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Abstract: Cliff swallows (Petrochelidon pyrrhonota) are colonially breeding migratory birds 
that frequently nest on highway structures. Under the Migratory Bird Treaty Act of 1918, 
people cannot harm swallows or their active nests. This restriction causes problems and 
delays for construction and maintenance divisions of many departments of transportation. 
In planning future projects, it would be useful for these divisions to have a habitat selection 
model that can predict the likelihood of cliff swallow nesting on a particular highway 
structure. We used logistic regression on data collected from 206 highway structures 
and 2 different land cover data sets to develop habitat selection models for northern 
California. The models indicated that low urban development and structure undersurfaces 
with multiple junctures were the 2 most important predictors of cliff swallow occupancy. 
Both the presence of water under a structure and a large underpass opening were also 
factors included in the models. The models correctly predicted 59% of sites occupied by 
cliff swallows and 88% of sites not occupied. The occupancy classifi cation rate may offer 
departments of transportation useful insight into the nesting behavior of cliff swallows.

Key words: bridge, classifi cation, cliff swallow, habitat selection model, highway structure, 
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Cliff swallows (Petrochelidon pyrrhonota) are 
protected by the Migratory Bird Treaty Act of 
1918. Under the act, completed nests cannot be 
disturbed during the breeding season, which is 
defi ned by the California Department of Fish 
and Game to be February 15 to September 1. Cliff  
swallows nest in colonies that oft en contain 200 
to 400 nests (Brown and Brown 1995). They build 
gourd-shaped nests composed of mud pellets 
carried to the nest site from the surrounding 
area (Figure 1). The original nesting habitat of 
cliff  swallows was rocky cliff s (Emlen 1954), 
but their range has expanded in North America 
over the last half century due to the availability 
of suitable habitat from bridges, culverts, and 
buildings, which serve as surrogates for cliff s. 

Most existing literature concerned with 
control of cliff  swallow nesting focused on 
preventing nesting on buildings (Gorenzel 
and Salmon 1982, Salmon and Gorenzel 
2005), but did not discuss highway structures. 
Emlen (1954) wrote that the 3 main factors 
for a cliff  swallow nesting site are (1) an open 

area for foraging, (2) a vertical surface with 
overhang for nest att achment, and (3) a mud 
supply suitable for nest construction. Brown 
and Brown (1995) reported that cliff  swallows 
typically use a mud source within 0.5 km of the 
nesting location. Brown et al. (2002) indicated 
that colony selection is a complex behavior and 
that fl owing and standing water and land-use 
diversity (Simpson’s index) were correlated 
with colony size and repeated site use between 
years. Cultivated cropland was correlated with 
reduced colony size. Brown and Rannala (1995) 
suggested that cliff  swallows may not simply 
choose a site based on local resources, but may 
also judge site fi tness based on the size of a 
colony that has already begun to form.

Cliff  swallows nesting on man-made 
structures create challenges for construction, 
maintenance, and repair, which cannot be 
performed during the breeding season. 
Departments of transportation frequently 
struggle with this impediment and are 
actively seeking solutions. There have been 
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demolition projects where unsuccessful 
swallow prevention has caused project delays, 
bird mortality, and cost increases. We have 
previously reported on nonlethal methods 
used to exclude cliff  swallows from nesting 
on highway structures (Conklin et al. 2009, 
Delwiche et al. 2010).

In planning future work, it would be useful 
for state departments of transportation and 
other government agencies to have a model 
that predicts the likelihood of cliff  swallow 
nesting on a particular highway structure. Our 
objectives in this study were to (1) conduct a 
fi eld survey of highway structures (bridges) to 
count cliff  swallow nests and record structural 
and surrounding habitat characteristics, (2) 
develop a habitat selection model to predict the 
likelihood of cliff  swallow occupancy, and (3) 
identify characteristics most likely to result in 
nesting.

Materials and methods
We randomly selected 300 highway 

structures from the California Department 
of Transportation (Caltrans) state bridge log 
(Caltrans 2011). Caltrans also provided us with 
additional structure information not listed in 
the log. A table of the data used for this work 
is available from Caltrans (Coates et al. 2009). 
Highway structures were limited to those 
within a 161-km radius of the University of 
California–Davis (UC–Davis) and with a length 
<152 m. The 161-km radius allowed multiple 
site analyses in single-day trips but at the same 
time provided geographical diversity (e.g., 
Coast Range, Sacramento Valley, San Joaquin 
Valley, Sierra Nevada foothills, and mountains). 
As part of this requirement, we selected only 
highway structures within Caltrans districts 1, 
3, 4, and 10. Distance to each highway structure 
was determined by converting latitude and 
longitude from bridge log entries to Universal 
Transverse Mercator (UTM) coordinates 
and calculating the vector length to UTM 
coordinates for UC–Davis. Highway structures 
>152 m in length were considered too long 
to be surveyed without the use of boats or in 
a reasonable amount of time. We obtained 
encroachment permits from districts 1, 3, 4, and 
10 for the selected highway structures. Cliff  
swallows and their nests were not disturbed 
during our visits.

Because the physical characteristics that we 
recorded at each site did not change much in 
the short term, the timing of the surveys was 
not restricted to the breeding season when 
birds were present. Between January and 
November 2007, we visited bridges to record 
physical characteristics of the structure, cliff  
swallow nesting evidence, and surrounding 
habitat. Several sites were not surveyed due 
to the time constraints of our daily trips or if 
they were considered to be unsafe or diffi  cult 
to reach by car or foot. We ultimately surveyed 
206 highway structures, which were well 
interspersed within the 81,000-km2 region 
of study (Figure 2). Prior to site visits, we 
printed aerial photographs of each site (Google 
Earth, Google Inc., Mountain View, Calif.) 
that showed the surrounding habitat within a 
4-km2 area centered on each highway structure. 
During site visits, we annotated these maps 
with more detailed and current information on 
the habitat. The habitat classes we used were 
(1) fresh water, (2) salt water, (3) row crops, (4) 
orchards and vineyards, (5) trees and chaparral, 
(6) grass, fi elds, and bare ground, and (7) roads 
and buildings. The total land area of each 
habitat type was measured using a dot grid. A 
900-cell transparent grid corresponding to 0.44 
ha/cell was overlaid on each aerial photograph. 
The total land area covered was 393 ha. Each 
cell was assigned the habitat class that fi lled the 
greatest proportion of the cell. The number of 

Figure 1. Cliff swallows nesting at the juncture of a 
highway structure abutment and deck.
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cells for each habitat class was divided by 900 
to obtain a classifi cation percentage. We also 
calculated Simpson’s diversity index (Simpson 
1949) for each site. 

As a simpler alternative to our dot grid 
method of habitat classifi cation, we obtained a 
separate set of data from the 2001 National Land 
Cover Database (NLCD) 
from the U.S. Geological 
Survey (Homer et al. 2007). 
The NLCD contained 16 
noncoastal classes out-
side of Alaska, fi ft een of 
which appeared in our 
data (the Perennial-ice- 
and-snow class was not 
present). Cover classes 
did not always have 1-to-
1 correspondence with 
categories used in our 
dot grid classifi cation. 
For example, the dot 
grid class Roads-and-
buildings included 3 
NLCD classes—Devel-
o p e d - h i g h - i n t e n s i t y, 
Medium-intensity, and 
Low-intensity—and may 
have included Devel-
oped-open-space, as well. 
Conversely, the NLCD 

class Cultivated crops included 
2 dot grid classes—Row crops 
and Orchards-and-vineyards. 
At the time of this work, we used 
the most current NLCD data 
available (2001), with a mapped 
resolution of approximately 
0.4 ha. We obtained the 
total area of land for each 
classifi cation within 0.5 km and 
1.0 km (radii) of each highway 
structure, corresponding to 
79 ha and 314 ha, respectively. 
NLCD data were provided by 
the GIS Lab at University of 
California Hopland Research 
and Extension Center. The 
advantage of using the NLCD 
is that classifi cation data can be 
easily obtained for any highway 
structure.

In addition to habitat classifi cation, we 
collected data related to the highway structure 
characteristics and cliff  swallow nesting 
(Table 1). Some of these data could have been 
obtained from the Caltrans bridge log, but all 
data used in our analysis were recorded based 
on our fi eld observations to ensure accuracy. 

Figure 2. Map of 206 highway structure locations used in development 
of cliff swallow habitat selection model.

Table 1. Location, physical characteristics, and cliff  swallow nest infor-
mation recorded for highway structures.

Characteristic Possible values (units) [details]
Latitude, longitude (degrees)
Elevation (m)
Material concrete, concrete-steel, steel
Undersurface steel I-beams, concrete girders with 

transverse diaphragms, concrete drop 
caps, none

Vertical support concrete pile or column wall, steel col-
umn, abutments only

Deck-abutment angle <90, 90, >90 (degrees)
Column-deck angle <90, 90, >90, none (degrees)
Deck edge angle ≥180, <90, 90, 90–180 (degrees)
Road or water underneath dry ground, waterway
Area of opening (m2)
Obstruction of opening 0–100 (percent) [4 quadrants, both open-

ings of highway structure. Overall mean 
used for regression model.]

Nests [Number of complete or partial nests]

Nest scars
[Number of scars on highway structure 
surface]
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Latitude, longitude, and elevation provided 
a broad geographic classifi cation. Sites were 
also later grouped into 3 geographic regions: 
central valley, coastal range, and Sierra or Sierra 
foothills. The Material category was the primary 
material composing the highway structure 
surfaces; most commonly, this was concrete. 
The Undersurface category indicated the 
presence of steel I-beams, concrete drop caps, 
concrete girders with intermediate transverse 
diaphragms, or None (a smooth surface) on 
the underside of the deck. The Vertical-support 
category specifi ed the presence of mid-span 
supports, including concrete piles, walls, steel 
columns, or the absence of mid-span supports 
(abutments only). Undersurface features and 
mid-span vertical supports could increase the 
possible nesting locations for cliff  swallows. 
The deck-abutment angle was the angle at the 
juncture of the deck and abutment, classifi ed as 
<90°, 90°, or >90°. The column-deck angle, the 
angle at the juncture of the deck and column, 
was likewise classifi ed, but it included None 
as an option if mid-span supports were absent. 
The category Deck-edge-angle classifi ed the 
angle on the outer edge (overhang) of the deck 
as <90°, 90°, 90° to 180, or ≥180° (no juncture). 
Angles of <180° indicated that the outer edges 
of the deck had an interior-angle overhang of 
likely interest to cliff  swallows. The Road-or-
water-underneath category specifi ed the land 
feature over which the highway structure 
crossed, either dry ground (including roads 
and railroads) or a waterway. The Area-of-

opening category was based on the opening 
height and width and provided a measure of 
the maximum fl ight-path area allowing access 
by cliff  swallows to the underside of a highway 
structure. The Obstruction-of-opening category 
was visually estimated at 4 quadrants on each 
side of a highway structure to indicate how 
much of the openings were obstructed by trees, 
plants, or adjacent structures within 6 m. Values 
were between 0 and 100%, estimated to the 
nearest 5%, where a value of 0% indicated no 
obstructions within 6 m of an opening quadrant 
and 100% indicated complete obstruction. The 
overall obstruction was calculated as the mean 
of the 8 quadrant obstruction percentages. 
Finally, partial and completed cliff  swallow 
nests and nest scars were counted, and each 
value was recorded. Nest scars were dark 
outlines caused by ectoparasite excrement 
on the structure surface that remains aft er a 
nest has fallen. Figures 3, 4, and 5 show a few 
examples of highway structures we visited. 

The habitat and highway structure 
classifi cations were analyzed using logistic 
regression in Number Cruncher Statistical 
System (NCSS) soft ware (Hintze 2007). 
Logistic regression is a multivariate technique 
appropriate for habitat use-nonuse studies 
employing random sampling and can be 
used to model the conditional probability 
of occupancy (Keating and Cherry 2004). A 
binary-dependent variable was used to indicate 
presence (1) or absence (0) of nests and scars 
for each site. Habitat and highway structure 

Figure 3. Highway structure showing (A) vertical sup-
port with concrete piles and (B) undersurface with 
concrete girders with transverse diaphragms.

Figure 4. Highway structure showing (A) vertical sup-
port with concrete piles, (B) undersurface with con-
crete drop caps, and (C) water underneath.
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classifi cations were entered into the model as 
independent numerical or categorical variables 
(Table 2). Numerical variables were continuous 
values, such as land area in hectares or bridge 
opening in square meters. Categorical variables 
with n possible values were converted by 
NCSS into n-coded variables, with 1 value 
used as a reference for the others. The fi nal 
model used dummy coding (called binary by 

NCSS). Each nonreference, coded variable 
received a coeffi  cient in the regression model, 
but this was used only when an observation 
had the corresponding value. For example, the 
Undersurface category had 4 possible values, 
and the Road-or-water-underneath category 
had 2 possible values. If the Undersurface 
category was classifi ed as concrete drop caps, 
concrete girders with transverse diaphragms, 
or steel I-beams, the corresponding term in 
the regression model was assigned a 1 and 
0, otherwise. Similarly, if the Road-or-water-
underneath category classifi ed as water, then 
the term was assigned a 1 and 0, otherwise. 
The value not appearing in the model (None 
for Undersurface and dry ground for Road-or- 

water-underneath) was the reference value for 
that categorical variable. Dummy coding is not 
considered appropriate when interactions with 
categoricals are present, so eff ect coding (called 
contrast with reference by NCSS) was used 
during the model selection process. The fi nal 
models with dummy coding gave the same 
result as those with eff ect coding, but were 
easier to interpret. 

Figure 5. Highway structure showing (A) vertical sup-
port with abutments only, (B) undersurface with none, 
(C) 90° deck-abutment angle, and (D) 90–180º deck 
edge angle.

Table 2. Numerical or categorical variables used in logistic regression, including dot grid data, 
National Land Cover Database (NLCD) 2001 data with 0.5-km radius, NLCD 2001 data with 1-km 
radius, and fi eld survey data.

Dot grid NLCD 0.5 km and 1 km Field surveys
Numerical Numerical Numerical
Grass, fi elds, bare ground (ha) Open water (ha) Latitude (°)
Row crops (ha) Developed–open space (ha) Longitude (°)
Roads and buildings (ha) Developed–low intensity (ha) Elevation (m)

Fresh water (ha) Developed–medium 
intensity (ha)

Year built

Orchards and vineyards (ha) Developed–high intensity(ha) Obstruction (%)

Trees and chaparral (ha) Barren land (ha) Area of opening (m2)

Salt water (ha) Deciduous forest (ha)

Simpson’s diversity index Evergreen forest (ha) Categorical
Mixed forest (ha) Material
Shrub, scrub (ha) Undersurface
Grassland, herbaceous (ha) Vertical support
Pasture, hay (ha) Deck-abutment angle
Cultivated crops (ha) Column-deck angle
Woody wetlands (ha) Deck-edge angle
Emergent herbaceous wetlands (ha) Road or water under-

neath overpass, under-
pass region
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All variables were analyzed using a 
hierarchical, forward-selection logistic-
regression algorithm. The algorithm used 
prior probabilities of 0.67 for unoccupied sites 
and 0.33 for occupied sites, which were the 
actual proportions of occupancy at the 206 
sites. Prior probabilities aff ect the intercept of 
the regression model. In the forward selection 
procedure, the model began with no variables. 
The algorithm tested the model with each 
variable and interaction term, one at a time, to 
determine which one produced the largest log-
likelihood value. Once found, this term was 

added permanently to the model. The procedure 
was repeated to add additional terms to the 
model equation until the relative change in the 
log-likelihood from 1 step to the next was less 
than 10-6. The procedure was completed twice 
for each data set. The fi rst model included no 
interaction terms and generated a reduced set of 
9 variables for the second model that did include 
interactions. Because the model was hierarchical, 
interaction terms were added only if both 
individual variables were already in the model. 
Because NCSS used log-likelihood for variable 
selection, and not P-values, we also calculated 
the Akaike information criterion (AIC) for each 
step of the second model, using the equation

 
  (1)

where L was the log-likelihood and k was 
the number of free parameters in the model 
(Akaike 1974). Typically, the model with the 
lowest AIC is selected. A pseudo-R2 value, 
rL

2, was calculated by NCSS as a comparative 
measure of the log-likelihood accounted for 
by the model in each step (Hintze 2007). The 
signifi cance of each term in the full model was 
checked using chi-square tests on the model 
deviance. Deviance is -2 times the diff erence 
between the log likelihoods of the model with 
all possible terms and the model with a selected 
subset. The chi-square test determines whether 
removal of a single term results in a signifi cant 
increase in the deviance, compared to the full 
model. P-values <0.05 indicated that the term 
was signifi cant. The model with the lowest AIC 
was fi rst selected and the deviance P-values 
were checked. If one or more terms had a P-value 
>0.05, the term added in the latest selection step 
was removed from the model. The remaining 
terms were used in the full model. Inclusion of 
too many variables in the fi nal model would 
risk fi tt ing idiosyncrasies in the data instead 
of the general patt erns likely responsible for 
the diff erences in site occupancy. We also 
determined the Pearson’s correlation coeffi  cient 
for each pair of variables included in the fi nal 
model. A pair with a correlation coeffi  cient 
>0.6 was assumed to provide redundant 
information, and removal of 1 term from 
the model was considered. We used receiver 
operating characteristic (ROC) analysis to 
explore diff erent cutoff s for classifi cation of each 

Table 3. First 10 terms selected, in order of 
increasing log-likelihood, using hierarchical for-
ward selection for dot grid data, along with num-
ber of free parameters, k, the Akaike information 
criterion, AIC, and pseudo-R2, RL

2, at each step.

Term k AIC RL
2

Intercept 1 263.31 0.000

RB 2 217.11 0.184

US 5 199.85 0.273

RW 6 196.71 0.293

AO 7 194.38 0.310

AO*AO 8 191.92 0.327

AO*US1 11 192.83 0.346

AO*RW1 12 189.82 0.365

1Term not included in fi nal model.

Table 4. First 10 terms selected, in order of 
increasing log-likelihood, using hierarchical 
forward selection for 0.5 km NLCD data, along 
with number of free parameters, k, the Akaike 
information criterion, AIC, and pseudo-R2, RL

2, at 
each step.

Term k AIC RL
2

Intercept 1 263.31 0.000

DM 2 212.91 0.201

US 5 193.24 0.299

DO 6 190.72 0.316

AO 7 189.40 0.329

RW 8 187.07 0.345

H1 9 186.06 0.357

AO*AO1 10 184.74 0.370

AO*US1 13 186.10 0.387

AO*RW1 14 183.84 0.404

1Term not included in fi nal model.
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site, and we used area under the ROC curve 
(AUC) to compare diff erent models (Metz 1978, 
Hanley and McNeil 1982). We used histograms 
to illustrate trends in site occupancy and to aid 
in discussion of the results.

To validate the full model, we randomly 
selected 90% of the data (185 sites) to create a 
validation model using the same parameters 
selected for the full model. The remaining 
10% of the data (21 sites) were evaluated using 
the validation model to determine whether 
site occupancy was correctly predicted. The 
procedure was repeated 10 times, each time 
using a diff erent set of randomly selected 
data. The idea was to evaluate model stability 
through consistency in occupancy prediction. 

Results
All 3 data sets yielded similar regression 

models. The Roads-and-buildings category, 

Developed-medium-intensity (NLCD data) 
category, and Undersurface category (both) 
were always selected fi rst and second, 
regardless of the soft ware sett ings or other 
analysis techniques. The variables selected for 
the fi nal model using dot grid data, in order of 
contribution to the fi nal log-likelihood, were 
Roads-and-buildings (RB), Undersurface (US), 
Road-or-water-underneath (RW), and Area-of-
opening (AO; Table 3). The variables selected for 
the fi nal model using NLCD data within a 0.5-
km radius were Developed-medium-intensity 
(DM), US, Developed-open-space (DO), AO, 
RW, and Herbaceous (H; Table 4). The variables 
for the fi nal model using NLCD data within a 
1-km radius were the same, except that RW was 
selected before AO, and H was not selected. 
The order of selection did not matt er in this 
case because both variables were included in 
the model. For all data sets, interaction terms 
were selected in subsequent steps. For dot-grid 
and 0.5-km NLCD data, addition of AO*AO, 
AO*US, and AO*RW to the model yielded the 
smallest AIC. For 1-km NLCD data, addition 
of AO*AO and AO*RW gave the smallest AIC. 
However, the presence of some interaction 
terms resulted in deviance P-values much 
<0.05 for one or more terms in each model. 
Only aft er eliminating these interaction terms 
were the deviance P-values of all terms >0.05. 
No interaction terms remained in the NLCD 
models and only AO*AO remained in the dot-
grid model. The AIC of each fi nal model was 
not appreciably diff erent from the smallest 
AIC, so rejection of the interaction terms was 
considered a reasonable simplifi cation.

In logistic regression, the logit transformation 
is defi ned as

 
   (2)

where logit(P) is the logit of the proportion, P, 
of observations with a response of 1, meaning 
that nests are present. The regression models 
were of the form

        
(3)

where bn was the regression coeffi  cient for each 
term, Xn. The resulting occupancy predictions 

  

Table 5. Regression model terms, Xn coeffi  cients, 
bn, and standard error, SE, of the coeffi  cients for 
equation 3 for dot grid data.

n Xn bn SE

0 Intercept -0.90641 0.51685

1 RB -9.1945E-03 1.7564E-03

2 US = dropcaps  1.1281 0.56547

3 US = diaphragms  2.1788 0.52876

4 US = steel -1.1398 0.74428

5 RW = water  1.3168 0.44188

6 AO  3.3405E-03 1.5287E-03

7 AO*AO -1.0780E-06 8.5200E-07

Table 6. Regression model terms, Xn, coeffi  cients, 
bn, and standard error, SE, of the coeffi  cients for 
equation 3 for 0.5 km NLCD data.

n Xn bn SE

0 Intercept  0.21856 0.53667

1 DM -8.6817E-
02

1.6219E-02

2 US = dropcaps  1.28685 0.58918

3 US = diaphragms  2.40487 0.57144

4 US = steel -0.93089 0.73486

5 DO -5.3121E-
02

2.5647E-02

6 AO  1.0393E-
03

4.5560E-04

7 RW = water  0.89334 0.42782
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for each model were similar. Tables 5 and 6 
show the coeffi  cients and terms selected for the 
fi nal models using dot grid and NLCD data 
with 0.5-km radius. Detailed results for the 
1-km model are not shown due to its similarity 
to the 0.5-km model. The intercept term, b0 , was 
dependent on the terms included in the model, 
their coeffi  cients, and the prior probabilities. 
Analysis of deviance for each term yielded no 
rejections from the 3 fi nal models because the 
largest chi-square P-value among all terms 

was 0.037. Correlation tests between selected 
variables in each of the 3 models resulted in 
no correlation coeffi  cients >0.6, except for a 
correlation between AO and AO*AO in the 
model with dot grid data. AO*AO was kept in 
the model because it provided more information 
about the eff ect of Area-of-opening and was not 
simply redundant. RL

2 for the dot grid, 0.5-km 
NLCD, and 1-km NLCD models were 0.327, 
0.345, and 0.325, respectively. AUC for the same 
models were 0.855, 0.866, and 0.856. 

Table 7. Receiver operating characteristic (ROC) table for 0.5 
km NLCD model for several possible classifi cation cutoff s.

Cutoff Sensitivity Specifi city Sensitivity 
+ specifi city

Proportion 
correct

0.1 0.97059 0.45652 1.42711 0.62621

0.2 0.89706 0.63043 1.52749 0.71845

0.3 0.82353 0.75362 1.57715 0.7767

0.4 0.70588 0.81884 1.52472 0.78155

0.5 0.58824 0.87681 1.46505 0.78155

0.6 0.52941 0.93478 1.46419 0.80097

0.7 0.41176 0.97826 1.39003 0.79126

0.8 0.36765 0.98551 1.35315 0.78155

0.9 0.14706 1.00000 1.14706 0.71845

Table 8. Prediction of occupied and unoccupied sites for 21 sites not 
used in creation of each validation model based on 185 sites. Pre-
dicted values shown as a fraction of the actual number of occupied or 
unoccupied sites in the validation set.

Predicted/actual number of sites

Validation 
model

Dot grid data 0.5-km NLCD data

Unoccupied Occupied Unoccupied Occupied

1 12/15 3/6 12/15 3/6

2 14/16 1/5 14/16 2/5

3 11/13 5/8 13/13 5/8

4 16/17 1/4 16/17 1/4

5 8/11 7/10 10/11 7/10

6 9/11 5/10 11/11 7/10

7 11/11 6/10 11/11 6/10

8 13/16 3/5 13/16 3/5

9 12/14 5/7 12/14 5/7

10 12/14 3/7 12/14 3/7
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Logit(P) can be converted to the proportion 
of sites with nests by solving equation 2 for P,

         (4)

Equation 4 can be combined with equation 
3 to predict the likelihood of fi nding nests at 
a particular site. Logit(P) <0 corresponds to P < 
0.5, indicating that nests have <50% chance of 
being present, and logit(P) > 0 corresponds to 
P > 0.5, indicating nests have >50% chance of 
being present. With this default classifi cation 
cutoff , the dot grid model and 0.5 km NLCD 
model both correctly predicted 59% (40 of 
68) of occupied sites and 88% (121 of 138) 
of unoccupied sites, giving overall correct 
prediction rates of 78%. The 1-km NLCD 
model correctly predicted the same number of 
occupied sites, but 2 fewer unoccupied sites. 
ROC analysis yielded similar sensitivities (true 
positive rate) and specifi cities (true negative 
rate) for all data sets, with diff erences of <0.05, 
but the AUC for the 0.5 km NLCD model was 
slightly higher, so its ROC results are shown in 
Table 7.

Ten validation models for each data set were 
created from a random selection of 90% of the 
sites (185), and the predicted occupancies of 
the remaining 10% of the sites (21) for the dot 
grid and 0.5-km NLCD models are in Table 8. 
The proportion of sites correctly predicted as 
occupied by the validation models was between 
0.20 (1/5) and 0.71 (5/7). The proportion of sites 
correctly predicted as unoccupied was between 
0.73 (8/11) and 1.00 (11/11). 

Discussion
Overall, each term in the model can be 

interpreted in a fairly intuitive way. The fi rst 
variable selected for inclusion in all models was 
always related to urban development (Roads-
and-buildings for dot grid data and Developed-
medium-intensity for NLCD data). Each had a 
negative coeffi  cient, indicating developed land 
reduced the likelihood of cliff  swallow nesting. 
This seems plausible because development 
would be likely to reduce the habitat available 
for food, water, and mud, as well as increase 
deterrence by people, pets, and vehicular traffi  c. 
A variable added to the model with NLCD data 
was urban development space, which is also 

an Urban-development category, but included 
mostly vegetation such as lawn grasses (Homer 
et al. 2007) that we might consider a source 
of food, water, and mud. Additional analysis 
helped validate the inclusion of Developed-
open-space in the model. A logistic regression 
model with only DM and US variables was 
compared to one with only DM, US, and DO. 
Visual inspection of scatt er plots of P versus 
DO, with points color-coded for occupancy and 
non-occupancy, showed that addition of DO to 
the model improved classifi cation of sites that 
were close to P = 0.5 in the DM and US only 
model. Addition of DO to the model caused 
sites with greater Developed-open-space land 
area to be more likely classifi ed as unoccupied. 
Based on its inclusion in the model as a negative 
predictor of nesting, we can assume that the 
developed land features present in this category 
serve more to deter cliff  swallows than to att ract 
them. 

Further analysis also helped explain the 
absence of Developed-low-intensity (DL) and 
Developed-high-intensity (DH) in the model. 
Because these land-cover classes were diff erent 
levels of the same urban development features, 
we wanted to explore their importance 
to occupancy prediction. During forward 
selection of variables in the fi rst model, DL 
and DH were not selected until steps 21 and 
26, respectively, which indicates they were of 
litt le predictive importance. Even with DM 
removed from the data set, DL and DH were 
not selected until steps 18 and 20, indicating 
they were not suitable replacements for DM. 
Histograms were used to compare the number 
of occupied and unoccupied sites over the 
range of land area values for DH, DM, DL, and 
DO classes. A clear trend was that sites were 
more likely to be unoccupied if Development-
medium-intensity was >26 ha. No other trends 
were apparent, which is the likely reason that 
only DM was selected for the model. Last, we 
combined DH, DM, DL, and DO into a single 
Total-development class by summing the land 
area of each. Similar to our other models, the 
Total-development variable was selected fi rst, 
followed by Undersurface. This confi rmed that 
urban land development was the most important 
variable for the cliff  swallow occupancy model, 
though the DM development category was of 
primary importance when using the NLCD 
data for the region in this study.

.    
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The second variable included in all models 
was always Undersurface. This seemed 
reasonable because we expected that a highway 
structure undersurface with more interior 
junctures would provide bett er nesting surfaces 
than an undersurface with few or no junctures. 
We found that the percentage of occupied 
sites for each Undersurface classifi cation 
was 22% (n = 137) for None, 52% (n = 25) for 
concrete drop caps, 67% (n = 30) for Concrete 
girders with transverse diaphragms, and 36% 
(n = 14) for steel I-beams. Because None was 
the reference category, the coeffi  cients for the 
other three classifi cation terms were relative to 
None. It is clear that sites with either Concrete- 
drop-caps or Concrete-girders with transverse 
diaphragms had a greater percentage of nests 
than sites with an Undersurface classifi cation 
of None and this is refl ected in the model. Steel 
I-beams had a negative coeffi  cient and, thus, 
reduced the likelihood of observing nests. This 
seemed peculiar because Steel I-beam sites had 
a greater proportion of nests than the reference 
category, but the presence of other variables in 
the overall model likely altered the coeffi  cient 
of Steel I-beams. For example, the classifi cations 
of US could diff er in their average urban 
development, such that the diff erence between 
None and Steel I-beams is overridden by these 
other eff ects. This seemed to be supported by a 
comparison test that showed the mean values of 
Roads-and-buildings (P < 0.001) and Developed-
medium-intensity (P = 0.001) diff ered between 
sites classifi ed as having an undersurface of 
None and Steel I-beam. US coeffi  cients do not 
suggest that concrete increased the likelihood 
of nesting compared to steel. Material was 
listed as a separate variable and was not found 
to be signifi cant. Also, the US classifi cation of 
None included structures made predominately 
of concrete, yet, it was the concrete structures 
with junctures on the undersurface (i.e., drop 
caps and girders with transverse diaphragms) 
that were more likely to be occupied.

The last 2 terms added to both models 
were Road-or-water-underneath and Area-of-
opening. RW = water was added before AO for 
the model using dot grid data and vice versa 
for the 0.5-km NLCD data. Both had positive 
coeffi  cients and indicated increased likelihood 
of cliff  swallow nesting. Because the presence 
of a waterway eliminated vehicular traffi  c and 

likely increased food and mud availability, 
inclusion of this variable seemed logical. 
Similarly, a larger opening provided more open 
space for fl ight to and from the underside of the 
structure and also implied that the undersurface 
was higher from the ground, reducing the risk 
of predators. 

The quadratic term, AO*AO was included in 
the dot grid model because it yielded a lower 
AIC (191.9 versus 194.4) and higher AUC (0.855 
versus 0.850) than the model without the term. 
However, the diff erence between them was 
small enough that a model without AO*AO had 
a bett er overall classifi cation rate, with 2 fewer 
false positives and one more false negative. 
AO*AO had a very small, negative coeffi  cient, 
indicating that the response to AO was not 
linear. This means that AO had a lessening 
impact on nesting likelihood as the area of the 
opening became very large. 

Statistical tests to compare AUC between 
models were not used, but it is reasonable 
to assume that the small diff erences in AUC 
were not indicative of 1 model have greater 
predictive ability then another. However, with 
the highest AUC and clear advantage of using 
publicly available land-classifi cation data, 
we recommend the 0.5-km NLCD model for 
practical applications. 

Without a predictive model, a department 
of transportation might guess as to whether or 
not a site is occupied by cliff  swallows before 
visiting it. One approach, a coin toss, predicts a 
50% likelihood of occupancy at any site. Applied 
to the data in this study, the true positive and 
true negative rates using this method were 
17 and 33% (0.5 times prior probabilities), 
respectively. A second approach might presume 
that nests are less likely (33% likely, based on 
the observed proportion of sites occupied in 
this study) and this yielded true positive and 
true negative rates of 11 and 45% (i.e., the 
square of prior probabilities), respectively. In 
both cases, the regression models using a cutoff  
of P = 0.5 correctly predicted the likelihood of 
occupancy at a much higher rate than either of 
these methods based on chance.

ROC analysis can be used to choose a cutoff  
diff erent from 0.5, depending on the desired 
balance between false positives and false 
negatives. A false positive (1-Specifi city) is an 
unoccupied site that is predicted by the model 
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to have nests. A false negative (1-Sensitivity) is 
an occupied site predicted to not have nests. A 
lower cutoff  yields more false positives and few-
er false negatives, while a higher cutoff  yields 
the opposite. A department of transportation 
interested in sites with nests might select a 
lower cutoff  and accept a higher false positive 
rate in order to reduce the likelihood of not 
addressing an occupied site. The potential 
cost is that many sites without nests may be 
classifi ed as occupied, which could waste 
resources in examining these sites. To instead 
focus only on sites with a high likelihood of 
occupancy, a higher cutoff  would be selected. 
In the absence of other preferences, optimum 
cutoff s could be chosen based on the maximum 
sum of sensitivity and specifi city or the largest 
proportion of sites correctly classifi ed. For the 
0.5 km NLCD model, these cutoff s were 0.26 
and 0.60, respectively.

One caution to using the models is that they 
should be considered valid only for the northern 
California region in which data were collected 
and, more specifi cally, within 161 km of Davis. 
Sites outside this region might introduce 
regional variations in cliff  swallow nesting 
behavior or require other variables not included 
in this study. As an example of diff erent cliff  
swallow behavior, nests are sometimes found 
on residential homes in southern California, 
but much less oft en in northern California. 
The eff ect this has on cliff  swallow nesting on 
highway structures in southern California is 
unknown. 

As with most animals, cliff  swallow behavior 
is not easily predicted with a mathematical 
equation. Nonetheless, the models provided 
here can be used to predict the likelihood of 
cliff  swallow nesting on hundreds of Caltrans 
highway structures and might provide insight 
into trends not yet evident in our data alone.

Management implications
Cliff  swallows are a problem for state 

departments of transportation because they 
frequently colonize highway structures, and, 
according to federal law, their nests cannot be 
disturbed until the nesting season has passed. 
We used logistic regression to select signifi cant 
terms from data that included bridge structural 
characteristics and surrounding habitat 
classifi cations from dot grid analysis and a 

land cover database. Based on our habitat 
selection model, the main factors increasing the 
likelihood of cliff  swallow colonization are: (1) 
a lack of surrounding urban development, (2) 
an undersurface containing concrete drop caps 
or girders with transverse diaphragms, (3) the 
presence of water under the highway structure, 
and (4) a large opening. The models presented 
provide bett er predictions of cliff  swallow 
nesting likelihood than estimates based on 
chance.
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