milk clotting activities compared with calf stomach. Bovine pepsin 

resembles rennet much more closely than does porcine pepsin in many 

characteristics of importance for cheese making (Fox, 1969b). The 
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extreme pH dependence of the mi lk clotting activity of porcine 

pepsin makes it unsuitable for coagulation of milk of even 

moderately high pH. This is one reason why mixtures of rennet and 

porcine pepsin, rather than pepsin alone, are used in cheese making. 

The ability of porc ine pepsin to degrade B-casein more quickly 

than either calf rennet , or bovine pepsin may be significant, as 

many enzymes which are very proteo lytic and unsuitable for cheese 

making, e.g. ficin, papain , Bacillus subtilis protease etc. degrade 

B-casein very quickly (Fox, 1968) but rennet degrades s -casein 

slowly and on ly to a limited extent (Lindqvist and Storgards, 1962; 

Ledford, O'Sullivan and Nath, 1966; Fo x, 1969a). It might be 

inferred that inability to degrades -casein extensively is an 

essential characteristic of rennet and suitab l e rennet substitutes. 

Enzyme Activity and Stability 

To obtain accurate measurement of enzymes ' activit i es, it is 

important to assure the i r stability. Many fact ors affect enzyme 

stability, such as, temperature, pH, ioni c act ivity and specific 

ions in the substrate (Mickels en and Ernstrom, 1967 ). 

Prochymosin is stab le above pH 7 (Kleiner and Tauber, 1932). 

At room temperature i t is stable from pH 5.3 to 9.0 (Foltmann, 

1971). In contrast, the optimum pH for chymosin stability is 

between 5.3 and 6.3. It is unstable near pH 3.5 and moderately 

stable at pH 2.0 (Foltmann, 1959). Mickelson and Ernstrom (1967) 

found that at pH 3.5 chymosin was even less stable in the presence 

of sodium chloride. Instability near pH 3.5 may be due to self 



digestion (Foltmann, 1959), since this is near the optimum for the 

proteolytic activity of chymosin. 

Mickelsen and Ernstrom (1972) reported that blends of chymo sin 

and porcine pepsin are most stable at pH 5.5. Below pH 5 chymos i n 

activity is destroyed by pepsin, and above pH 5.5 pepsin becomes 

progressively les s stable. The re is no evidence that chymosin 

affects pepsin activity. The poor s tability of chymosin below pH 5 

at high ionic activity is at least· pa rtly ionic (Mickelsen and 

Ernst rom, 1967). 

Herriott (1962) found that porcine pepsinogen is stable i n 

neutral and slightly alkaline solutions . It undergoes reversibl e 

denaturation above 55 °C at pH 7 and at room temperature at pH 5. 

2 

The reaction i s catalyzed by pepsin and accompanied by splitting off 

about 20% of the molecule. 

Pepsin is a single chain peptide (Van Vunakis et al., 1957) 

with very litt le helical coiling, as judged by rotatory dispersi on 

measurement (Jirgensons, 1958 and Perlmann, 1359). There are on y 

three disulfide bonds in pepsin, and at least one of those is no t 

essential to enzymatic activity (Bovey and Yanari, 1954 and Herr ' ot, 

1962). Hydrogen bonding may not play an important role in 

stabilizing the molecular because 4M urea has little effect on 

inactivating the enzyme (Perlmann, 1956 and Steinhardt, 1938). 

Perlmann (1959) noted that pepsin contains nearly double the usual 

percentage of amino acids with hydrophobic side chains. 

Bovine pepsin was prepared in crystalline form by Northrup 

(1933). Bovine pepsinogen differs considerably in amino acid 
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composition from porcine pepsinogen (Chow and Kassell, 1968). Fox 

(1969a) found that milk clotting activ ity of bovine pepsin i s less 

pH dependent than that of porcine pepsin , and can coagulate milk up 

to pH 6.9 . The ratio of milk clotting activity to general 

proteolytic activity is higher of rennet and bovine pepsin than of 

swine pepsin. 

Protease from M. miehei is heat stable and survives l hat 

60 °C. ~ miehei protease is not metal dependent and does not have 

serine or SH groups associated with the active site (Sternberg , 

1971). Sternberg (1971) isolated this enzyme and found that its 

max imum stability is between pH 4 and 6. After 8 days incubation at 

38°C between pH 3 and 6 over 90% of acti vity was retained (Ottesen 

and Rickert, 1970). The enzyme lost no activity when incubated at 

pH 6 for 11 h in 8M urea. 

Protease from~ pusillus was more sensitive to pH change, 

between pH 6.4 to 6.8 than was chymosin, but much less sensitive 

than porcine pepsin (Richardson, et al., 1967). Richardson, et al. 

(1967) reported that M. pusillus protease is more stable than 

chymos in between pH 4.75 and 6.25. Mickelsen and Fish (1970) found 

~ pusillus protease much less proteolytic than I.:_ parasitica 

protease and more proteolytic than chymosin. 

I.:_ parasitica protease shows maximum stability between pH 3.8 

and 4.8. Below pH 2.5 activity losses are due to autolysis of 

the molecule (Whitaker, 1970). Sardinas (1968) found that I.:_ 

parasitica protease is completely destroyed in 5 min at 60 °C and pH 

4.5. Changes of pH ir. milk do not affect milk clottfog :Jctivity of 
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~ parasitica protease as much as they do the activity of chymosin 

(Larson and Whitaker, 1970 and Reps, et al., 1970). The ratio of 

milk clotting activity to proteolytic activity of this enzyme is 

lower than that of chymosin (Annibaldi, et al., 1970). 

In 1976, Duersch reported that protease from M. miehei is more 

heat stable between pH 5.2 and 7 held between 68.3 and 73.96°C for 

.25 to 10 min in Cheddar cheese whey than, in decreasing order of 

stability,~ pusillus protease, rennet, bovine pepsin,~ 

parasitica protea se and porcine pepsin. As the pH is increased the 

heat stability of all enzymes except~ parasitica protease 

decreases. ~ parasitica protease stability decreases with 

decrea s ing pH. A·11 enzymes except~ parasitica protease are 

inactivated at pH 7 with minimum heat treatment. M. miehei protease 

persists after 10 min treatment at pH 5.2 and 73.9°C. High cooking 

temperature inactivates~ para sitica and therefore doesn 1 t effect 

cheese dur ing ripening (Whitaker, 1970 and Sardinas, 1968) . 

Factors Affecting Coagulation 
and Enzyme Clotting Ability 

Many studies have been conducted to find the effect of 

different factors in milk clotting enzyme stability and clotting 

ability. Instability of enzyme always results in activity loss, 

Therefore, the factors which participate in enzyme instability must 

be controlled as much as possible. 

Effects of pH, temperature, calcium, and substrate on 

coagulation have been studied. Cheryan, et al. (1975) found that 

decreasing pH from 6.7 to 5.6 causes a 30 fold decrease in clotting 
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time. Effect of pH on the enzymatic phase of milk coagulation is 

minor compared to its effect on aggregation. Rate of increase of 

curd firmness following coagulation rises as pH is decreased from 

6.8 to 6.3 (Kowalchyk and Olson, 1977). Acidification with HCl 

reduces clotting time as a result of changes of Ca+2 activity 

(Ernstrom, 1961). Shalabi and Fox (1982) reported that direct 

acidification results in reduction of colloidal calcium phosphate 

concentration and increase of Ca+2 activity so clotting time is 

increased. 

Aggregation of renneted micelles is dependent on the 

solution conditions. A decrease of pH from 6.8 to 6.3 accelerates 

the reaction by a factor of about 2 (Kannan and Jenness, 1961). 

Cheryan, et al. (1975) found that decreasing temperature by 

l0 °C reduces the rate of the enzymatic phase by a factor of 2 and 

the aggregation phase by a factor of 11 to 12 . Most enzymatic 

reactions have temperature coefficients between 2 and 4 (Berridge, 

1942). The 010 for the enzymatic phase of milk coagulation at pH 

6.7 between 1 and 30°C is 1.8 to 2 (Nitschmann and Bohren, 1955). 

Temperature is of considerably more importance, causing more than 

five fold increase between 31 and 40°C (Kay a~d Dykes, 1977). The 

effect of temperature is complex, in that the Arrhenius plot for 

aggregation of completely renneted micelles is not linear but shows 

a gradually decreasing temperature coefficient as temperature is 

increased. Proteolysis of K-casein is unaffected by presence of 

other caseins but their presence appears to modify its aggregation 

behavior. In the absence of Ca+2, para- K-casein appears to 
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associate with as,-and S-caseins and does not precipitate, as it 

does when K-casein is isolated (Lawrence and Creamer, 1969 and Berry 

and Creamer, 1976). 

At temperatures less than 8°C, K-casein proteolysis takes place 

in the absence of coagulation. Coagulation occurs on subsequent 

warming. However, extensive proteolysis with immobilized chymosin, 

even at low temperature, is not sufficient to prevent aggregation 

(Dalgleish, 1979). Kowalchyk and Olson (1977) reported that the 

effect of temperature on aggregation suggests that hydrophobic 

interactions play an important role in micelle aggregation and 

formation of gel network. 

Addition of CaC1 2 to milk reduces the amount of enzyme required 

for optimum curd formation and decreases clotting time (Ernstrom, 

1958). McMahon, et al. (1984) found that addition of CaC1 2 up to 

.05 M causes reduction of clotting time to a minimum. At high CaC1 2 

(.4M), clotting time is retarded severely, and only weak curd is 

obtained. 

Concentration of substrate plays an important role in 

coagulation. Concentration of milk by ultrafiltration results in 

fairly constant coagulation time. However, the amount of casein not 

incorporated into the curd at clotting time increases (Dalgleish, 

1981). Dalgleish (1981) reported that 11 % of the casein is not 

incorporated into the curd in unconcentrated milk. However, 50% is 

not incorporated in 4X concentrated milk. Dalgleish (1981) also 

reported that the subsequent behavior of these "free" casein 

particles may determine final properties of the curd. The 
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proportion of casein that forms the initial curd decreases as 

clotting time increases. At clotting time, enzyme concentration 

required to produce the same proportion of casein incorporated into 

the coagulum, increases in proportion to concentration factor of the 

milk (Dalgleish, 1981). Coagulation time is reduced as milk is 

concentrated. 

Coagulation time increases upon dilution of milk and is 

dependent on dilution factor (Ruegg, et al., 1974). As 

concentration of milk increases, extent of K-casein proteolysis at 

clotting decreases (Garnot and Corre, 1980). The volume of aqueous 

phase also decreases and shortens the mean free distance between 

micelles (Garnier, 1973). At low substrate concentration 

aggregation rate is slow compared to proteolysis. At high 

concentration overall rate is dominated by rate of enzymatic action 

(Dalgleish, 1980). 

Effect of milk clotting enzymes on coagulation has been 

investigated by many workers. Milk clotting enzymes from both 

animal and microbial sources are used in cheese making. The prime 

action of milk clotting enzymes is proteolysis of specific bond in 

K-casein. Beyond that, different enzymes vary in their proteolytic 

activity on K-casein and other proteins (Ernstrom and Wang, 1974). 

Most calf rennet substitutes are more proteolytic relative to their 

milk clotting activity than is calf rennet. If proteolytic activity 

is excessive, bitter flavor, cheese yield and fat retention by the 

curd may be diminished, and during cheese ripening, this can have 

undesirable effects on cheese body and texture (Green, 1977). Curd 

firming rates vary from enzyme to enzyme with the more specific 
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1978). 
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The effect of type of milk clotting enzyme, CaC1 2 

concentration, and season of year on milk clotting time and curd 

firmness were studied by Kowalchyk and Olson (1979) using proteases 

derived from~ miehei, ~ pusillus, rennet and mixture of rennet 

and porcine pepsin . They reported that curd formed by~ miehei and 

~ pusillus proteases at pH 6.7, 30°C and pH 6.3, 23 °C firms less 

rapidly tha n curd formed by the other enzymes. Addition of CaC1 2 t o 

mi l k increas es the rates of firming of gel formed by all en zymes 

tested and reduces clotting times. The effect of season on clotting 

times of mil k treated with rennet was not clearly noticeable. 

Rate of firming of clots formed from milk varied markedly at various 

seasons. Seasonal variations showed a greater effect on clot-to-c~t 

time than the other factors. Time from clotting to cutting are 

longer for~ miehei and~ pusillus proteases than for chymosin and 

calf rennet/porcine pepsin mixture. At pH 6.5, 30°C and pH 6.3, 

34°C no significant differences in rates of firming between gel 

for~ed by the various enzymes. Gel formed by!:!.:_ miehei and M. 

pusillus proteases (at pH 6.4, 30°C and pH 6.5, 34°C) firms less 

rapidly than gel formed by the other enzymes. 

There is about 3 min difference in clot-to-cut time between 

milk clotted with rennet and with!:!.:_ miehei and !i.:_ pusillus 

proteases at pH 6.5, 34°C compared to 7.8 and 9.2 min differences 

between milk treated with!:!.:_ miehei and Ii.:_ pusillus proteases and 

rennet at pH 6.7 and 30°C. Also milk samples treated at pH 6.6 and 
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31°C with !::1.:_ pusillus protease firm significantly slower than milk 

samples treated with other enzymes. These results suggest that it 

may not be suitable to standardize milk clotting enzymes solel y on 

clotting time since rates of firming of curd from commercial milk 

sup~lies vary (Kowalchyk and Olson, 1979). 

Handy and Edelston (1970) stud ied the effect of NaCl, CaC1 2 and 

temperature on clotting activities of enzymes from Ii.:_ mi ehei, E. 

parasitica and~ pusillus and from commercial calf rennets. 

Coagulation time us ing calf rennet was reduced by addit ion of NaCl 

to milk. Adding .2 to .3% NaCl reduced coagulation time to 87 % of 

that when no NaCl was added. Addition of .5 to .7% NaCl to protease 

from M. miehei .3 to .4% NaCl to protease from~ parasitica, and "4 

to .6% NaCl to Ii.:_ pusillus protease reduced clotting times to 68.8, 

86 and 64 % respectively. Addition of more than .6% NaCl to calf 

rennet and more than 1 .5% to~ miehei or I.:.. para~itic~ protease 

increa ses clotting time. Addition of .05, .075, .04, and .05% CaC1 2 

to~ miehei, I.:.. parasitica, Ii.:_ pusillus protease and calf rennet 

reduced the clotting time by 50 %. Increasing incubation temperature 

from 37°C to 42°C reduced by one-half the clotting time for !::1.:_ 

miehei protease. Microbial rennets are more sensitive to chan~e in 

temperature from 37°C to 42°C than from 35°C to 37°C. Optimum 

activity for all four enzymes is 42°C. 

Methods for Measuring Chymosin Activity 

Several methods have been used to measure chymosin activity. 

The rate at which the product of enzyme catalyzed reaction appears 
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or the rate at which substrate disappears is used very commonly in 

measuring enzyme activity. Milk clotting is a complex process 

involving two reactions, the primary (enzymatic) and the secondary 

(non-enzymatic). 

It is difficult to create a standard milk substrate for the 

clotting test bec ause of natural variations in milk composition. 

The ability of a protease enzyme to catalyze hydrolysis of a 

specific Phe-Met peptide bond in K-casein is used as criteria in 

measuring the en zyme act i vity (Delfourd, et al . , 1965; and Jolles , 

et al., 1968) under a set of specified conditions. There are 

problems in accurately observi ng the end point of coagulation and 

s t an dard~zing the conditions of the clotting test . 

Berridge (1952b) suggested reconstituted non-fat dry milk (12%) 

as a substrate for measuring milk clotting activity. This substrate 

is prepared by dissolving 12 g of non-fat dry milk in 100 ml of .01 

M CaCl ~ . Test tubes with 10 ml of substrate are placed in a 30 °C 
L 

water bath for 30 min; then l ml of diluted enzyme extract is added 

to each tube. The clotting time is determined by measuring time 

from addition of the enzyme until tiny flakes become visible on the 

inner surface of the test tubes. Berridge later (1952a) improved 

the technique of detecting the end point of the enzyme reaction. A 

stirring rod was dipped into the substrate and touched to the side 

of the test tube. This allows milk adhering to the rod to flow down 

the side of the test tube forming a flowing film. 

Sommer and Matsen (1935) first described an apparatus for 

measuring c1otting time which has been used for many years. The 
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apparatus consists of a rectangular metal box filled with water at 

constant temperature (30°C). A number of tilted metal rods rotate 

an d are used to restrain sample bottles on. Wide mouth bottles 

containing 50 ml of substrate each are rested on the rods, partially 

submerged into the water. The substrate is inoculated with one 

milliliter of diluted (1:50) enzyme. Clotting times are mea sured by 

timer attached to the apparatus. Times are measured from addition 

of enzyme until appearance of flakes on the inner surfaces of the 

rotati ng bottles. 

The combination of Sommer and Matsen apparatus and Berridge 

substrate in measuring chymosin activity was applied by Ernstrom 

(1958). He proposed that the substrate be stored at 2°C for 20h 

before use because it co ntinues to show increase in clotting t ime 

for 20h after its preparation wh en kept at 2°C. The activity of 

unknown ac t i vity chymosin extrac t i s determined by measuring the 

required amount of time for one milliliter of an appropriate 

dilution of the unknown extracted to clot 25 ml of Berridge 

substrate. This is compared to the time required for 1 ml of known 

dilution of standard activity rennet extract to clot the same amount 

of an identical substrate. The activity of undiluted standard 

chymosin is arbitrarily assigned the value of 100 chymosin units 

(CU) per milliliter. The following equation is used to calculate 

the activity of an unknown solution. 

CU/ml = 100 ~ X .f.?_ 
Tu Cu 
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where 

CU/ml = chymosin units/ml of unknown 

100 = chymosin units in one ml of undiluted standard chymosin 

Ts = coagulation time with standard chymosin 

Tu = coagulation time with enzyme of unknown activity 

Cs = concentration of standard enzyme 

Cu = concentration on unknown enzyme 

DeMann and Batra (1964) used an automatic blood clotting timer 

in measuring chymos i n clotting activity in milk. This method 

requires less substrate and has an automatic end-point detector, and 

it is faster than the Sommer and Matsen method. The ratio of en zyme 

solution to substrate is higher than is used with most other 

clotting tes t s. Therefore, care must be exercised to prevent 

differences in pH or salt concentration in the enzyme solution from 

affecting the clo t ting time. 

The clotting point can also be determined by measuring the 

increase in velocity of ultrasonic energy passing through a sample 

(Everson and Winder, 1968). 

Douillard and Ribadeau-Dumas (1970) used the clotting time of 

K-casein solution for measuring the activity of chymosin, porcine 

pepsin, and bovine pepsin. They reported that precaution must be 

taken to control ionic activity, pH, and K-casein concentration in 

order to obtain an accuracy of 1% within a single laboratory. 

Change in milk viscosity was used as an indicator of 

clotting time by Scott-Blair and Oosthuizen (1961). A difficulty 

which often affects this method is that plots of changes in specific 
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viscosity versus time of chymosin action on caseinate solution 

always give the same slope, but the slope varies with different lots 

of rennet extract. This has been attributed to differences in 

protease content between the extracts. 

Gorini and Lanzavecchia (1954) devised a sensitive substrate 

which was modified by Wang (1969) and used by Reyes (1971) to 

measure residual chymosin in curd and whey. Reyes' (1971) procedure 

is nearly 12 times more sensitive than the Berridge method and 

facilitates measurement of chymosin activities as low as .01 CU/ml. 

An assay method involving linear diffusion of milk clotting 

enzymes through a casein-agar diffusion substrate was developed by 

Holmes and Ernstrom (1973). Holmes (1974) was able to measure 

rennet at concentration as low as x 10-4 CU/ml. Casein-agar 

substrate was put into 3 mm x 110 mm sedimentation tubes. This 

substrate consists of .5% casein, .01 % CaC1 2, .7% ion agar and 3.6% 

sodium acetate. To the surface of the substrate in each test tube, 

5 wl samples of enzyme solution are deposited and allowed to diffuse 

through the casein agar. As the enzyme diffuses through the 

substrate, a white precipitation band is formed as a result of 

action of enzyme on casein. Diffusion distance is proportional to 

enzyme concentration. Density of the precipitate at the leading 

edge of the band is a function of casein concentration and is 

independent of enzyme concentration. The disadvantage of this 

method is incubation for 48h before measuring activity. In 

addition, use of a highly purified agar is required due to 

sensitivity of whole casein to calcium. Clouding is frequently 
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produced in the diffusion tubes when using whole casein and CaC1 2 in 

the substrate. This makes detection of diffusion distance 

difficult. This was eliminated by replacing whole casein with 

K-casein, eliminating the CaC1 2 and raising the pH to 5.9 (Duersch, 

1976). The advantages of this method over other methods of enzyme 

analysis are greater sensitivity, easy measurement of diffusion 

distance with a densitometer and no effect of whey solids or salt on 

diffusion. 

The Formagraph instrument has been evaluated and used in 

measuring milk clotting ability (McMahon and Brown, 1982, 1983). It 

consists of ten adjacent sample wells in a rectangular block. This 

block moves slowly from side to side. A pendulum with a wire loop 

on the end is immersed into the sample wells. This remains vertical 

as long as the milk in the well is liquid. When the milk starts to 

clot, the pendulum tilts as the heating block moves. A straight 

line appears on the graph paper as long as the sample are not 

coagulateG. Once the milk starts to clot, the pendulum begins to 

tilt as the heating block mo ves. McMahon and Brown (1983) suggested 

that this method can measure milk clotting enzyme activity v1ithin 

the range of the gel diffusion test of Holmes et al. (1977). 

McMahon, et al. (1984) reported that the clotting activity and 

coagulation properties could easily be followed using a Beckman 

DU-88 UV/vis spectrophotometer with a temperature controlled cuvette 

holder and light scattering accessory. They monitored changes in 

apparent absorbance at 600 nm of milk as a result of clotting enzyme 

action. 
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Methods for Protein Determination 

Protein content assay of any substance usually depends on 

determining a specific element or group in the protein, and 

calculating the protein content by multiplying by an experimentally 

determined factor. Methods based on analysis for constituents of 

proteins include those for determining carbon or nitrogen, certain 

amino acids, or the peptide linkage. Iron in hemoglobin, iodine in 

thyroglobulin and nitrogen in milk and some other foods can be used 

as basis for protein assays. In all these methods, it is assumed 

that the constitueRt determined is present entirely in the protein 

fraction. Thus, any nonprotein carbon-containing matter must be 

removed if the protein content is to be determined from the carbon 

content; and if the Kjeldahl is used, protein-nitrogen only should 

be measured. The common practice of estimating protein content of 

food from total nitrogen is not always correct. Presence of 

nonprotein nitrogen compounds is generally small compared to the 

protein content of most foods. 

Carbon analysis has several advantages over other methods for 

determining protein content in foods. Digestion can be done easier 

than for nitrogen determination, and high percentage of carbon 

minimizes experimental error and provides a relatively constant 

conversion factor. The disadvantage is difficulty of a complete 

quantitive separation of protein from nonprotein carbon-containing 

components. 

The most commonly used procedure for protein assay is nitrogen 

determination . It is generally assumed that a mixture of pure 
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proteins contains 16% nitrogen. Reporting protein content confuses 

people because of different conversion factors which are used by 

different laboratories. To eliminate this confusion, nitrogen 

percent rather than protein content has been used. The general 

factor of 6.25 (100/16) is used for most foods. For milk and meat 

the factors are 6.38 and 5.7 respectively (Jones, 1931). Protein 

isolation and characterization, including area composition, provides 

th e basis for a continuous reexmaination of the conversion factors 

(Tkachuk , 1966). 

Kjeldahl (1883) invented a method for determining organic 

nitrogen in his study on protein changes in grain used in the 

brewing industry. This method was modified by Bradstreet (1940, 

1965). Digestion with sulfuric acid continues until carbon and 

hydrogen are oxidized and protein nitrogen is reduced and converted 

into ammonium sulfate. After that, sodium hydroxide is added and 

th e sample is distilled to release ammoriia into a known volume of a 

standard acid solution. Unreacted acid is determined and the 

results are transformed, by calculation, into a percentage of 

protein in the original sample. Potassium sulfate is used as 

catalyst to accelerate the digestion with sulfuric acid, raise the 

boiling point of the digestion mixture and shorten the reaction. 

Excessive ratios of potassium or sodium sulfate to acid may result 

in heat decomposition and loss of ammonia. Usually, digestion 

temperatures of 37° to 41°C are best. Histidine and tryptophan 

rich protein require long or severe digestion conditions. 
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Mercury, copper and selenium have been used very widely as catalysts 

in Kjeldahl digestion. Mercury is superior to copper, but 

additional steps are required to precipitate the mercury. 

Mercury-ammonia complex which forms during digestion can be 

decomposed by adding sodium thiosulfate to the digest. Selenium has 

more rapid effect tha n mercu ry and requires no further treatment 

before distillation. However, excessive amount of selenium and 

uncontrolled digestion temperature would cause nitrogen loss. 

Se ve ral methods are available to determine the ammonium sulfate 

in the digest. The digest may be alkalized and the libera t ed 

ammoni a absorbed in acid measured titrimetrically or 

calorimetrically (Van Slyke and Hiller, 1933). Colorimetric method 

consists of reacting a solution containing ammonium ions with 

alkaline phenol and hypochlorate. On heating the solution an 

intense blue color is produced, which is closely related to that of 

indophenol (Mann, 1963; Varley, 1966). With the development of a 

continuous digestion module (Ferreri, 1960), it is possible to 

determine nitrogen in biological fluids or suspensions within 

several min. The digestion followed by a colorimetric determination 

in a neutralized digest to which alkaline phenol and sodium 

hypochloride are added. An automated Kjeldahl analyzer for 

determination of nitrogen in biological material was described by 

Siriwardene, et al. (1966). This methods is capable of handling 20 

samples an hour, reduces the labor involved to a minimum, and still 

maintains a high degree of accuracy and reproducability. 
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In the classical Dumas procedure (1831), nitrogen was freed by 

pyrolysis, and free elemental nitrogen was determined 

volumetrically. Precise and accurate analysis of nitrogen in 

organic materials has been ensured by major improvements in both the 

pyrolysis and nitrogen determination (Sternglanz and Kollig, 1962). 

Improved catalysis and rapid gas chromatographic methods for 

nitrogen determination make it possible to assay on a microscale in 

2 min. In 1965, a fast neutron activation analysis was developed by 

Wood for analyzing the nitrogen content of foods. In spite of the 

large initial cost of installation, it shows promise for precise and 

rapid (about 5 min) assay of protein in various foods. 

A simple, rapid and inexpensive procedure, the biuret method, 

was proposed by Riegler (1914). Compounds containing two or more 

peptide bounds take on a characterist ic purple color when treated 

with dilute copper sulfate in alkaline solution. The name of this 

method comes from the compound biuret, which typically gives a 

positive reaction. The color is apparently caused by the 

coordination complex of the copper atom and four nitrogen atoms, two 

each from two peptide chains. This method is fairly reproducible 

for any protein, and it gives an accurate estimate of protein, but 

requires relatively large amounts of protein (1-20 mg) for color 

formation. In contrast, Kjeldahl procedure measures total nitrogen 

and does not distinguish between protein and non-protein nitrogen 

(Miller and Johnson, 1954). 

Phenol-reagent method is used widely for determination of 

protein in solution and dried material. ·rhis method is based on 
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interaction of proteins with phenol reagent and copper under 

alkaline conditions (Wu, 1922). Important modifications of this 

procedure was done by Fol in and Ciocalteau (1927) and Lowry, et al. 

(1951). The color formed by Folin-Ciocalteau reagent is caused by 

reaction of protein with alkaline copper in the reagent and 

reduction of phosphomolybdate-phosphotungstate salts in the reagent 

by the tyrosine and tryptophan of proteins. This method i s more 

sensitive than ultraviolet absorbance and the biuret method. The 

method is rel at i vel y specific, since few substances encountered in 

biological materials cause serious interfere (Solecka, et al., 

1968). This method is mo re time consuming than direct absorbance 

measurement at 280 nm , i s destructive, and requires multiple 

operations on each sample and incubation between additions of 

reagents. 

Warburg and Christian (1941) used the direct spectrometric 

method (UV 280 nm) as a rapid and fairly sensitive protein 

determination. Most protein shows a maximum ultraviolet absorbance 

at 280 nm due to presence of tyrosine, tryptophan and phenylalanine. 

The combined level of these amino acids in proteins differs within a 

reasonably narrow range. Concentration of protein (in pure 

solution) is generally proportional to absorbance at 280 nm. Such 

assays are advantageous because they are rapid and they allow full 

recovery of the assayed protein. 

Fraenkel-Conrat and Cooper (1944) reported for the first time 

that proteins bind quantitatively, under specified conditions with 

certain organic dyes. This method is called dye-binding. Dye 
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binding can be used to determine total acidic and basic groups of 

proteins. Specific group reagents for proteins were reviewed by 

Olcott and Fraenkel-Conrat (1947) and by Rosenberg and Klotz (1960). 

Disulfonic anionic dye, Orange G is bound at pH 2.2 (Udy, 1954, 

1956). This dye binds specifically under acidic conditions to free 

amino groups, lysine, the imidazole group of histidine, and the 

guanidino group of arginine. Protein estimation by dye binding has 

been improved by using acid orange 12 dye, that is structurally 

identical to orange G with the exception that acid orange 12 has 

only one sulfonic acid group. Quantitative reaction occurs between 

the dye and protein to form an insoluble complex. Binding capacity 

can be calculated by measuring the concentration of unbound dye 

colorimetrically. The dye binding procedure is rapid and eliminates 

the problems of skillful manipulation and corrosive reagents of the 

Kjeldahl procedure. 

Additional dyes (cochineal red A, buffalo black, and amido 

black 108) have been recommended, mainly for meat protein 

determination and milk products. Amido black 108 gives greater 

change in optical density (per unit of milk protein) than orange G 

(Tarassuk, et al., ·1967). The dye binding capacity of milk 

protein is not affected by homogenizing, condensing, or heating to 

90° for 15 min. Extensive proteolysis increases dye binding, 

whereas heating to browning reduces it. The dye binding test is 

considered suitable for normal milk samples, but not for atypical 

milk such as colostrum, mastitis, and very late lactating milks 

(Tar ass u k , et a 1 . , l 96 7) . 
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It was reported in 1964 that formal titration can be used in 

determining the protein content of natural and processed milk 

including ice cream (Drux and Bauer, 1964; Hill and Stone, 1964) . 
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EXPERIMENTAL PROCEDURES 

Enzymes 

Five different commercial enzymes were used: calf rennet, 

chymosin/pepsin mixture, bovine rennet, .!:!_:._ miehei protease, and 

modified ~ miehei protease. These enzymes were obtained from 

Marschall Division, Miles Laboratories, Inc. A purified calf rennet 

extract with 100 chymosin units (CU) of activity per milliliter was 

obtained from the New Zealand Cooperative Rennet Co., Ltd., Eltham, 

New Zealand. All dilutions were with distilled water and diluted 

enzymes were maintained at below 2°C throughout the experiment. 

Separation 

The five enzy~es were fractionated using Sephadex G-100. 

Samples of one milliliter of each enzyme were applied to a Sephadex 

G-100 column (50 cn1 x l .5 cm), which had been equilibrated with pH 

5. 7 phosphate buffer. Gel columns were prepared by dissolving 4 g 

G-100 in 500 ml water and holding it in a boiling water bath for 5 

h. Fractions of 200 drops each were collected in 30-40 tubes from 

each enzyme. Fractionation was done in a cold room (5°C). Each 

fraction was tested for milk clotting ability and for coagulation 

properties. In addition, each fraction was tested for protein lost 

in whey. 

Clotting Test 

Substrate. Low heat non-fat dry milk was used as substrate in 

determining milk clotting ability of enzyme samples. This substrate 
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was prepared by reconstituting 12 g of non-fat dry milk powder in 

100 ml of .01 M CaC1 2 (Berridge, 1952b). The substrate was kept for 

20 h at 5°C before use. 

Measurement of Clotting Activities. The clotting ability of 

commercial enzymes and of those fractions eluted from the column 

were measured usin g a Formagraph instrument as described by McMahon 

and Brown (1982). Times required for coagulation of substrate with 

commercial and fractionated enzymes were compared to times required 

for known di luti ons of a standard rennet extrac t to coagul at e 

substrate under the same conditions. All tests were run in 

duplicate and standard rennet extract dilutions were tested 

simultaneously with the enzyme fractions. 

Protein Determination in Whey 

The concentrations of the five coagulants were adjusted so they 

were all at the same activity. A sample of 500 l of each coagulant 

was added to 100 ml of pasteurized whole milk. The temperature of 

the mi"lk was brought to 35°C before adding the· enzyme. Milk and 

coagulant were mi xed by stirring and held at 35°C for 30 min. The 

curd was then cut with a spatula and held in the whey at 37°C for an 

additional 2 h. The whey was then drained through three layers of 

nylon filter and whey nitrogen was measured by Kjeldahl. Commercial 

and purified enzymes were adjusted to the same activities as pairs. 

Protein lost in whey from each fractionated and commercial enzyme 

pair was compared. 
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Protein lost in whey was determined by Kjeldahl procedure 

(Associati on of Official Analytical Chemists, 1980). Five grams of 

sample was digested with 2 g of Na 2so4 plus 2 ml mercuric sulfate 

(10 gin 12% H2so4). Digestion continued for 2 h. Distillation was 

for 2 min then each sample was titrated with HCl (.0903 N). A 

mixture of methyl red and bromocresol green indicator was added to 

boric acid which was used to receive the ammonia distillate. 

Titration ended when a pinkish-grey endpoint was reached. Percent 

nitrogen was calculated from mola r ity of acid, sample weight, volume 

of acid used in titration after subtracting volume of acid used to 

titrate the blank sample, and the molecular weight of nitrogen. 

Estimates of whey protein were made by multiplying whey 

nitrogen by 6.38. This whole procedure was repeated 23 times with 

each of the five commercial coagulants. Each pair of commercial and 

fractionated coagulants was compared with each other after they had 

been tested 18 times. 

Testing Coagulation Properties 

Coagulation of each commercial and improved enzyme was followed 

using a Beckman DU-BB UV/Vis Spectrophotometer. Three milliliters 

of Berridge substrate was placed in a l cm path length cuvette and 

heated to and maintained at 35°C. Spectrophotometer absorbance was 

set to zero with slit width at 2 nm. The reaction mixture was 

stirred rapidly (<lOSec), then changes of apparent absorbance at 600 

nm were recorded every 4 sec and transmitted to a Tektronix 4052 

micro-computer for analysis. 
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RESULTS 

Protein recovery and coagulation properties of the five 

commercial and purified enzyme prepara tions were determined. 

Percent protein lost in whey was used as an indication of protein 

recovery in curd obtained by the fi ve pairs of commercial and 

improved enzymes. An example of the coagulants fractionation on a 

Sephadex G-100 column is shown in Figure 1 (Shaker, 1983). The 

shaded peak represents the portion of the elution curve which clots 

milk . 

Figure 2 illustrates a comparison of protein lost to whey from 

the five commercial clotting preparations . Analysis of variance 

showed that there were significant differences among the five 

coagulants. Duncan 1 s Multiple range test showed that calf 

rennet/porcine pepsin mixture and M. miehei protease were not 

significant ly different from each other and that bovine rennet , calf 

rennet and modified ~ miehei protease were not different from each 

other, but that the two groups were significantly different from 

each other. 

Each of the five coagu l ants and the improved preparations made 

by selecting the clott ing fractions and discarding all others 

fractions were tested for clottin g activity with the Formagraph. 

Concentrations were adjusted to match clotting activities of 

original enzyme preparations with the purified samples made from 

them. Each pair was then used to clot milk to obtain whey . The 

whey from each pair was then tested 18 times and analysis of 
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variance were used to determine the significance of differences 

between original and purified preparations in protein lost to whey. 

Percent protein lost to whey from original and improved calf 

rennet preparation are shown in Figure 3. Original calf rennet 

preparation resulted in more protein lost to whey than the improved 

enzyme preparation. However, there was not a significant decrease 

in protein loss by purification of this enzyme. Commercial 

preparations has a mean of 1.03 and standard error of mean of .014. 

Mean and standard error of mean of the improved preparation are .98 

and .015 respectively. 

As shown in Figure 4, bovine rennet was improved significantly 

by purification. Means of protein lost to whey from original and 

improved enzyme were 1 .034 ± .014 and .985 ± .015 respectively. 

Figure 5 illustrates significant differences in percent protein 

loss to whey when commercial and purified calf rennet/porcine pepsin 

mixture were used to coagulate the substrate. The commercial 

preparation has a mean of 1.05 and standard error of mean of .02. 

The improved enzyme resulted in less protein lost to whey. The mean 

for this enzyme is .98 and the standard error of mean is .017. This 

enzyme was improved significantly by gel filtration. 

Commercial and purified!'.!..:_ miehei protease preparations did 

not show significant differences in percent protein lost to whey. 

Figure 6 represents the means and standard error of the mean of 

percent protein lost to whey from the original and improved enzyme. 

The mean for the commercial and purified enzyme are 1 .05 and 1.033 

respectively. Standard e~rors of ~eans were .017 and .0177 

respectively. 
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Modified!:!.:_ miehei protease was improved by gel filtration but 

not significantly. As shown in Figure 7, the commercial enzyme 

preparation yielded a higher percentage of protein lost to whey than 

the one from the improved preparation. The commercial preparation 

had a mean of 1.05 with standard error of mean .02. The improved 

enzyme had a mean of 1.003 with standard error of .016 . 

The coagulation curves of the commercial and improved enzyme 

preparations were fo llowed through their various phases by 

monitoring apparent absorbance of mi lk at 600 nm. Figu re 8 shows 

the coagulation of the five commercial enzymes. The concentrations 

of these enzymes were adjusted to equal milk clotting activities. 

Figure 9 is an expansion of the first part of Figure 8. 

Coagulation of Berridge substrate with each pair of commercial 

and improved enzymes was followed and is illustrated in Fi gures 10 

through 14. Figure 10 represents the coagulation properties of 

purified and commercial calf rennet. Coagulation of substrate with 

bovine rennet, both commercial and purified, is shown in Figure 11. 

The coagulation properties of commercial and purified calf 

rennet/porcine pepsin mixture, !:!.:_ miehei and modified M. miehei 

protease are shown in Figures 12, 13 and 14 respectively. 
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DI SC USS ION 

Protein Recovery 

Percent protein lost to whey from five different commercial 

milk clotting enzyme preparations: calf rennet, bovine rennet, calf 

rennet/porcine pepsin mixture,!:!..:... mie~~ protease and modified ii:_ 

miehei protease (Figure 2) were significantly different. Calf 

rennet resulted in more protein retained in curd than other enzymes. 

The mean value for protein lost to whey from this enzyme is 1 .01 and 

the standard error of mean is .0174. Both bovine rennet and 

modified M. miehei resulted in lower protein lost to whey than calf 

rennet/porcine pepsin mixture and ii:_ miehei. The mean value for 

protein lost to whey from bovine rennet was 1.05 and the standard 

error of mean was .021. Likewise the mean and standard error of 

mean values for modified M. miehei were 1.0363 and .020 

respectively. The calf rennet/porcine pepsin mixture and M. miehei 

protease showed higher protein lost to whey than the others. The 

mean value for these two enzymes were 1.1132 and 1.1135 

respectively, and the standard errors of means for these enzyme were 

.019 and .022 respectively. Calf rennet/porcine pepsin mixture and 

M. miehei protease were not significantly different from each other 

and the bovine rennet, calf rennet and modified~ miehei protease 

were not significantly different from each other. However, the two 

groups were significantly different from each other. 

Figures 3 through 7 represent protein lost to whey from each 

pair of commercial enzyme and improved enzyme. Reduction in protein 
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lost to whey after purification was observed in all five pairs, but 

some differences are significant and some are not. Improved bovine 

rennet (F igure 4) and calf rennet/porcine pepsin mixture (Fi gure 5) 

showed significant reduttion in protein lost to whey as compa red to 

commercial samples. This agrees with previous work in f inding that 

gel permeation decreased proteolysis by bovine rennet and ca lf 

rennet/po rcine pepsin mixture more than the other three enzymes 

(Shaker and Brown, 1984). This suggests that reduct i on in percent 

protein lost to whey from improved enzyme could be due to removal of 

those fractions which have high proteolytic activity and low 

clotting activity or no clotting activity. Excluding these fraction 

increases enzyme specificity for milk clotting . Ultimately, this 

should resu l t in less bitter flavor in r ipened cheese. (The means 

and standard errors of means for the paired commercial and improved 

enzymes are given in the Appendix.) 

Calf rennet, !i.:_ miehei and modified !i.:_ miehei proteases 

(Figures 1, 2 and 3) each showed no s ign i fica nt difference in 

protein lost to whey from the pair of commercial and improved 

preparations. The fractions with high clotting activity could also 

ha ve high proteolytic activity. It is not possible to reduce such 

proteolysis of the clotting fraction by size exclusion separation. 

The primary cleavage site for the clotting reaction is the 

Phe105 -Met106 bond of K-casein. Proteolytic attack at other sites 

in K-casein, or on as or s-caseins, is generally undesirable because 

it causes casein degradation and eventually increases percent of 

prote in lost to whey. Chymosin is known to give minimum general 
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proteolysis, and substitutes are usually chosen on the basis of high 

clotting activity (rapid attack on the Phe105-Met106 bond) of 

-casein combined with low general proteolytic activity. High 

general proteolysis may lead to losses of peptide material into 

solution during the curd-forming process, resulting in decreased 

yield of curd. The attack of as and s -caseins by chymosin is s lower 

than the specific attack on K-casein by a factor of about 100, so 

that such reactions occur to only a minimal extent during curd 

formation (Dalgelish, 1982). 

Acid proteases other than chymosin show different rates of 

non-clotting proteolysis and prefer different sites in a , and s 

s -caseins. Porcine pepsin is considerably more proteolytic than 

chymosin (D e Koning, et al., 1978). Acid proteases are less 

restricted in their action toward the Phe 105 -Met106 bond of K-casein 

than is chymosin. Chymo sin shows less non-specific proteolysis, and 

proteolysis of caseins other than K-casein is relatively slow in 

relation to the primary attack on K-casein. 

Coagulation Properties 

Coagulation by the five commercial and improved enzyme 

preparations was followed by monitoring of apparent absorbance of 

Berridge substrate at 600nm. Figure 8 shows the coagulation curves 

for the five commercial enzyme preparations after adjusting their 

activities to the same activity. Measurements were in absorbance 

units, and are a consequence of light scattering changes caused by 

changes in molecular weight, size, and number of colloidal casein 

micelle aggregates . 
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As a result of enzyme action on K- casein, the macropeptide part 

of K-casein is released (Payens, 1978). This part represents 10-15% 

of the weight of whole casein, therefore, a decrease in the 

molecular weight of about 3-4% of the micelle is expected by the 

time all of the K-casein is hydrolyzed (Payens, 1977). Also, the 

average diffusion coefficient of the micelles shows a decrease 

(Payens, 1977). Decrease in the average molecular weight, reduction 

of volume and change of shape of the casein micelles are required to 

cause the decreases in apparent absorbance where the shoulders 

appear on the curves in Figure 8 (Walstra, 1979). After that, 

apparent absorbance starts to increase. Time from enzyme addition 

until visually observable coagulation is believed to be attributed 

to time required for the enzyme to produce an appreciable amount of 

aggregab le material and the time required for this material to 

aggregate (Overbeek, 1952 and Payens, 1978). As K-casein is 

hydrolysed, the micelles gradually become less stable, leading to an 

increase of aggregation rate (Darling and Van Hooydonk, 1981 ). 

After formation of the gel network, apparent absorbance continues to 

increase as gelation (coagulum firming) takes place (Garnot and 

Olson, 1982, and McMahon and Brown, 1982). Darling and Van Hooydonk 

(1981) reported that the first visible signs of coagulation occur 

when particles of the order 10 to 20 µm are produced, which is 

presumed to happen when the average particle diameter is 

approximately l µm. 

In Figures 8 to 14 there is a noticeable shoulder in apparent 

absorbance versus time curves. These shoulders represent some 

changes of the aggregation process before visual coagulation. 



56 

McMahon, et al. (1984) attributed the appearance of these shoulders 

in apparent absorbance measurement to transformation of the milk 

from a system of essentially independent clusters to one in which 

the whole volume is filled by a network. They also thought tha t the 

reduction of rate of increase of apparent absorbance is due to 

change of average molecular weight and z-average particle scattering 

factors as the coagulation criticle point is passed. The 

coagulation criticle point is a point at which the aggregating 

particle mean free distance is so reduced that an explosive growth 

rate in particle size takes place. After this critical point has 

been reached the majority of particle collisions result in addition 

to the main floe. Goodarz-nia (1978) reported that these particle 

chains bend and rearrange themselves, after they come into contact, 

to form more stable positions. The coagulation system changes from 

one of independent aggregating particles to an extended network 

composed of in terco nnected casein micelle chains, and the milk 

ceases to behave as a true fluid of constant viscosity (Tuszynski, 

et al. 1968). Hardy, et al. (1981) found a similar shoulder in the 

coagulation curve when he used reflection photometry. 

An increase in apparent absorbance continues as the coagulum 

solidifies and casein 11 free 11 at the coagulation point becomes 

associated with the space network. Dalgleish (1981) reported that 

at initial coagulation, 11 % of the casein is not incorporated ir.to 

the coagulum network. The incorporation of this 11 free 11 casein into 

the gel network, as well as changes in the structure of the network 

chains, should be considered in any explanatior.s of the gelation 
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process (Storry and Ford, 1982). In coagulum consolidation by 

strand formation, milk serum would be entrapped by the space network 

and gathered into 11 microdroplets 11 between strands (McMahon, et al. 

1984). Effects of internal 11 micro syneresis 11 were observed as an 

eventual decrease in apparent absorbance. 

The five commercial milk clotting enzyme preparation showed 

different coagulation time and rates of curd firmness (Figures 8 and 

9). The coa gulation time for bovine rennet and calf rennet/porcine 

pepsin mi xture are shorter than those for calf rennet, ~ miehei and 

modified M. miehei. However, the rate of curd firmness of bovine of 

calf rennet/porcine pepsin mixture are crossed over with that of 

calf rennet after about 5 min of enzyme addition. As we mentioned 

earlier, that the curd firmness in coagulation curves is represented 

by the increase in apparent absorbance after the coagulation 

shoulder. The increase in apparent absorbance is thought to be a 

result of coagulum consolidation and incorporation of free casein 

into coagulum. 

The microbial enzymes from M. miehei and modified M. miehei 

showed lower rates of curd firmness and also longer coagulation 

times. This could be attributed to the high non-specific 

proteolysis by these proteases. Yun, et al. (1981) reported that 

rate of increase of curd firmness decreases as the extent of 

K-casein proteolysis increases. They found that rate of curd 

firmness of calf rennet > pepsin > M. miehei and~ pusillus 

proteinases > papain > trypsin. It has been reported that 

phosphoserin group of s-casein play an important role in curd 
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firming (Yun, et al. 1982). Therefore, the slow increase in rate of 

curd firmness for non-specific proteolytic activity attr ] buted to 

the tendency of these enzymes to remove the C-terminus (hydrophobic) 

portion of 8-casein including the phosphoserine groups. This 

results in fragile curd and eventually slows rate of firnnness (Yun, 

) +2 . 
et al., 1982 . Interaction of phosphoserine with Ca 1s very 

important for curd consolidation. It is important to keep 8-casein 

phosphoserine group in order to enhance the curd firming . The slow 

ra te of curd firmness for M. miehei and modified M. miehei protea ses 

may be a consequence of proteolysis of 8-casein near the C-terminus. 

The commercial and improved enzyme preparations were compared 

to determine if the fractionation affects coagulati on time and 

initial curd firming rate. Purified calf rennet ha d a slower 

initial coagulation rate than the commercial preparation (Figure 

10). The rate of curd firmness of both enzyme preparations crossed 

over after 17 min. It is possible that casein inco r porated after 

clotting time formed crosslinks between networ~ chains and 

accelerate the curd firmness. 

Figure 11 shows the coagulation time and the curd firming rate 

for commercial and purified bovine rennet. The purified enzyme 

coagulated milk faster and the rate of curd firmness was faster. 

This could be because of the removal of non-specifi~ proteolytic 

fractions which causes the proteolysis of 8-casein and decrease the 

rate of firming. 
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Purified calf rennet/porcine pepsin mixture showed shorter 

clotting time and faster curd firming than the commercial enzyme. 

However, curd curves crossed 7 min or after enzyme addition. The 

increase of curd firming rate of purified enzyme in the first few 

minutes could be the removal of non-specific proteolytic fraction. 

Increase of curd firming rate of the commercial enzyme could be due 

the incorporation of free casein micelles in -the gel net work after 

clotting time which is thought to increase the rate more than if all 

casein is incorporated at clotting time. The same explanation could 

be used for modified~ miehei protease (Figure 13). 

~ miehei proteases showed no difference in clotting time and 

curd firmness before and after purification. This because we could 

not remove the non-specific proteolytic fraction by gel filtration. 

SUMMARY 

There were significant differences among commercial milk 

clotting enzymes in their ability to retain protein in curd and 

reduce the amount lost to whey. Percent protein lost to whey was 

used as the criterion in comparing the protein recovery in curd 

among these enzymes. Gel permeation using Sephadex G-100 affected 

the coagulation properties of these enzymes. Improved enzyme 

preparations from microbial sources showed no significant 

differences in their protein recovery in curd. Impro ved enzyme 

preparations from animal organs did show significant difference in 

their protein recovery in curd. Improved bovine rennet and calf 

rennet/porcine pepsin mixture yielded a noticeable reduction in 

percent protein lost to whey. 
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APPENDIX 



Table l. Analysis of variance of protein lost in whey from five 
different commercial milk clotting enzyme preparations. 
Protein in whey is the dependent variable. 

Source df Sum of squares Mean square F a 

73 

Enzyme preparations 4 
Error 110 

.1922 
l. 0281 
1.2203 

.04806 5.14 .0008 

.00934 
Corrected total 114 

Table 2. Duncan's multiple range test comparisons of the effect of 
enzyme type on percent protein lost in whey from five 
different commercial milk clotting enzyme preparations. 

Number of 
observations 

23 
23 

23 
23 
23 

Enzyme preparations Mean (% protein) Grouping* 
lost in whey) 

Mucor miehei l . 11 35 A 
calf rennet/porcine l. 1132 A 

pepsin mixture 
bovine rennet l. 0511 B 
modif ied M. miehei 1.0363 B 
calf rennet l. 0134 B 

*Means with the same letter are not significantly different. 



Table 3. Analysis of variance of effect of calf rennet 
fractionation on protein recovery in curd. Percent 
protein lost in whey is the dependent variable. 

Source 

Enzyme 
Error 
Corrected to ta 1 

df Sum of square Mean square 

1 .0045 .0045 
38 . 239 . 0063 
39 . 244 

F 

• 71 

a 

.403 

Table 4. Analysis of variance of effect of bovine renent 
fractionation on protein lost in whey. Percent protein 
lost in whey is the dependent var ia ble. 

Source 

Enzyme 
Error 
Corrected to ta 1 

df Sum of squ are 

1 .02198 
34 .1369 
35 . 1 589 

Mean square 

.02198 

.0040 

F 

5.46 

a 

.0255 

74 



Table 5. Analysis of variance of effect of calf rennet/porcine 
pepsin mixture fractionation on protein lost in whey. 
Percent protein lost in whey is the dependent variable. 

Source df Sum of squares Mean square F a 

Enzyme 1 . 04213 .04213 
.00691 

6.09 .018 
Error 
Corrected total 

34 .23512 
35 . 27725 

Table 6. Analysis of variance of effect of M. miehei protease 
fraetionation on protein recovery in curd. Percent 
protein lost in whey is the dependent variable. 

Source df Sum of squares Mean square F a 

Enzyme 1 . 00288 .00288 
.00567 

. 51 .48 
Error 
Corrected tota 1 

34 . 1929 
35 . 1959 
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Table 7. Analysis of variance of effect of modified M. miehei 
protease fractionation on protein recovery ln° curd. 
Percent protein lost in whey is the dependent variable. 

Source 

Enzyme 
Error 
Corrected total 

df Sum of squares 

l .02426 
38 .23237 
39 . 2566 

Mean square 

.02426 

.00611 

F 

3.97 

a 

.053 
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