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ABSTRACT 

Effects of Homogenization and Ultra-high Temperature Processing 

on the Properties of Whole Milk Concentrated by a 

Multiple-Membrane Separation System 

by 

Chien-Ti Chang, Master of Science 

Utah State University, 1995 

Major Professor : Dr. Paul A. Savello 
Department: Nutrition and Food Sciences 
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Three different concentrated whole milks (2.Sx, 2.75x, and 3.0x) were 

produced by mixing equal parts of ultrafiltration retentate of whole milk and 

reverse osmosis retentate of the UF milk permeate. The concentrated whole 

milks were ultra-high temperature processed by direct steam injection (140.6°C) 

followed by flash cooling and two-stage homogenization pressures (2500/500 

psi, 3500/700 psi, or 4500/900 psi). The milk concentrates were packaged 

aseptically and stored at room temperature . On the other hand, the milk 

concentrates produced by the RO single membrane system with the same 

concentration levels served as the control. Physicochemical properties of the 

milks were surveyed every 2 weeks during a 6-month storage period. 

The milk concentrates combined from the blending of multiple-membrane 

retentates showed the expected concentrations of all major nutrients except 

nonprotein nitrogen . A 20% to 32% shortage of nonprotein nitrogen permeated 

through the RO membrane during the productio:, of the concentrated whole 

milks. Over the 6 months' storage, nonprotein nitrogen content did not 
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significantly change in the 2.5x, 2.75x, and 3.0x concentrated whole milks. No 

microbial growth or enzyme activity was measured or observed in the samples 

collected. Milk concentrated 2.5x with 4500/900psi homogenization pressure 

did not show cream plug formation during the first 5 months of storage. Milk 

concentrated 2. 75x with 4500/900 psi homogenization pressure had the 

approximate cream plug level of the 2.5x concentrated milk at 4 months of 

storage. Milk concentrated 3.0x with 4500/900 psi homogenization pressure 

showed cream plugging at 2.5 months . As higher homogenization pressure was 

applied to the milk concentrates, less creaming occurred at all milk 

concentration levels . 

Homogenization at all pressures did not reduce or eliminate sedimentation 

during storage. The milk concentrates from the control RO membrane 

processing showed less sedimentation than did the concentrates from the 

multiple membrane system at the same homogenization pressure (2500/500 

psi). The higher the concentration of total milk solids, the more sedimentation 

occurred. Viscosity was not affected by homogenization pressure in any of the 

concentrated whole milks. 

(82 pages) 
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INTRODUCTION 

Membrane separation technology can modify the composition of milk to 

produce milk concentrates with advantages to both consumers and 

manufacturers. Ultrafiltration (UF) and reverse osmosis (RO) applieq in milk 

products are the most popular membrane-processing technologies. 

Ultrafiltration and reverse osmosis both have excellent concentrating 

capabilities. Ultrafiltration allows small molecules such as water-soluble 

vitamins, lactose, minerals, water, and nonprotein nitrogen compounds to pass 

through as permeate . Reverse osmosis retains all components in milk by 

removing only water. A UF pilot plant system can successfully concentrate 

whole milk to 47% total solids milk retentate, and neither fat nor proteins appear 

in the permeate. A 2x concentrated whole milk by RO can be ultra-high 

temperature (UHT) treated to obtain a milk concentrate with a long shelf life and 

good quality. Milk concentrates from UF are usually used for cheese making 

and fermented milk products. Milk concentrate from RO can be used in ice 

cream, yogurt, cheese, and milk powder (33). 

In 1971, Glover (32) tried to develop a two-stage process on a laboratory 

scale to concentrate milk by UF followed by RO of the permeate with 

subsequ·ent recombination of the concentrates from the two operations . The · 

original purpose was to remove proteins from the original milk before RO 

processing. This idea is attractive for its potential to make considerably high 

concentration of whole milk by sequentially using UF and RO at ambient 

temperature instead of using RO alone. Therefore, possible high heat damage 

to concentrated whole milk traditionally produced by evaporation can be 

avoided. In order to use the multiple-membrane concentrated whole milk, 

proper UHT conditions and homogenization pressures must be used. 



Therefore, in practice, UF and RO membrane systems combined with UHT 

technology could show tremendous potential in the dairy industry. 

2 

This research study focused on utilizing the specific characteristics of UF and 

RO membrane separation systems to produce 2.5x, 2.75x, and 3.0x 

concentrated whole milks. This system could save energy, as well as shipping 

and packaging costs. The concentrates contain all the original milk components 

such as protein, fat, vitamins, minerals, lactose, and nonprotein nitrogen 

compounds. After UHT processing with selected homogenization pressures, the 

final product should have a long shelf life and good quality. 
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LITERATURE REVIEW 

Membrane Processing of Milk 

Ultrafi/tration. In some European countries, UF is used to concentrate milk 

before transporting it from dairy farms to dairy plants. Benefits to dairy farmers 

and cheese makers include reduced transport and refrigeration costs, lower 

rennet costs, and increased cheese yields (47). In 1977, Covacevich and 

Kosikowski (20) produced cream cheese from UF skim milk concentrate. Other 

successful examples include Maubois et al. (51 ), who patented a method to 

produce high-moisture cheeses from ultrafiltered milk. Ernstrom et al. (26) used 

ultrafiltration to produce a cheese base from whole milk for process cheese and 

process cheese food . 

The principle of membrane separation is that a driving force forces a 

pressurized fluid through a semipermeable membrane, filtering components of 

the fluid according to size, charge, and shape (25, 34). The pore size of the 

membrane determines the pressure required, the solute retained, and the 

specific application. Therefore, membrane separation techniques are 

categorized as 1) particle filtration in which the membrane pore diameter is 

about 1.0 micrometer, suitable for removing dust and larger cells; 2) 

· microfiltration ih which the membrane pore diameter is between 1.0 and 0.02 

micrometer, used in sterilizing cell culture media by sieving out bacteria; 3) 

ultrafiltration in which the membrane pore diameter is from 0.002 to 0.2 

micrometer, to fractionate and separate proteins; and 4) reverse osmosis 

(hyperfiltration) in which the membrane pore diameter is less than 0.001 

micrometer, traditionally used in desalting sea water and purifying drinking 

water or laboratory water (25, 57). 
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Polymer materials constitute filtration membranes having different 

characteristics based on the type of polymer. Cellulose acetate has limitations 

outside the pH range of 3 to 7. It is sensitive to temperatures above 35° Candis 

intolerant to chloride. Polyamides can be used at wider pH ranges and higher 

temperatures than cellulose acetate. Polysulfone membranes are dominant in 

industrial applications because of their resistance to temperatures up to 100° C 

and the pH range at which they can be used (pH 1 to 14). Furthermore, they can 

more effectively tolerate chlorine and have more hydrogen-bonding capabilities 

(25, 57). 

Another important aspect related to specific membrane applications is 

membrane configuration. This includes tubular, flat sheet, spiral-wound, and 

hollow-fiber membrane types . These different configurations affect packing 

density, pumping energy, fouling resistance, and blocking of the flow channels, 

and have advantages and disadvantages in different applications (57). 

In crossflow membrane filtration, the feed-flow stream is separated into two 

effluent flow streams : The permeate, which contains small molecules, passes 

through the membrane; and the retentate, which consists of large solutes and 

suspended solids, is retained by the membrane. When whole milk is 

ultrafiltered, the retentate includes concentrated protein, fat, and insoluble salts. 

Lactose, minerals, water soluble vitamins, and small amounts of nonprotein 

nitrogen pass through the membrane as permeate (29, 44, 84). The changes in 

concentration and chemical properties of milk constituents of retentate and 

permeate during UF should be understood to find further applications. Green et 

al. (35) chemically characterized milk concentrates from UF processing. 

Premaratne and Cousin (61) determined the change in concentrations of major 

milk components during concentration of skim milk to 5x by UF. Bastian et al. 



(10) reported retention and recovery of milk components during UF from 

acidified and unacidified milk. 

The large amount of UF permeate, which is composed mainly of lactose, is 

the by-product of processing UF whole milk and whey. Barbano et al. (8) 

suggested this UF permeate contains small amounts of specific products that 

could have an impact on functional or flavor properties of UF milk retentate

based products . In 1980, Cotton (19) reported the utilization of UF permeate as 

an animal feed , syrup and alcohol production by hydrolysis , lactic acid and 

antibiotics by fermentation for human food, and methane by anaerobic 

fermentation for industrial fuel. 
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Reverse Osmosis. Reverse osmosis is used mainly in processing waste 

treatment and pure water makeup. The dairy industry can use RO to reduce milk 

transportation costs (21 ). Reverse osmosis concentrates from whole milk can be 

used to manufacture liquid milk products, butter, skim milk powder, and yogurt 

(23, 33). Reverse osmosis is similar to UF but uses operating pressures 

between 20 and 100 bar. The membranes possess a closely knit structure 

(approximately 5 to 30 nanometer) (50). The principle of RO is the chemical 

potential between two sides--the solvent and solution achieves equilibrium by 

the osmotic pressure from the solute. When the applied pressure is greater than 

the osmotic pressure in the solution, the solvent (water) will inversely diffuse 

through the membrane into the solvent. The osmotic pressure is related to how 

much energy input is required and the permeate flux rate. It is proportional to 

the concentration of solute and inverse to molecular weight. In concentrating 

whole milk by RO, lactose and other minerals contribute to higher osmotic 

pressure than proteins and fat (25, 33, 34). This unique aspect of concentrating 

ability removes pure water from the raw product without damaging the final 



product and saves energy. For example. evaporation with three or four effects 

requires 126 to 180 kWh to remove one metric ton of water. In RO systems, 

concentrating milk needs 9 to 19 kWh to remove the same amount of water . 

Furthermore, an evaporator occupies a larger space compared with a more 

compact RO system (50). 
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In concentrating by RO, only water is theoretically removed from the milk. The 

RO retentate contains the original milk ·components in less water. During RO 

concentration the permeate flux declines with increasing solids content. and 

the process becomes uneconomical at concentration levels above 25-30% total 

solids under most practical operating conditions (45, 50). This RO concentration 

level is confined to 2x volume reduction. The reason is that the osmotic 

pressure increases in the concentrate due to the accumulation of proteins at the 

membrane surface in the presence of the milk salts. This change reduces the 

rate of water permeation and the effective driving force (50). 

Ultrafiltration has an excellent performance in concentration of whole milk 

and can result in six-fold concentration of product. However, this concentrated 

milk does not contain the full complement of lactose and minerals as found in 

concentrated milk produced by other processes such as evaporation or reverse 

osmosis. Also, high bacterial count and somatic cells. as well as high fat and 

protein concentration, can lead to reduced ultrafiltration flux (9). 

In Australia. Kocak (42) investigated the stability of RO concentrated milk or 

diluted RO concentrated milk for UHT processing in order to use it as a raw 

material for dairy products manufacture. The benefit is that RO/UHT milk can 

target foreign markets because of the transportation benefits of reduced volume, 

long shelf life without refrigeration, and desirable qualities. 
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UHT Processing of Milk 

The aim of UHT processing is to obtain a long shelf-life product without 

refrigeration. UHT treatment is defined as heating a continuous flow of product 

at not less than 137°C for at least two seconds followed by packaging under 

aseptic conditions (15, 16). There are two heating methods--direct and indirect 

heating. In indirect heating, energy is transferred between the product and the 

heating source by a heat exchanger without physical contact. In direct heating, 

the product directly contacts the heating source by either injection or infusion. 

Obviously, the direct heating system more easily obtains the high rates of 

heating and cooling than the indirect heating system. The direct heating system 

has higher capital and energy costs than indirect heating due to a more 

complex design and low regeneration efficiencies (16). For highly viscous 

products, a direct heating system may provide a safe and convenient way to 

UHT process. In 1969, Zadow (83) compared direct and indirect UHT treatment 

of milk, and found that the indirect treatment was more severe than direct in 

ferricyanide-reducing value (that may indicate browning reaction), product 

color, and whey protein denaturation. In 1984 Ramsey and Swartzel (62) 

reported the direct system tended to produce more sediment and less fat 

separation than indirect. 

Under such high temperature, the physicochemical, microbiological, and 

nutritional properties of milk can result in certain changes . The purpose of UHT 

treatment is to destroy all vegetative cells, but some spores may survive. The 

changes of physicochemical properties of milk, which include color, flavor, 

sedimentation, separation, nutritional value, and gelation, may be related to the 

heat stable enzymes (53). 
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Age Gelation. Age gelation is a detrimental defect of UHT milk. The age 

gelling of UHT milk can occur by a multiple-factor reaction. Many researchers 

have tried to explain this important phenomenon during storage of UHT milk (1, 

2, 46, 65). There are two processes involved in age thickening. One is a 

nonenzymatic physicochemical process and the second is an enzymatic 

proteolytic process. The former process includes destabilization of casein 

micelle structure and its salt balance system, and complexing of denatured 

whey protein and casein; Maillard reactions lead to formation of covalently 

bonded polymers, pH change, and the interaction of casein and carbohydrate. 

The second process is mainly a proteolytic enzyme reaction by heat-stable 

proteinases from the raw milk itself or from psychrotrophic bacteria (48). The 

three-dimensional network from the interaction of casein micelles will trap fat 

globules and whey proteins. From electron microscope studies, UHT milk 

possesses a considerable amount of small-sized casein micelles with rough 

surfaces . During storage, and before the gelation occurs, the size of casein 

micelles becomes larger, which may signal the start of gelation (17, 77). 

There are some methods to prevent age gelation . Using additives such as 

polyphosphates, manganese (II) salts, polyhydric alcohols, and phosphatides 

can delay gelation (77_). The proper preheating conditions, adjusting the pH of 

raw milk to 7.4, prolonging the holding time, homogenization after sterilization, 

and a lower storage temperature also improve the stability of the products (53). 

Sedimentation. Sedimentation is a potential problem in UHT milk that was 

early recognized by Ashton (5) and Burton (14). It is not as severe in 

unconcentrated milk, and aggregation or sedimentation by gravity will easily 

break up by agitation or stirring (22, 36). Sedimentation can be caused by 

certain processing conditions, such as higher sterilization temperature, using a 
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direct heating system, higher homogenization pressure, and higher storage 

temperature (58, 62). Some researchers have obtained different results about 

the processing conditions that affect sedimentation (15, 54, 66, 82). Wilson et al. 

(82) reported that more sediment occurred at 4.4°C storage temperature than at 

21.2°C or 37.8°C. Samuelsson and Holm (66) found that indirect heating 

caused more sedimentation than direct heating. 

Denaturation of the proteins or precipitation of the salts in milk may cause 

sedimentation due to high heat treatment (53). Burton (14) suggested the 

mechanism of sedimentation is the same as the fouling of heat exchanger 

surfaces by milk solids. Dalgleish (22) recently reported casein micelles have a 

tendency to sediment during several months of storage and to produce a small 

layer of sedimented material, which could be predicted by appropriate 

calculations . Small increases in the molecular weight of the casein micelles 

may increase the sedimentation rate significantly. Because calcium balance 

and addition of salts change the sedimentation, adding sodium citrate, 

bicarbonate, or disodium phosphate inhibits sediment formation, but adding 

calcium will promote sedimentation (3, 53). In addition, adjusting the pH of milk 

above 6.6 will help prevent sedimentation (16). 

Fat Separation. Fat separation results from insufficient distribution and size 

reduction of the fat globules . It can be eliminated by proper homogenization. A 

downstream homogenizer favors the concentrated milk or cream, which are 

products sensitive to heat coagulation, and efficiently reduces fat separation 

(43, 55). In high-fat-content products, as higher homogenization pressure is 

applied, the formation of sediment and protein stability was adversely affected 

during storage (18). If homogenization occurs after heat treatment, denatured 

whey proteins and casein micelles deposit on fat globule membrane and 



associate with membrane components. The new fat globules have a thicker 

adsorbed layer that causes fat clusters, but two-stage homogenization can 

eliminate them (12) . 
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Color. The color of raw milk is caused by the scattering of light by the fat 

globules, casein micelles, colloidal calcium phosphate, and to some extent by 

the pigments carotene and riboflavin (10). In UHT milk the size of fat globules, 

distribution of milk protein, and the browning reaction contribute to the 

appearance and color . Ultra-high temperature processing can cause milk 

products to be whiter than raw milk, probably because of an increase in light 

scattering by denaturation of whey proteins and changes in casein micelle size. 

Homogenization also whitens the color of milk by producing smaller fat 

globules. The clustering or clumping of fat will decrease the scattering of light. 

Storage temperature is an important factor for browning in UHT milk (40, 53). 

Flavor . According to a United States committee on flavor nomenclature, 

there are four kinds of heat-induced flavors in a UHT milk : cooked or sulfurous , 

heated or rich, caramelized, and scorched (71 ). Some researchers prefer to use 

"stale" flavor instead of a mix of rich or heated and caramelized flavor (74, 81 ). 

Ashton (5) summarized the flavor changes in UHT milk during heating and 

storage into several stages. After heating, cooked flavor is dominant and can 

last 2 to 3 days. UHT milk is most acceptable from 5 to 12 days old; over 12 

days, flat and oxidized flavors arise. Finally, stale flavor occurs with increasing 

storage time . The cooked flavor is the most recognized sensory aspect by 

consumers . It results from the oxidation of any exposed sulphydryl groups, 

which largely come from the volatile sulfur-bearing component, B-lactoglobulin 

(68, 72). Additives can improve flavor . Potassium iodate, sodium iodate, sodium 

bromate , L-cystine, and 2-acetamidoethyl-2-acetamidoethane-thiolsulfonate 
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were proposed or patented to inhibit formation of -SH groups and thus they 

have reduced cooked flavor intensities (7, 27, 67). Certain processes also help 

reduce cooked flavor. Swaisgood (73) designed a reactor of glass beads 

coated with sulphydryl oxidase placed in the down-stream of a UHT holding 

tube. He reported that the cooked flavor can be removed . Raw milk pretreatment 

improves flavor by preheating at 70 to 90°C, followed by centrifuging to remove 

micro-organisms, and then warming the milk at 35 to 40 °C for 1 O to 20 min. 

This processing procedure is used to improve keeping quality of UHT milk (48). 

Nutritional Value . The nutritional value is the most important feature of UHT 

milk by consumers and nutritionists. Nutritional value of UHT milk means the 

nutrient content, the nutrient bioavailability, and the contribution made by milk to 

the daily intake of essential nutrients (69). Two aspects can cause nutritional 

value loss in UHT milk: heat processing and product storage. The destruction of 

vitamins and proteins in UHT milk is most noticed and discussed by many 

researchers. In 1987 Oamen et al. (56) reported a greater loss occurred in folic 

acid (12%), vitamin 812 (18%), and vitamin C (32%) during UHT processing 

than in vitamins 82 and 86. In general, vitamin C, vitamin 812, folic acid, and 

vitamin 86 are affected to some extent during heat processing; on the other 

hand, . the fat-soluble vitamins, biotin, pantothenic acid, nicotinic acid and 

vitamin 82 are hardly damaged by heat treatments (30, 65, 69). Not only can 

high heat influence vitamin loss, but also light and oxygen can affect vitamin 

loss during product storage. Vitamin 82 is sensitive to light. Vitamin C will 

convert to heat-sensitive dehydroascorbic acid in the presence of oxygen. The 

oxidative breakdown of vitamin C is related to the destruction of vitamin 812, 

and folic acid is subject to oxidization due to loss of vitamin C (31). Loss of 

lysine due to Maillard reactions may decrease the nutritional value of milk as 
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part of the total diet (69). However, lysine in milk is relatively in excess so the 

biological value of milk does not markedly change (16). According to the daily 

intake of total diet, loss of available lysine is prevented as much as possible in 

order to compensate the intake of the lysine-insufficient food. Protein 

denaturation by heat treatment does not affect nutritional value but can 

increase enzymatic digestibility (63). Whey protein denaturation by the heating 

process can affect immunoglobulins, lactoferrin, lysozyme, and lactoperoxidase, 

which can decrease the anti-infection properties of milk. But there is a 

controversy whether these anti-infection or growth-supporting properties of 

"cow" milk are necessary to humans (60). 

Homogenization of Miik 

Homogenization is a basic processing step in dairy products manufacture . It 

essentially reduces the size of fat globules and increases the surface area and 

number of fat globules in milk but the total volume remains constant. Thus, milk 

fat is the major target of homogenization action. The structure of fat globules, as 

proposed by King (41 ), is composed of triglycerides in the central body and 

surrounded by a double layer phospholipid membrane that attaches with 

proteins or enzymes outside and is scattered with cholesterol and vitamin A 

inside.· The stability of fat globules IS .determined by the properties of its 

membrane. Homogenization causes changes in membrane components. The 

size of fat globules ranges from about 1 µm to 15 µm in diameter in raw milk, but 

will decrease to less than 1 µm after homogenization depending on the 

homogenization pressure, the valve type and number, and flow rate (40). 

Several theories explain the process of homogenization . The most accepted 

explanation is cavitation, in which vapor cavities are formed due to a sudden 

pressure drop as the fluid leaves the valve clearance and these quickly 
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collapse when the fluid passes into a region of higher pressure (38, 40). This 

primary main effect of homogenization alters some physical and chemical 

properties of milk. It can prevent creaming in fluid milk products, increase 

foaming capability, and give milk a whiter appearance. Cream plug formation 

can be reduced by homogenization because of both the less buoyant or 

separating force on small fat globules and retarding separation by Brownian 

movement and surface forces (38). Homogenization enhances foaming due to 

the changes of fat globule membrane structure (13). Jenness and Patton (38) 

proposed that foam-promoting substance is released from the native fat 

globules membrane to increase foaming. The coloring ability of homogenized 

milk or cream is used to affect the color of coffee when milk is added . In ice 

cream mix, homogenization affects fat stabilization and the gloss of fat, and also 

reduces viscosity (70). Two-stage homogenization has the advantage of 

breaking down the clusters which come from the reformation of small fat 

globules after first-stage homogenization (40). 

In general, homogenization provides an adequate mixing for more uniform 

final products. Homogenized milk has higher viscosity than unhomogenized 

milk. Homogenization will lower the heat stability in concentrated milk products, 

which may result from the increase of casein micelle adsorption on the newly 

created fat globule membrane and make the products more sensitive to heat

induced aggregation (12). Although homogenization could give a degree of 

inhibition against lipid oxidation under the condition of excessive metallic 

contamination and less light exposure, homogenized milk is subject to the 

development of light-induced off-flavors because of the changes in the fat 

globule membrane (39, 80). Another application of homogenization is to reduce 

the microbial population by disrupting the microorganisms by cavitation shock 



waves resulting from imploding gas bubbles. This high pressure 

homogenization provides an alternative method to avoid heat treatment 

damage in foods (59). 

14 
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OBJECTIVES 

The objectives of this research were: 

1. to produce 2.5x, 2.75x, and 3.0x concentrated whole milk by combining the 

whole milk retentate from ultrafiltration and the retentate from rever~e osmosis 

of ultrafiltration permeate . 

2. to ultra-high temperature process the 2.5x, 2.75x, and 3.0x concentrated 

whole milk retentates by direct steam injection at 140.6°C for 4 sec followed by 

flash cooling and aseptic packaging . 

3. to homogenize the 2.5x. 2. 75x. and 3.0x concentrated whole rnilk under 

two-stage homogenization pressures using total pressures of 3000, 4200, and 

5400 psi with stage 2 having 20% pressure value of stage 1. 

4. to measure the changes in cream plug formation. sedimentation. viscosity , 

and nonprotein nitrogen content of the membrane concentrated and UHT

processed 2.5x, 2.75x, and 3.0x concentrated whole milk stored at room 

temperature every two weeks during a 6-month period. 



MATERIALS and METHODS 

Preparation of 2.Sx, 2.75x, and 3.0x 
Concentrated Whole Milk 
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Ultrafiltration of Raw Whole Milk. Raw whole milk was pasteurized at 62.8°C 

for 30 min, cooled to 48 .8°C, and ultrafiltered . The UF system consisted of three 

Osmonics UF membranes (Osmonics Inc., Minnetonka, MN), which were 

connected in series on a UF module cart. The UF membranes were polysulfone 

type with 15 to 20 Kilodalton molecular weight cutoff . The pressure drop across 

the membrane during processing was maintained at 20 psi, and the processing 

temperature was maintained at 50 to 60°C. Ultrafiltration continued until the 

total solids of UF retentate reached 40.1 %, 43.6%, and 47.0% . This viscous milk 

product was immediately cooled down to 4°C and stored. The UF permeate was 

collected and concentrated by RO. 

Reverse Osmosis of UF Permeate. Ultrafiltration permeate from raw milk 

pasteurized and ultrafiltrated as explained above was concentrated using a RO 

membrane system connected in series, which consisted of two AFC membranes 

(APV Crepaco , Inc., Cerritos, CA). A Manton-Gaulin CGC homogenizer served 

as a feed pump. A high transmembrane pressure of approximately 900 psi was 

maintained from the beginning to the end of processing . As the total solids of UF 

permeate co·ncenttated to 22.4°/o, 25.2% and 28.0%, Ro ·retentate was collected 

in order to mix with the UF retentates, which we obtained previously . The total 

solids of RO retentate was determined by a hand refractometer (Leica, Buffalo, 

NY). 

For the control sample of this multiple-membrane system, raw whole milk was 

directly concentrated by the RO system, and the 2.5x, 2.75x, and 3.0x 

concentrated whole milk was obtained by volume reduction. The 
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transmembrane pressure was gradually reduced from 800 psi to 500 psi by an 

adjustment of the back pressure valve when the concentration of the milk 

product increased. 

The UF and RO concentrates were blended in equal parts by volume to 

produce 2.5x, 2. 75x, and 3.0x concentrates of the original milk. Whole milk 

concentrated to 2.5x, 2.75x, and 3.0x by RO served as the control. The flow 

chart of production of 2.5x, 2.75x, and 3.0x concentrated whole milk is 

presented in Figure 1. 

UHT Processing of the Concentrated 
Whole Milk 

The concentrated whole milk was UHT-processed using direct steam 

injection in an Alfa-Laval Sterilab® pilot plant (Alfa-Laval, Lund, Sweden). The 

milk product was preheated to 76 to 80°C in plate heat exchanger number 1. 

Steam (pressure was 90 psi) was directly injected into the milk product to 

140.6°C and held for 4 sec followed by flash evaporation in a vacuum tank to 

cool to 74 to 77°C. Two-stage homogenization pressures at 2500 , 3500, and 

4500 psi (with stage 2 approximately 20% pressure rating of stage 1) were 

applied to the concentrated milk products . Plate heat exchangers cooled the 

milk product to 38 to 43°C. In a laminar flow, hyperfiltered positive pressure 

· chamber, the sterile milk product was aseptically collected and packaged in · 

presterilized plastic containers (125-ml capacity, Fisher Scientific Co., 

Pittsburgh, PA). Milk samples were stored at room temperature for the shelf-ife 

study. The diagram of the direct steam injection mode of the UHT system is 

shown in Figure 2. 



Whole Milk 
(12.5 % TS) 

Pasteurization 
(62.8° C, 30 min) 

Retentate Permeate 

UF RO 

40.1% TS 

2.5 x Milk 

43.6% TS 

2.75x Milk 

1 part 1 part 
47 .0% TS 28.0% TS 

3.0x Milk 
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Figure 1. Flow chart of production of 2.5x, 2. 75x, and 3. Ox concentrated whole 

milk by multiple-membrane system. 
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Figure 2. Schematic diagram of the direct-heating ultra-high temperature 

treatment in the concentrated whole milk. 
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Chemical Analyses 

Total Solids. Total solids were measured by AVC 80 CEM microwave oven 

procedure (CEM Corporation, Indian Trail, NC). Operation mode 1 (100% 

power for 4 min) was selected using 3.0 to 4.0 g of raw milk and 2.0 to 3.0 g of 

RO permeate. Operation mode 2 (65% power, 10-sec interval time) was 

selected for 2.0 to 3.0 g of UF retentate and the blended products. Ultrafiltration 

permeate and RO retentate used mode 1 operation (70% power for 3 mins) for 

2.0 to 3.0 g of sample size. 

Total Nitrogen. Total nitrogen was determined by the micro-Kjeldhal method 

as described in the Official Methods of Analysis (960.52) of the AOAC (6). The 

sample size of raw milk, UF retentate, UF permeate, RO retentate, RO permeate, 

and blended product was 0.5 g, 0.2 g, 8.0 g, 3.0 g, 10.0 g, and 0.3 g. A 

Labconco Rapid Kjeldahl system (Kansas City, MO) was used. Addition of 1 O ml 

sulfuric acid and one catalyst (Kjeltab) were put into a Kjeldhal tube with the 

sample and digested. After the digest cleared, it was cooled to room 

temperature and 15 ml distilled water was added. The distillation step was 

performed by gradually adding 40 ml of 50% concentrated sodium hydroxide. 

Steam drove off the liberated ammonia into 50 ml of 2% boric acid solution with 

Tashiro's indicator (0.25 g methylene blue and 0.375 g methyl red dissolved in 

300 ml of 95% ethanol). Twenty-iive milliliters of distillate was collected, causing 

a pink to grey or green color change in the boric acid solution if ammonia was 

liberated. During titration, the color transition stages were from green or gray to 

pink color. Standardized hydrochloric acid (0.02444 N) was used to back 

titrate the samples and a blank. When the first faint gray color appeared, the 

equivalence point was reached . 
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Nonprotein Nitrogen. Nonprotein nitrogen was measured by the micro

Kjeldahl method as described above. A 10-g sample was mixed with 

trichloroacetic acid at 12% (w/v) concentration followed by #42 Whatman paper 

filtration (64). Approximately 5.0 g filtrate of all samples was collected for 

digestion and nitrogen determination. Nonprotein nitrogen results were 

expressed as percent of milk sample weight. 

Fat. Fat was measured by the Babcock method according to the Official 

Methods of Analysis (989.04 and 920.111) of the AOAC (6). The former method 

was used for raw milk measurement, and the latter method for UF retentate and 

blended measurements. 

Lactose. Lactose content was determined by the colorimetric phenol-sulfuric 

acid method as described by Dubois et al. (24) and Marier and Boulet (49). All 

samples except RO permeate were diluted 1 :1000 in distilled water. A standard 

curve was prepared using monohydrate lactose powder (Mallinckrodt, Inc., 

Paris, KY). The concentration range of the standard was O µg/ml to 200 µglml 

with 20 µglml intervals. One milliliter of 5% phenol solution and 5 ml of 

concentrated sulfuric acid were added to the diluted samples, mixed well, and 

cooled. A Beckman DU-8B spectrophotometer (Beckman Instruments, Inc., 

Fullerton, CA) was used to measure optical density. At 490 nm wavelength, 0.2 

nm slit width, and 5 s of dwell time,· the display reading was the average of five · 

single readings. From the standard curve, a linear equation was calculated 

(linear regression) to obtain the concentration of samples from the relationship 

between optical density value and concentration . 

Ash. Ash was measured by a gravimetric method as described in the Official 

Methods of Analysis (945.46) of the AOAC (6). Modifications included 3 g of RO 

permeate and 1.5 g each of UF retentate, UF permeate, RO retentate, raw milk, 



and the blended products, which were weighed to four decimal places in the 

acid-soaked and dried crucibles. Drying was performed on a hot plate rather 

than in a steam bath. 
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Total Calcium. Total calcium was determined using a Perkin-Elmer AAS 

3100 atomic absorption spectrophotometer (Norwalker, CT). One gram of milk 

sample required dry ashing as described above, followed by dissolving in 5 ml 

of 6 N hydrochloric acid. After 30 to 40 min, the acid solution with sample was 

diluted to 100 ml using distilled water. Two and one half milliliters of this 

solution were transferred to the 25-ml volumetric flask and diluted by adding 5 

ml of 1.0% lanthanum, to prevent interference from other ions, and 17.5 ml of 

distilled water. 

Standard calcium solutions (4 ppm and 12 ppm) were prepared using a stock 

(1000ppm) calcium standard (Mallinckrodt, Inc., Paris, KY) for linear relation 

measurement. Tile wavelength and slit were set at 422.7 nm and 0.7 nm. The 

display reading was the average of four single readings. 

Riboflavin. Riboflavin was determined by the fluorometric method as 

described in the Official Methods of Analysis (970.65) of the AOAC (6). A Gilford 

Fluoro IV spectrofluorometer (Ciba Corning Diagnostics Corp., Park Ridge, IL) 

was used to measure fluorescence in the milk products. The samples in all 

· steps were prepared without light exposure: One gram of each sample was 

diluted to 1 O g using distilled water and mixed with 20 ml of extraction solution 

(mixture of 300 ml methyl alcohol, 100 ml pyridine, 100 ml water, and 1 O ml 

acetic acid). The mixture was mildly agitated for 1 hand cooled. If any 

precipitation or undissolved particles occurred, #42 Whatman paper filtration 

was applied. Riboflavin (Sigma Chemical Co. St. Louis, MO ) was dissolved in 

0.02 N acetic acid to make 100 µg/ml of standard stock solution. The 0.1 µg/ml 
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of freshly prepared standard solution and the sample filtrate were added to 1 ml 

of 0.02 N acetic acid before fluorescence reading. The absorption wavelength 

was set at 440 nm and the emission of fluorescent radiation was set at 565 nm. 

The actual fluorescence reading of the sample was obtained by the subtraction 

from the reading of the sample being hydrolyzed. The sample was added to 0.2 

ml of 10% sodium hydrosulfite (dissolved in 5% sodium bicarbonate ) to be 

hydrolyzed. Concentration calculation was expressed as: 

mg riboflavin I ml final sample solution= [( I - Q )/ ( I' - Q' )] x (0.1x 0.001 ) 

where I and I' are fluorescence intensities of initial sample and standard, 

respectively, and Q and Q' are fluorescence intensities of hydrolyzed sample 

and standard after adding sodium hydrosulfite, respectively. 

Physical Properties Analyses 

Viscosity. Viscosity was measured using a Brookfield synchro-lectric 

viscometer model LVT with LV spindle No. 3 (Brookfield, Stoughton, Mass.) at 

room temperature. All measurements were made in duplicate and directly 

performed in the milk sample container using 60 rpm speed for 2 min. Results 

were expressed in centipoise . 

Sedimentation. Sedimentation was monitored by measuring the thickness of 

sediment deposited on the bottom of the containers. If the boundary of sediment 

layer was not clear, the sample container was given a tilt to examine. Results 

were expressed as percent of milk sample height in the container . 

Creaming. Creaming was determined by measuring the height of a fat layer 

on top of the sample. Results were expressed as percent of milk sample height 

in the container. 
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Statistical Analysis 

A three-factor factorial design was used to test the changes of 

physicochemical properties in the shelf-life study. The three factors were 

concentration levels, homogenization pressure levels, and storage time period. 

The interaction effects included concentration levels x homogenization 

pressures, homogenization pressures x storage time period, concentration 

levels x storage time period, and concentration levels x homogenization 

pressures x storage time period. The responses were creaming, sedimentation, 

viscosity, and NPN content. The effect tests and leverage plots showed the 

significant influence of the whole model, each effect, and the interactions. Group 

means comparison by Tukey-Kramer at a = 0.05 was applied to all responses of 

concentrated whole milks independent of storage time period and also applied 

to concentrated whole milks from the multiple membrane system and RO 

membrane system under the same homogenization pressure . 

The retention of components of the concentrated whole milks by the multiple 

membrane system and RO membrane system from raw milk was analyzed by 

Tukey-Kramer with all pairs comparison at a= 0.05. 

Two replicates of each test and whole experiment were performed under all 

experimental conditions. All statistical analyses used JMP version 2 software 

· (SAS Institute Inc., Cary, NG). · 
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RESULTS AND DISCUSSION 

Membrane Processing 

The three concentrated whole milks (2.5x, 2. 75x, and 3.0x) were produced by 

the multiple-membrane system. Four fluid streams (UF retentate, UF permeate, 

RO retentate, and RO permeate) at the three concentration levels were 

analyzed for their compositions (Tables 1, 2, and 3). The distribution of milk 

components between UF retentate and UF permeate can determine the UF 

membrane performance. Total solids (TS), fat, total nitrogen (TN), ash, and total 

calcium content increased in UF retentate as the concentration factor increased. 

Total solids served as an indicator of target concentration of UF retentate. Fat 

was fully retained in UF retentate. No cloudy appearance in UF permeate 

probably indicated no large molecules such as casein micelles, whey protein, 

and fat globules penetrated the UF membrane. Lactose, NPN, and riboflavin did 

not increase in concentration because these were present in the aqueous 

phase and their molecular size is smaller than the UF membrane pore size, 

allowing them to penetrate through the membrane. 

In the three concentration levels, NPN was 0.03% in both UF retentate and 

UF permeate. Obviously, equilibrium of NPN between UF retentate and UF 

permeate was achieved regardless of the increasing total soHds. Total nitrogen 

and NPN content in UF permeate was similar (0.04% compared with 0.03%) in 

the three concentration levels indicating whey proteins were retained. Total 

nitrogen content in UF permeate was similar to previous research results (10, 

33). Glover (33) found average permeate N was 0.05% from UF of whole milk 

when the retentate was concentrated two-fold and NPN remained constant in 

both UF permeate and retentate as the concentration factor reached 5x. 



TABLE 1. Composition iri four streams (UF retentate, UF permeate, RO retentate, and RO permeate) of 

the multiple-membrane system (UF and RO) in producing 2.5X concentrated whole milk. 

Comeonent Raw milk UF retentate UF eermeate RO retentate RO eermeate 

Meari SD Mean SD Mean SD Mean SD Mean SD 
TS(%) 12.1T 0.11 40.02 0.33 7.07 0.09 22.61 0.17 0.62 0.17 

TN ( %) 0.45 0.01 2.10 0.10 0.03 0.00 0.09 0.02 0.02 0.00 

NPN (%) 0.03 . 0.00 0.03 0.00 0.03 0.00 0.08 0.01 0.02 0.00 

Fat(%) 3_51 · 0.07 19.53 0.71 NT a NT a NT a 

Lactose(%) 4.65 0.12 3.64 0.13 5.24 0.14 18.00 1.70 0.69 0.15 

Ash(%) 0.62 . 0.04 1.50 0.06 0.53 0.01 1.69 0.02 0.12 0.03 

Total calcium 124.37 4.00 460. 75 19.09 44.71 2.39 116.01 8.99 2.69 1.66 

(mg/100 g) 

Riboflavin 0.135 0.035 0.224 0.037 0.133 0.007 0.514 0.053 0.013 0.011 

(mg/100 g) 

a NT = Not tested 

I\) 
0) 



TABLE 2. Composition in the four streams (UF retentate, UF permeate, RO retentate, and RO permeate) 

of the multiple-membrane system (UF and RO) in producing 2. 75x concentrated whole milk. 

Component Raw milk UF retentate UF permeate RO retentate RO permeate 

Mean SD Mean SD Mean SD Mean SD Mean SD 

TS(%) 12.18 0.10 43.54 0.43 7.01 0.07 24.94 0.14 0.78 0.27 

TN ( %) 0.46 0.00 2.39 0.04 0.04 0.00 0.10 0.01 0.02 0.00 

NPN (%) 0.03 0.00 0.03 0.00 0.03 0.00 0.08 0.00 0.02 0.01 

Fat(%) 3.53 0.14 21.90 0.54 NT a NT a NT a 

Lactose(%) 4.74 0.23 4.00 0.65 5.37 0.19 20.24 0.91 0.33 0.03 

Ash(%) 0.65 0.02 1.62 0.04 0.53 0.01 1.85 0.04 0.05 0.02 

Total calcium 115.10 · 7.95 4 71 . 18 21 . 00 41.75 4.18 130.37 10.56 5.84 4.62 

(mg/100 g) 

Riboflavin 0.130 0.030 0.222 0.018 0.133 0.007 0.517 0.053 0.012 0.007 

(m9/100 9} 

a NT =Not tested 

I\) 
........ 



TABLE 3. Composition in four streams (UF retentate, UF permeate, RO retentate, and RO permeate) of 

the multiple-membrane system (UF and RO) in producing 3.0x concentrated whole milk. 

Component Raw milk UF retentate UF permeate RO retentate RO permeate 

Mean SD Mean SD Mean SD Mean SD Mean SD 

TS(%) 12.22 · 0.06 46.14 0.32 6.56 0.65 27.50 0.79 0.45 0.09 

TN ( %) 0.44 0.01 2.45 0.08 0.04 0.01 0.12 0.01 0.02 0.00 

NPN (%) 0.03 . 0.00 0.03 0.01 0.03 0.00 0.09 0.00 0.02 0.00 

Fat(%) 3.51 0.07 22.90 0.54 NT a NT a NT a 

Lactose(%) 4.42 0.42 3.28 0.50 5.14 0.44 23.35 0.88 0.42 0.18 

Ash(%) 0.58 0.07 1.70 0.08 0.43 0.13 2.15 0.26 0.06 0.06 

Total calcium 121.92 1.56 544.64 20.69 33.61 8.60 147.45 4.29 8.60 8.96 

(mg/100 g) 

Riboflavin 0.123 0.021 0.219 0.030 0.112 0.031 0.523 0.048 0.010 0.003 

{mg/100 g} 

a NT =Not tested 

I\) 
CX> 
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Bastian et al. (10) reported average permeate N was 0.04% at 5x concentration 

when whole milk was concentrated by UF. 

Ash is the inorganic residue from the incineration of organic materials and it 

can reflect partial salts content (especially metals). Milk salts include the cation 

group (calcium, magnesium, sodium, and potassium) and the anion group 

(chloride, phosphate, and citrate), which are in appreciable amounts and are 

important in maintaining the conformation and stability of milk proteins. Most of 

them associate with proteins and fat and are important to the nutritional value of 

milk (35, 37). Calcium plays an essential role in bone mineralization and other 

vital physiological processes in the human. Milk can provide abundant calcium 

(37). Therefore, calcium retention during membrane processing is important in 

the production of concentrated whole milk. Ash in UF retentate increased 

gradually with concentration levels as well as total calcium, but these increases 

did not coincide at the 3.0x concentration level. Total calcium content in UF 

permeate, which is in the unbound state, ranged from 33.61 mg/100 g to 44. 71 

mg/100 g (Tables 1, 2, and 3). 

Lactose content in UF retentate at the three concentration levels was 3.64%, 

4.00%, and 3.28%, while in permeate the contents were 5.24%, 5.37%, and 

5.14%. This indicates higher lactose content in permeate than in retentate at the 

· three concentration levels and an unexpected high value at the 2. 75x · 

concentration level. The different concentration of lactose content between UF 

permeate and retentate is because the reduced volume is from the water phase 

only and the high concentration factor causes a more compact retentate. This 

disagrees with Bastian et al. (10), who reported lactose content was higher in 

retentate than in permeate. We have similar results with Glover (33), who 

reported 4.1 % and 5.1 % in retentate and permeate at 3x concentration and 



3.2% and 5.2% in retentate and permeate at 5x concentration. The highest 

concentration level had lower lactose content in retentate but lactose 

concentration did not change much in permeate (Tables 1, 2, and 3 ). 
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Riboflavin is an indispensable nutrient in milk products, providing 34. 7% of 

the available riboflavin in the United States (52). There is concern about 

riboflavin retention in membrane processing of milk. In this study riboflavin was 

partially retained at 0.224 mg/100 g, 0.222 mg/100 g, and 0.219 mg/100 gin 

UF retentate and 0.133 mg/100 g, 0.133 mg/100 g, and 0.112 mg/100 g in UF 

permeate at the three concentration levels. There was no significant change of 

riboflavin content in UF retentate when the total solids concentration levels 

increased. Because 65% to 95% of riboflavin is present in the free form, the 

bound forms such as flavin mononucleotide (FMN) and flavin adenine 

dinucleotide (FAD) contribute to the amount retained (79). 

The RO membrane acts as a secondary concentrating step in the multiple

membrane system. The large amount of clear, light-greenish UF permeate, 

which is mainly composed of lactose, minerals, water soluble vitamins , and 

nonprotein nitrogen compounds, was retained by RO membrane . We expected 

the concentration of all components of raw whole milk to increase to the desired 

levels in the final product. In other words, the multiple-membrane system should 

perfectly exclude only water. The RO permeate, however, of the three 

concentration levels contained lactose, nitrogen compounds, ash, total calcium, 

and riboflavin (Tables 1, 2 , and 3). This could be due to damages or defects in 

the RO membrane, causing the loss of water-soluble components. However, if 

this permeation of water-soluble components is trivial, the recovery of the final 

products will not be influenced significantly . 
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The compositions of the three concentrated whole milks (2.5x, 2. 75x, 3.0x) 

from multiple-membrane processing and RO membrane control compared with 

the raw whole milk are presented in Figures 3, 4, and 5. Nonprotein nitrogen 

was approximately 20 to 25% below the expected concentration in the three 

milk concentrates from the multiple-membrane system. Riboflavin and the other 

milk components were retained in the three concentrated milks except for the 

2.75x concentrated whole milk in which fat, ash, total calcium, and NPN were 

lower than the target concentration . Total solids were significantly different from 

the target value. This result was inconsistent with the retention of milk 

components . Therefore , the unexpected difference of total solids (TS) from the 

target value probably results from the sampling errors in the procedure of 

determining total solids. On the other hand, the milk concentrates (with the 

same concentration levels as MM milk) were produced by RO single membrane 

from whole milk serving as the control groups , which have similar results in 

components retention (Figures 3, 4, and 5). Nonprotein nitrogen was not 

completely retained in the retentate. There was 24% to 32% of NPN lost in the 

three milk concentrates . In 2. 75x concentrated whole milk, fat , ash, and total 

calcium were all retained at the target level in the final product. The RO 

permeate from the multiple membrane system and from the RO membrane 

processing contained 0.016% and 0.019% NPN (Table4). Therefore, the loss of 

NPN in the RO membrane is clear. According to Versteeg's suggestion (75), 

losses during membrane filtration are caused by permeation of small 

molecules or by mechanical leaks. Unsuitable cleaning practices or accidents 

(such as excessive pH adjustment with cellulose acetate membranes or 

chlorine with composite membranes) can result in membrane damage with 

subsequent losses. On the other hand, the loss of fat, ash, and total calcium in 
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Figure 3. Retention of milk components in 2.5x concentrated whole milks 

produced by the multiple-membrane system and RO membrane system . Error 

bars are standard deviation of means. * indicates significant difference to target 

concentration factor (2.5x) (P< .05). 
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Figure 4. Retention of milk components in 2. 75x concentrated whole milks 

produced by the multiple-membrane system and RO membrane system. Error 

bars are standard deviation of means. * indicates significant difference to target 

concentration factor (2. 75x) (P <.05) . 
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Figure 5. Retention of milk components in 3.0x concentrated whole milks 

produced by the multiple-membrane system and RO membrane system . Error 

bars are standard deviation of means. * indicates significant difference to target 

concentration factor (3.0x) (P < .05). 



TABLE 4. Compositions in RO permeates from two different membrane 

processes (multiple-membrane system and RO single membrane) of the 2.5x, 

2.75x, and 3.0x concentrated whole milk. 

Component 

TS(%) 
TN(%) 
NPN (%) 
Fat(%) 
Lactose(%) 
Ash(%) 
Total calcium (mg/100 g) 
Riboflavin (mg/100 g) 

a NT =Not tested 

RO permeate 
Multiple Membrane RO Membrane 

Mean SD Mean SD 
0.62 0.22 0.61 0.00 
0.020 0.003 0.014 0.001 
0.019 0.005 0.016 0.002 

NT a NT a 
0.48 0.20 0.39 0.33 
0.08 0.05 0.06 0.02 
3.594 3.497 0.594 0.156 
0.012 0.007 0.004 0.000 

2. 75x concentrated whole milk from the multiple-membrane system (but not in 

the control sample) can be explained probably from the mixing step of UF 

retentate and RO retentate in the multiple-membrane system. 

Physicochemical Changes of UHT 
Concentrated Whole Milk During 
Storage 

35 

The physicochemical changes in UHT-concentrated whole milks during 6 

months' storage were cream plug formation, sedimentation, NPN content, and 

viscosity. A three-factor factorial model was used ·for statistical analysis. The 

three factors were concentration levels, homogenization pressures, and storage 

time. 

Cream Plug Formation 

The effects influencing cream plug formation are presented in Table 5. The 

homogenization pressure positively influenced creaming of all concentrated 

whole milks (Table 6). In general, at higher homogenization pressure the less 
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cream plug formation occurred . In the 3.0x concentrated whole milk, low 

homogenization pressure (2500/500psi) did not reduce cream plug formation . 

Increasing the concentration factor with no homogenization did not change the 

cream plug height. When homogenization pressures were applied, the 3.0x 

concentrated whole milk had the highest cream plug compared with other 

concentration levels. Changes of creaming with storage time of the three 

concentrated whole milks are shown in Figures 6, 7, and 8. The higher 

homogenization pressure can delay creaming longer than the lower . At medium 

and high homogenization pressures (4500/900psi and 3500/700psi) of the 2.5x 

and 2.75x concentrated whole milks, creaming started after 10 wk except that 

some variation existed in the 2.5x concentrated whole milk at the 8th week. The 

same creaming time occurred at high homogenization pressure (4500/900psi) 

TABLE 5. ANOVA of a three-factor factorial design in cream plug formation in 

concentrated whole milk over 24 weeks' storage. 

Source OF MS F ratio Prob>F 

Concentration level 2 612.265 108.577 .0000 

(C) 

Homogenization 3 2728.477 483.860 .0000 

pressure (HP) 

C*HP 6 . 147.474 26.153 .0000 

Storage time (ST) 11 540.766 95.898 .0000 

C*ST 22 16.019 2.841 .0000 

HP*ST 33 37.359 6.625 .0000 

C*HP*ST 66 23.971 4.251 .0000 

Error 432 5.639 



Table 6. Changes of physicochemical properties under four homogenization 

pressures of the 2.5x, 2.75x, and 3.0x concentrated whole milk over six months' 

survey . 

2.5x cone. whole 

milk 

Homogenization Creaming Sedimentation Viscosity NPN 

~ressure {%} {%} {cp} {%} 

No pressure 12.88 ± 4.49a 22.82 ± 10.85d 38.1 ± 29.sb .0608 ±.0073abc 

2500/500 psi 7.78 ± 6.3?Cd 18.18 ± 6.760 57.2 ± 40_-]b .0591 ±.006QbCd 

3500/700 psi 5.03 ± 4_59de 17.78 ± 6.109 62.1 ± 65.]b .0561 ± .0061de 

4500/900 esi 2.15 ± 3.58e 19.57 ± 1.23d n.1 ± 87.4b .0575 ± .0051ce 

2. 75x cone. whole 

milk 

No pressure 14.15± 1_95a 21.74 ± 7.82de 121.1± 181.9ab .0632 ± .0055ab 

2500/500 psi 9.34 ± 6.1 ]Cb 27.85 ± 7.66b 84.5 ± 133.9b .0602 ± 

.oo5&EOO 

3500/700 psi 2.13± 3.3B9 27.28 ± 7.2c}Jc 109.9 ±193.9b .0576± .0037ce 

4500/900 psi 2.59 ± 3.519 23.15 ± 5_ 15cd 218.0 ± 303.6a .0596 ± 

.001sct>cd 

3.0x cone. whole 

milk 

No pressure 13.08 ± 3.7oa 34.67 ± 3.378 100.1 ± 68.?h .0632 ± .004aab 

2500/500 psi 11.96 ± 5.04ab 34.12 ± 2.848 104.6 ± 57.8b .0598 ± 

. . 0083cim 

3500/700 psi 8.66 ± 4.97C 34.27 ± 2.648 97.1 ± 86.1b .0631 ± .0078ab 

4500/900 ~Si 6.61± 6.04cd 36.29 ± 2.23a 113.2 ± 99_2b .0633 ± .00618 

a,b,c,d,e Mean± S.D. followed by the same superscript within the same column are not 

significantly different ( P > .05) 
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in the 3.0x concentrated whole milk. After the 10th wk all homogenization 

pressures produced similar and higher creaming effects. On the other hand, low 

homogenization pressure (2500/500psi) retarded creaming for 4 wk in the 2.5x 

and 2. 75x concentrated whole milks, with less effect in the 3.0x concentrated 

whole milk. Comparisons of the physicochemical properties at low 

homogenization pressure of the RO concentrated whole milk (RO milk) and the 

multiple-membrane concentrated whole milk (MM milk) at three concentration 

levels are shown in Tables 7, 8, and 9. Creaming in the 2.5x MM milk after 12 

wk was significantly higher than in RO milk. In the 2. 75x MM milk after 8 wk, 

creaming was significantly higher than in RO milk. Creaming in the 3.0x MM 

milk was always higher than in RO milk during the 24 weeks' storage. The MM 

milk had higher creaming than the RO milk and the higher concentration level 

caused the higher cream plug formation. The reason for this could be that in the 

production of RO milk, the feed pump (a Manton-Gaulin CGC homogenizer 

pump) provided the appropriate flow rate and the high transmembrane pressure 

probably caused a homogenization action. The MM milk did not receive this 

extra homogenization from the MM milk system. Higher fat content in the 

concentrated milk is a factor to speed up cream plug formation (Figures 6, 7, 

and 8). 

Sed i mentat ion 

The ANOVA test of sedimentation in the concentrated whole milk over 24 

weeks' storage is presented in Table 10. In the 2.5x and 2.75x concentrated 

whole milks, low and medium homogenization pressures affected 

sedimentation inversely with decreasing sediment in the 2.Sx concentrated 

whole milk and with increasing sediment in the 2. 75x. No significant changes 
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TABLE 7. Changes of physicochemical properties in the 2.5x concentrated 

whole milk (2500/500 psi homogenization pressure) from two different 

membrane processings (multiple-membrane system and RO single membrane) 

during 24 weeks' storage. 

Membrane Time Creaming (%) Sedimentation Viscosity (cp) NPN (%) 
~rocessina ~wee kl ~o/ol 

RO 2 .00 ± .ooa 2.92 ±4.52a 44.0 ± 6.3fgij .056 ± .001a 
membrane 

4 .00 ± .ooa 7.45 ± 1.05ab 113.5 ± .058 ± .oooac 
48.~ 

6 3.04 ± 3.saac 8.46 ± 2.saaef 185.0 ± 39. 7bc .056 ± .001 ae 
8 1.14 ± 1_35a 11.33 ± 163.5 ± .057 ± .001 ac 

7.~eghi 111.obcde 
10 5.38 ± 2_53bc 10.42 ± 7.89ah 179.5 ± .056 ± .003ad 

124.2':>00 
12 5.20 ± 2_49bc 9.15 ± 4_94ag 81.0 ± 1.4efgj .059 ± .004ac 
14 6.18 ± 2_53bce 1.10 ± 2.5oad 115.0 ± .059 ± .002ac oo.acm 
16 7.63 ± 1.63bf 7.68 ± 2.51ac 118.0 ± .059 ± .002ac 

56.~ 
18 5. 78 ± 2.14bce 8.28 ± 1.05aef 245 .0 ± 15.6ab .058 ± .002ac 
20 5.88 ± 1.8obce 10.52 :t .21ahm 329 .0 ± 38.2a .057 ± .002ac 
22 5.63 ± 1 _5]bce 12.11 ± 

2. 96bcdeghij 
gel .058 ± .oooac 

24 5.66 ± 1.03bce 12.46 ± gel .056 ± .oooac 
3.17bcdeghij 

Multiple 2 .00± .ooa 9.58 ± 9.9689 26.4 ±10.9j .056 ± .004ac 
membrane 

4 .00± .ooa 15.49 ± 9. 72fghijl 35.3±14.2fghij .052 ± .001a 
6 3.21 ± 4_55ac 19.84 ± 8.79i' 31.6 ± 9_59ij .058 ± .001 ac 
8 2.98 ± 4.21ac 19.23 ± 6.a5i' 31.0 ± 7_4ij .056 ± .001 ac 
10 3.33 ± 4. 71 ac 17.83 ± 6.31hl 35.2 ± 9.6fgij .058 ± .001 ac 
12 8.96 ± 1.31bQ 11.61 ± 6.o6hl 39.4 ± 8.otgii .059 ± .oo6ac 
14 9.48± 18.29 ± 5.a9ilm 46.4± .059 ± .004ac 

2.()8Ciefg 20.5fghij 
16 10.24 ± . 75dfgi 19.oa ± 5.22i' · si 1 ± 9.afghii .062 ± .oosac 
18 10.09 ± . 79dfg 17.97 ± 1 _97hl 63.2± .064 ± 

13.clghij .006bcde 
20 12.a3 ±1.a5dgj 16.33 ± 74.1 ± 9. 7fghij .063 ± .005cb 

2.61ghijkl 
22 1a.29 ±a.ooh 23 .66 ± 7.241 99.0± .062 ± 

48.6efgi . 004d>e 
24 13.99 ± 0.41 ij 23.63 ± 1.831 162.2 ± .056 ± .014a 

66.elme 

a,b,c,d,e,f,g,h,i,j,k,l ,m Means± S.D. followed by the same superscript within the same column 

are not significantly different (P > .05) 
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TABLE 8. Changes of physicochemical properties in the 2. 75x concentrated 

whole milk (2500/500 psi homogenization pressure) from two different 

membrane processings (multiple-membrane system and RO single membrane) 

during 24 weeks' storage. 

Membrane Time Creaming (%) Sedimentation Viscosity (cp) NPN (%) 
erocessins {wee kl {%1 

RO membrane 2 2.52 ± 1.970 4.18 ± 4.878 49.0± 6.8ab .060 ± .oooac 
4 4.52 ± 1.52bd 13.95 ± 2.1abc 64.5 ± 4.700 .059 ± .002ac 
6 5.49± 14.08 ± 1_99bc 91.0 ± 5.0 ab .056 ± .003ab 

1.oo<Xle 
8 6.67± 

3.3.'PJl 
20.34 ± 1 .6EP1 142.5 ± 

35.ocim 
.054 ± .0018 

10 6.41± 10.45 ± 1.42ab 179.5 ± .059 ± .002ac 
1.~ 21.2!:m 

12 5.32 ± . 15cde 9.68 ± 2.02ab 279.5 ± 
56.58°3 

.062 ± .002ce 

14 7.12 ±1.57eh 10.54 ± _39ab 256.0 ± .060 ± .004ac 
13.oooe 

16 6.59 ± .8sd9h 10.01 ± 3.11ab gel .068 ± .001 de 
18 8.13 ± _769hi 7.85± 1.16ab gel .062 ± 

.003tm 
20 6.69± 

1.14<t1"1 
8.52± 1.12ab gel .060 ± .004ac 

22 6.95± 
1.21<tli 

10.43 ± .38ab gel .064 ± .002ce 

24 7.84 ± _94fh 10.50 ± .46ab gel .064 ± .002ce 
Multiple 2 .00± .ooa 31.93 ± 15.65fg 31.5 ± 9.38 .061 ± .oo6cb 

membrane 
4 .00±.00 8 27.63 ± 12.0ad9 46.4 ± 19_3ab .064 ± .oosce 
6 3.03 ± 4_2gbc 28.43 ± 9.asdg 39.4 ± 13.68 .059 ± .002ac 
8 2.46 ± 3_47ab 23.24 ± 9.1,de 43.2± 9.700 .060 ± .001ac 
10 10.39 ± _74ij 24.70 ± 5.1odg 36.2± 2.98 .057 ± .002ac 
12 11.66 ± 1.08ik 26.51 ± 5.58dg 46.4± 4_9rJJ .059 ± .003ac 
14 12.09 ± 1. 78ik 23.88 ± 6.84df 72.2 ± 12_3ab .063 ± .003ce 
16 13.08 ± 1_93kl 26.74 ± 3.8odg . 

..... ab 
71.5 ± 19.4 :o64 ± :004ce 

18 14. 71 ± 1 _43lm 27.83 ± 1_59dg 90.5 ± 51.9ab .061 ± .01 obc 
20 15.98 ± 1.20m 32.06 ± 3.349 137.5 ± .062 ± .004ce 

112.sax 
22 13.71 ± 1.5skm 33.25 ± .269 330.6 ±388.49 .059 ± .002ac 
24 1s.oo ± .s1im 30.78 ± 2.88teg 52.0 ± .054 ± .0128 

.oom 

a,b,c,d,e,f,g,h,i,j,k,1,m Means± S.D. followed by the same superscript within the same column 

are not significantly different (p > .05) 
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TABLE 9. Changes of physicochemical properties in the 3.0x concentrated 

whole milk (2500/500psi homogenization pressure) from two different 

membrane processings (multiple-membrane system and RO single membrane) 

during 24 weeks' storage. 

Membrane Time Creaming (%) Sedimentation Viscosity (cp) NPN (%) 
erocessini;i {wee kl {%l 

RO membrane 2 .00 ± .ooa 5.74± 6.68a 160.5 ± 13.7C .067 ± 
.Q039tli 

4 .00 ± .ooa 16.21 ± .770 203.5 ± NM 
18.od:i 

6 .00 ± .ooa 18.49 ± .ooe 220.0 ± 27.109 NM 
8 .00 ± .ooa 15.47 ± .3od0 285.0 ± 21.2ii .064± 

.001dfg 
10 3.67 ± .44b 11.23 ± .58bc 197.5 ± 9_2def .062 ± .ooode 
12 4.20 ± .46b 12.53 ± 1 _75cd 244.0 ±14.Q9h .061 ± .002cd 
14 4.85 ± .54b 11.45 ± _37bc 265.5 ± 23.8hi .068 ± .002ii 
16 5.90 ± 1.2ab 11.96 ± 3.11bc 31 o.o ± 18.8i .014 ± .005k 
18 5.10 ± _37b 8.65± 2.81ab 429.5 ± 46.9k .065 ± .002efi 
20 5.39 ± _95b 1 o.37 ± .82bc 494.0 ± 46.11 .065 ± .003fj 
22 5.19 ± 1.2sb 10.05 ± 2.12bc 508.5 ± 56.11 .067 ± .003hij 
24 5.38 ± .65b 11.67 ± .69bc gel .061 ± .001 cd 

Multiple 2 4.41 ± 5.ogb 36.06 ± 1.19hjk 54.5 ± .68 .065 ± .002efi 
membrane 

4 5.35± 6.1ab 36.22 ± 2.76hjk 54.0 ±13.~ .064 ± 
.0039h 

6 5.27 ± 6.1Jb 29.22 ± 5.02t 71.5 ± 3.4a .058 ± .001c 
8 12.66 ± .47C 34.66 ± .129ii 60.3± 4.oa .065 ± .oooeti 
10 12.39 ± 2.03C 32.69 ± 1.009 80.0 ±14.2ab .053 ± .001b 
12 12.74 ± .8oc 33.35 ± .629h 79.5± 9.aab .041 ± .002a 
14 13.89 ± 1 _95cd 33.72 ± 1.osQh 74.5 ±10.5a .o5o ± .003b 
16 15.37 ± .7f:Pd 33.76± .169h 84.5 ± 26. 7ab NM 
18 14.20 ± 1.05cd 32.42 ± 1.23f 9 111.5 ±32.8b .063 ± .ooodt 
20 14.90 ± 1.12cd 34.92 ± 2.11Qij 174.0 ±13.2cd .063 ± .002df 
22 16;23 ± .51d· 37. 73 ± · .6Jik 187:0 ±30:600 · .068 ± .003i · 
24 16.18 ± 1.08d 34. 72 ± 3.679ii 223.5 ±13.19h .068 ± .003ij 

a,b,c,d,e,f,g,h,i,j,k,I Means± S.D. followed by the same superscript within the same column are 

not significantly different (P > .05) 

NM indicates no measurement. 
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TABLE 10. ANOVA of a three-factor factorial design in sedimentation of the 

concentrated whole milk over 24 weeks' storage. 

Source DF MS F ratio Prob>F 

Concentration level 2 11458.703 423.511 .0000 

(C) 

Homogenization 3 6.652 .246 .8643 

pressure (HP) 

C*HP 6 365.981 13.527 .0000 

Storage time (ST) 11 232.660 8.599 .0000 

C*ST 22 154.159 5.698 .0000 

HP*ST 33 34.940 1.291 .1339 

C*HP*ST 66 53.549 1.979 .0000 

Error 422 27.056 

happened on sedimentation under homogenization pressures in the 3.0x 

concentrated whole milk (Table 6). Sedimentation causes a serious problem in 

all concentrated milk. In the 2.5x concentrated milk the average sediment was 

17. 78%, which represented almost one fifth the total volume . Sedimentation 

occurred in all milk concentration levels during 6 months' storage 

as shown in Figures 9, 1 O, and 11. After the 2nd or 4th wk, the sedimentation 

was from 17% to 38% in all multiple-membrane concentrated whole milks. This 

pheriomerion indicated storage time .effect oh the rapid sedimentation could ·be · 

replaced by other detrimental factors. 

Concentrated whole milk produced by the RO membrane under low 

homogenization pressure had the lowest sedimentation at all concentration 

levels. There was significantly different sedimentation at the three concentration 

levels between RO milk and MM milk during 6 months (Tables 7, 8, and 9). The 

reason for the difference in sedimentation between them probably was the 
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Figure 9. Changes of sedimentation in 2.5x concentrated whole milk with four 

different homogenization pressures and RO milk as the control during 24 

weeks' storage. 
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four different homogenization pressures and RO milk as the control during 24 

weeks' storage. 
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disturbance in the integrity of milk components system during membrane 

processing . That means recombination of UF retentate and RO retentate could 

have destablized the relation between casein micelles and minerals, 

particularly calcium . The equilibrium of components in original milk is probably 

not reestablished in the concentrated whole milk produced from the multiple

membrane system. Dalgleish (22) suggested that in stored milk sedimentation 

is a purely physical effect under undisturbed conditions and easy to eliminate 

by agitation, but may be accelerated in the concentrated milk. One possible 

assumption is the deposition of calcium phosphate onto the destablized surface 

of casein micelles, which causes an increase of the micelle weight followed by 

sedimentation . Moreover, the aggregation of the modified casein micelles will 

contribute to the rapid sedimentation (3, 22, 76, 77). The actual mechanism that 

causes the rapid and heavy sedimentation in the concentrated whole milk from 

the multiple-membrane system remains to be solved. 

Viscosity 

Viscosity is a fluid property that measures the resistance of fluids to shear 

(11 ). In concentrated whole milk, viscosity is possibly influenced by the degree 

of sedimentation. A sediment can contain considerable solids, and viscosity of 

milk depends on how many solids remain in the liquid phase. Age gelation is a 

common storage defect in UHT milk products and may be treated as an infinite 

viscosity in a gelled product. There were not enough data on concentration 

levels effect and could not be tested to its fullest extent. Therefore, in order to 

avoid the degree of freedom decreasing due to the difficulty of the viscosity 

measurement in the gelled products, the viscosity value was given 2000 cps 

instead of the blank. The ANOVA test of viscosity of the concentrated whole 

milk is presented in Table 11. 



TABLE 11. ANOVA of a three-factor factorial design in viscosity of the 

concentrated whole milk over 24 weeks' storage. 

Source DF MS F ratio Prob >F 

Concentration level 2 604616 7.695 .0005 

(C) 

Homogenization 3 5077718 64.627 .0000 

pressure (HP) 

C*HP 6 36341 .463 .8360 

Storage time (ST) 11 3540363 45.060 .0000 

C*ST 22 190036 2.419 .0004 

HP*ST 33 1037509 13.205 .0000 

C*HP*ST 66 73656 .938 .6166 

Error 432 78569 

Homogenization pressure did not affect viscosity of the concentrated whole 

milk at the three concentration levels (Table 6). The high standard deviation 

certain amount of solids in the sediment caused the MM milk to be more 

aqueous than the control RO milk. Consequently, viscosity is lower in the MM 

milk than in the RO milk. Gelation only occurred in the MM milk with no 

homogenization pressure and in the RO milk with low homogenization 

pressure after 14 wk. Because the high sedimentation could cause a small 

50 

. portion of casein mic.elles and salts to remain in t.he liquid phase, it is possible . 

the MM milk cannot form a gel structure at the end of 24 weeks except for the 

MM milk with no homogenization pressure. One possible explanation for this 

exception is that no homogenization pressure caused more cream plug that 

accumulated throughout the storage time leading to gel network formation. This 

phenomenon is similar to fat globules in creaming, forming a continuous 

network by cold agglutination (78).resulted from the large range of viscosity 

during 24 weeks' measurement. Viscosity g~adually increased in both RO milk 
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and MM milk during 24 weeks' storage (Figures 12, 13, and 14). In UHT milk 

studies, this increase in viscosity with time was due to denaturation and 

unfolding of proteins (4, 28). Increasing viscosity is an indication of approaching 

gelation (36, 48). It appears that all multiple-membrane concentrated whole milk 

maintained lower viscosity over 24 weeks' storage compared with RO 

concentrated whole milk. However, these experimental milks had greater 

sedimentation over the storage period so viscosity values may not indicate a 

uniform milk composition. We found that a certain amount of solids in the 

sediment caused the MM milk to be more aqueous than the control RO milk. 

Consequently, viscosity is lower in the MM milk than in the RO milk. Gelation 

only occurred in the MM milk with no homogenization pressure and in the RO 

milk with low homogenization pressure after 14 wk. Because the high 

sedimentation could cause a small portion of casein micelles and salts to 

remain in the liquid phase, it is possible the MM miik cannot form a gel structure 

at the end of 24 weeks except for the MM milk with no homogenization 

pressure . One possible explanation for this exception is that no homogenization 

pressure caused more cream plug that accumulated throughout the storage 

time leading to gel network formation. This phenomenon is similar to fat 

globules in creaming , forming a continuous network by cold agglutination (78). 

Nonprotein Nitrogen 

The ANOVA test of NPN content in the concentrated whole milk over 24 

weeks' storage is presented in Table 12. There were two missing 

measurements during 24 week's survey. Linear regression was used to 

estimate the missing data so that the degree of freedom would not decrease 

and the ANOVA could be tested completely . In the 2.5x and 2.75x concentrated 

whole milks, the medium homogenization pressure caused the milk products to 
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Figure 12. Changes of viscosity in 2.5x concentrated whole milk with four 

different homogenization pressures and RO milk as the control during 24 

weeks' storage . Arrow points out the time in UHT concentrated whole milk 

which was beginning to .gelation. 
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TABLE 12. ANOVA of a three-factor factorial design in NPN content of the 

concentrated whole milk over 24 weeks' storage. 

Source OF MS F ratio Prob>F 

Concentration level 2 .000205 29.513 .0000 

(C) 

Homogenization 3 .000053 11.966 .0000 

pressure (HP) 

C*HP 6 .000012 4.534 .0002 

Storage time (ST) 11 .000189 9.113 .0000 

C*ST 22 .000234 8.731 .0000 

HP*ST 33 .000026 .931 .5808 

C*HP*ST 66 .000031 1.196 .1546 

Eorror 412 .000027 

lose from 8 to 9% NPN. The low and high homogenization pressures made no 

difference in NPN content compared with the nonhomogenized control. No 

significant change of NPN content occurred in the 3.0x concentrated whole milk 

under all homogenization pressures (Table 6). Loss of NPN under 

homogenization pressures is not clear . Walstra and Jenness (77) suggest that 

heat treatments such as pasteurization and possibly UHT do not cause 

detectable increases in NPN content. During storage, Aoki and Imamura (4) 

found that NPN content of sterilized skim milk (135°C for-45 sec) increased from 

36 mg/100 ml to 49 mg/100 ml after 5 months' storage . Harwalkar et al. (36) 

also reported an increase in NPN content of sterilized concentrated skim milk at 

28° C during 18 weeks' storage . 

The changes of NPN content in the concentrated whole milk during 24 weeks 

are shown in Tables 13, 14, and 15. The initial NPN content in all concentrated 

whole milks served as a base line to compare with other NPN content 
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TABLE 13. Changes of NPN content in 2.5x concentrated whole milk with four 

different homogenization pressures during 24 weeks' survey. 

Storage time 
(week) 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 

no pressure 
.055 ± .003a 
.056 ± .003a 
.059 ± .001a 
.058 ± .001a 
.057 ± .001a 
.061 ± .oosa 
.060 ± .0068 
.065 ± .oosa 
.064 ± .oosa 
.069 ± .0088 
.063 ± .oosa 
.063 ± .0188 

Homogenization pressure 
2500/500 psi 3500/700psi 
.056 ± .0048 .053 ± .0038 
.052 ± .0018 .046 ± .0018 
.058 ± .001 a .056 ± .002a 
.056 ± .0018 .055 ± .0058 
.058 ± .0018 .055 ± .oooa 
.059 ± .0068 .059 ± .0048 
.059 ± .004a .057 ± .002a 
.062 ± .0058 .059 ± .0038 
.064 ± .0068 .060 ± .0038 
.063 ± .005a .060 ± .003a 
.062 ± .004a .059 ± .oooa 
.056 ± .014a .049 ± .0158 

4500/900psi 
. 055 ± . 003ab 
.049 ± .0088 
.057 ± .0018b 
. 055 ± . 0028b 
. 056 ± . 0008b 
.057 ± .003ab 
. 055 ± . 003ab 
. 059 ± . 002ab 
. 060 ± . 0028b 
.065 ± .007b 
.065± .006b 
. 055 ± . 009ab 

8,b Mean± S.D. followed by the same superscript within the same column are 

not significantly different (P > .05). 

TABLE 14. Changes of NPN content in 2. 75x concentrated whole milk with four 

different homogenization pressures during 24 weeks' survey. 

Storage time 
(week) 

2 
4 
6 
8 
10. 
12 
14 
16 
18 
20 
22 
24 

no pressure 
.060 ± .oosa 
.066 ± .0038 
.056 ± .003a 
.063 ± .0028 
. . 062 ± .003.a . 
.065 ± .0058 
.064 ± .0068 
.064 ± .007a 
.066 ± .005a 
.067 ± .0098 
.065 ± .0068 
.060 ± .0098 

Homogenization pressure 
2500/500 psi 
.061 ± .006b 
.065 ± .005b 
. 059 ± . 002ab 
.060 ± .001 ab 
. 057 ± .002ab. 
.059 ± .003ab 
.063 ± .003b 
.064 ± .004b 
.061 ± .010b 
.062 ± .004b 
. 059 ± . 002ab 
.054 ± .012a 

3500/700psi 
.057 ± .007a 
.058 ± .001a 
.056 ± .0028 
.055 ± .001a 
..058 ± .003~ . 
.057 ± .0028 
.061 ± .002a 
.060 ± .oooa 
.060 ± .0028 
.060 ± .001a 
.058 ± .0028 
.055 ± .0088 

4500/900psi 
.058 ± .003ab 
.057 ± .0068b 
. 059 ± . 0068b 
.062 ± .0028b 
.071 ± .001b . 
. 059 ± . 0028b 
.062 ± .003ab 
.063 ± .004ab 
. 060 ± . 0058b 
. 063 ± . 0068b 
.061 ± .0068b 
.049 ± .0178 

8,b Mean± S.D. followed by the same superscript within the same column are 

not significantly different (P > .05) 



57 

TABLE 15 . Changes of NPN content in 3.0x concentrated whole milk with four 

different homogenization pressures during 24 weeks' survey. 

Storage time 
(week) 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 

no pressure 
.064 ± .001 ab 
.063 ± .001 ab 
.063 ± .001 ab 
.063 ± .001 ab 
.061 ± .ooaab 
.057 ± .002a 
.066 ± .001b 
.067 ± .003b 

NM 
.057 ± .001a 
.067 ± .OQ4b 
.068 ± .oo?b 

Homogenization pressure 
2500/500 psi 3500/700psi 
.065 ± .0028 .064 ±.002be 
.064 ± .003a .064 ±.OOobe 
.058 ± .001 b .062 ±.002be 
.065 ± .oooa .067 ±.002be 
.053 ± .001bc .060± .013abc 
.041 ± .002d .048 ±.0058 
.050 ± .003C .055 ±.007ab 

NM .061± .002bd 
.063 ± .oooa .070± .001 cde 
.063 ± .002a .066 ±.OOobe 
.068 ± .0038 .070± .ooscde 
.068 ± .003a .071± .004cde 

4500/900psi 
.064 ± .003abc 
.063 ± .002abc 
.061 ± .004abc 
.063 ± .003abc 
.059 ± .01 oab 
.056 ± .001a 
.061 ± .001 abc 
.065 ± .001 abc 
. 070 ± . 002be 
. 059 ± . 009ab 
.071 ± .001 cde 
.070 ± .004bd 

a,b,c,d,e Mean± S.D. followed by the same superscript within the same column 

are not significantly different (p > .05) 

NM indicates no measurement. 

measurements during 24 weeks' storage. In the 2.5x and 2. 75x concentrated 

whole milks, NPN content did not change significantly under all homogenization 

pressures (low, medium, high, and no homogenization pressures) during 24 wk. 

At the end of 6 mo, however , NPN content decreased significantly under low 

homogenization pressure in the 2. 75x concentrated whole milk. In the 3.0x 

. concentrated whole milk, no significant changes occurred under the high and . 

no homogenization pressures. Non protein nitrogen content decreased from the 

6th week to the 14th week under the low homogenization pressure . Under the 

medium homogenization pressure, NPN content only decreased at the 12th 

week. 

Nonprotein nitrogen is mainly comprised of urea, creatine, small peptides, 

amino acids, and other minor nitrogen compounds (37). If any proteolysis 



activity occurred in the concentrated whole milk during storage, NPN content 

will increase due to protein degradation. Neither microbial contamination nor 

proteinase activity occurred in the UHT milk products that resulted in NPN 

content remaining constant during 24 weeks' storage. 
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Most treatments did not cause changes in NPN content in the 2.5x and 2. 75x 

concentrated whole milk (Tables 13, 14, and 15). However, we observed that 

NPN content decreased rather than increased in some treatments of the 3.0x 

concentrated whole milk. The possible experimental errors of nitrogen 

determination by Kjeldahl procedure are taken into consideration and gelation 

or sedimentation also could have caused the difficulty of homogenized 

sampling. 

The concentrated whole milk can be successfully produced by the multiple

membrane system. It is feasible to commercialize this membrane concentration 

system. The concentrated milks given the UHT treatment could face some 

physicochemical changes such as sedimentation during storage. Further 

research in UHT processing conditions or proper pretreatment of the product 

before UHT is required for the long shelf life and desirable qualities of the final 

products . 
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CONCLUSIONS 

1. The 2.5x, 2. 75x, and 3.0x concentrated whole milks produced by the 

multiple-membrane concentration system could result in target concentrations 

of all major nutrients except nonprotein nitrogen. 

2. Twenty percent to 32% of nonprotein nitrogen was lost during RO 

concentration processing in the production of the multiple-membrane 

concentrated whole milk and RO milk. 

3. All multiple-membrane concentrated whole milks at all homogenization 

pressures had greater sedimentation than the RO concentrated milk control. 

4. Homogenization pressure could not efficiently prevent sedimentation in all 

multiple-membrane concentrated whole milk. 

5. All multiple-membrane concentrated whole milks with all homogenization 

pressure had less cream plug formation than without homogenization pressure 

over 24 weeks' storage. 

6. A higher homogenization pressure can delay cream plug formation longer. 

7. All multiple membrane concentrated whole milks maintained lower viscosity 

over 24 weeks' storage compared with RO concentrated whole milk. However, 

these experimental milks had greater sedimentation over the storage period so 

the viscosity values may not indicate a uniform milk composition . 

8. All concentrated whole milks gradually increased viscosity during 24 weeks' 

storage. 

9. Viscosity was not affected by homogenization pressure in all concentrated 

whole milks. 

10. Nonprotein nitrogen content did not significantly change in the 2.5x, 2.75x, 

and 3.0x concentrated whole milks during the 24 weeks' storage period . 
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APPENDIX 



Table 16. Linear equation for estimating the missing data on NPN 

measurement. 

Missing data on NPN measurement 

3.0x cone. milk with no 

homogenization pressure at 18th 

week 

Linear equation 

y = .0001364x + .0615 

NPN 

Estimation 

.0640% 

3.0x cone. milk with low 

homogenization pressure at 16th 

week 

y = .0002227x + .05686 . 0604% 
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